Люминесцентные лампы: описание, характеристики, типы, подключение в быту
Весь мир уже давно твердит об экономии электроэнергии и под этот гомон навязывает покупку дорогих энергосберегающих ламп. Однако, уже лет 50 известен альтернативный лампам накаливания, способ освещения. Это освещение люминесцентными лампами. Правда вопрос их утилизации и эко безопасности оставляет массу вопросов.
Люминесцентные лампы: описание и устройство
Люминесцентные лампы, по внешнему виду, представляют собой стеклянную колбу, различной формы, белого цвета с торчащими на краях контактами подключения.
Справка: Первые люминесцентные лампы были созданы в России в 1936-40 году группой под руководством Вавилова С.И.
Форма люминесцентных ламп может быть в виде стержня (трубка), тора, или спиралей. При производстве из колбы лампы выкачивают воздух и закачивают инертный газ. Именно поведение инертного газа под действием электричества приводит к свечению лампы, создавая потоки холодного или теплого света, который принято называть «дневным». Отсюда второе название этих ламп, лампы дневного света.
Стоит отметить, что светить лампа не смогла, если бы с внутренней стороны на колбу не был нанесен люминофор, а в самой лампе не находилась бы ртуть.
Именно ртуть стала тем фактором, который вытесняет этот тип ламп с рынка. Опасность ртутных загрязнений при разбиении ламп вызывает много вопросов и экологов мира.
Как работает люминесцентная лампа
Инертный газ в лампе нужен для создания тлеющего разряд (поток ионизированных частиц инертного газа). Ртуть нужна для усиления этого разряда. Люминофор нужен для преобразования ультрафиолетового света, в свет видимого спектра. Электроды нужны для подключения лампы в электрическую схему и создания разряда электронов.
После подачи напряжения на контакты лампы, электроды внутри колбы начинают испускать электроны, которые перемещаясь по колбе, пытаются создать разряд. Однако, в нормальных параметрах схемы силы тока не достаточно для создания разряда. Поэтому, в схему подключения люминесцентной лампы обязательно включают устройство, создающее разовый электрический разряд для старта свечения.
Источник: https://ehto.ru/montazh-elektriki/osveshhenie/lyuminestsentnye-lampy-opisanie
Разница между лампами накаливания и люминесцентными — Дом из соломы. Дневник эко-стройки « Дом из соломы
Rating: +0
Почему стоило бы заменить «лампочку ильича» на люминесцентную лампу? Менять её пора потому, что в XXI веке она уже давно морально и экономически устарела. Теперь существует много альтернативных и более эффективных источников освещения. И первым в этом ряду стоит люминесцентная лампа.
Этот источник света относится к поколению газоразрядных светильников. В них люминофор, находящийся на стенке лампы с внутренней стороны, от ультрафиолетового излучения начинает светиться. Излучение получается в результате электрического разряда, происходящего в газе. Для этого лампу наполняют газом аргоном, парами ртути.
Преимущества люминесцентных ламп относительно ламп накаливания
№ | Лампы накаливания (особенности) | Люминесцентные лампы (особенности) |
1 | Световая отдача ниже. | Световая отдача выше в 7—8 раз. |
2 | Недолговечные. | Служат долго. Срок измеряется несколькими тысяч часов. |
3 | Утомляют глаза. | Глаза не утомляют и не слепят. Свет излучают мягкий и рассеянный. |
4 | При освещении вызывают искажение цветового восприятия предметов. | Свет похож на дневной. Поэтому цвет предметов не искажается, а воспринимается также как при естественном освещении. |
5 | Травмоопасны. При случайной подаче в сеть вместо фазного напряжения (220 В) линейного (380 В) взрываются через несколько минут. | Легко выдерживают высокое напряжение (380 В). При этом почти не нагреваются. |
Мощность, выпускаемых люминесцентных ламп, варьируется в широких пределах – от 5 до 150 Ватт.
Состав люминофора, от которого зависит свечение, тоже может быть различным. Буквенные аббревиатуры в маркировке люминесцентных ламп показывают, какого свечения будут лампы:
- лампы ЛД — светятся дневным светом,
- лампы ЛБ — светятся белым светом,
- лампы ЛХБ — светятся холодно-белым светом,
- лампы ЛТБ — светятся тепло-белым светом.
Цифры, стоящие после буквенного обозначения, сообщают о мощности лампы. Например, ЛХБ20 означает: лампа люминесцентная холодно-белого свечения мощностью 20 Ватт.
Недостатки люминесцентных ламп
На свете нет ничего совершенного, и в люминисцентных лампах тоже есть недостатки.
- они имеют не всегда удобные для установки в светильники (габариты)
- для их запуска требуется специальное пуско-регулирующее устройство
- в холодных помещениях (а это уже ниже +10° С) может даже не включиться
- без защитных конденсаторов создает помехи для электронной аппаратуры
Несмотря на мелкие недочёты в их конструкции, они всё шире применяются. Их устанавливают в настольных и настенных светильниках, в люстрах. Наиболее востребованные в быту лампочки мощностью от 13 до 65 Ватт.
Подводя итог, становится очевидным, что время лампочек из позапрошлого века уходит безвозвратно. Современность требует использования более экономичных, долговечных и безопасных источников освещения. Как говорится, можно ненадолго задержаться, но время не остановить
***
Если нужно будет искать входные двери в Москве, не забудьте про возможность подсветки — есть и такие варианты по ссылке
Источник: http://biodoma.ru/raznica/elektrika/raznica-mezhdu-lampami-nakalivaniya-i-lyuminescentnymi/
Люминесцентная лампа: устройство, принцип работы, виды, маркировка
Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания.
С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих.
Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.
Устройство и принцип работы
Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.
Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.
Рис. 1. Устройство и принцип действия люминесцентной лампы
Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:
- На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
- При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
- Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит активация и последующей свечение люминофора.
Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.
Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.
Разновидности
Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.
По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:
- Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
- Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.
По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.
Рис. 2. Разновидности колбы
По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с цоколем типа W и F, но они используются довольно редко.
Рис. 3. Разновидности цоколей
По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.
Рис. 4. Цветовая температура
Маркировка
Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.
Отечественная
Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.
Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:
- Д – дневного спектра;
- ХБ – холодное белое свечение;
- Б – белого цвета;
- ТБ – белый теплых оттенков;
- ЕБ – белый естественного спектра;
- УФ – ультрафиолетового спектра;
- Г – голубого цвета;
- С – синего оттенка;
- К – красный спектр излучения;
- Ж – желтого оттенка
- З – зеленого цвета.
Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.
В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:
- А – амальгамного типа;
- Б – с быстрым пуском;
- К – кольцевого вида;
- Р – рефлекторные лампы
- У – U образные.
Зарубежная
Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.
Тип свечения определяется цифровым кодом с буквенным пояснением на английском:
- 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
- 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
- 765 – голубого оттенка с посредственным уровнем передачи цветов;
- 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
- 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
- 840 – белого оттенка с хорошим уровнем передачи цветов;
- 865 – дневного спектра с хорошей цветопередачей;
- 880 – дневной спектр с отличной степенью передачи света;
- 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
- 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
- 954/965 – люминесцентные устройства с непрерывным спектром.
Технические характеристики
Важными техническими характеристиками для люминесцентных ламп являются:
- Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
- Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
- Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
- Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
- Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
- Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и G13 штырькового образца и другие.
Особенности подключения к сети
В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.
Электромагнитный балласт
Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.
Рис. 5. Схема подключения с электромагнитным балластом
Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.
Электронный балласт
Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.
Рис. 6. Использование электронного балласта
Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.
Причины выхода из строя
Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.
Наиболее частыми причинами выхода люминесцентных ламп со строя являются:
- перегорание нити накала – характеризуется полным отсутствием свечения;
- нарушение целостности контактов – также не дает лампе загореться;
- разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
- перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
- обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
- замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.
Плюсы и минусы
В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.
К преимуществам люминесцентных устройств следует отнести:
- Достаточно высокая эффективность, в сравнении с теми же лампами накаливаниявыдают на порядок больший световой поток на каждый ватт потребленнойэлектроэнергии;
- Имеет несколько вариантов цветового спектра, что делает обоснованным ихприменение для различных целей;
- Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот жепоказатель у ламп накаливания и галогенок;
- Достаточно большое разнообразиеконструкций – компактные, большие, удлиненные и т.д.
Однако и недостатков у люминесцентных ламп существует немало:
- Гораздо более высокая стоимость;
- Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
- Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
- Стабильность работы во многом зависит от температуры и влажности окружающей среды;
- Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
- В сравнении со светодиодными светильниками, бояться механических повреждений;
- Не поддаются классическим методам управления яркостью.
Область применения
Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.
В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.
Источник: https://www.asutpp.ru/lyuminestsentnaya-lampa.html
Флуоресцентные лампы (люминесцентные). Виды и устройство. Работа
В современный период флуоресцентные лампы получили широкое применение среди других видов осветительных ламп. Уже в 70-х годах они начали заменять обычные лампы накаливания на производстве и в различных учреждениях. Они имеют достаточно высокую эффективность, качественно освещают помещения и территории.
Флуоресцентная лампа – это источник света, получаемого от свечения разрядов газа. Она состоит из стеклянной трубки, на внутренней поверхности которой нанесен слой люминофора. На торцах трубки находятся электроды в виде спиралей. В полость трубки закачан инертный газ и пары ртути. Под напряжением на электродах в лампе образуется разряд газа, ток проходит по парам ртути, возникает свечение.
Технология изготовления этих ламп постоянно совершенствуется, уменьшаются размеры, повышается яркость и качество света. С 2000-х годов такие лампы используются в домашнем хозяйстве. В настоящее время лампы получили название люминесцентных. По сути и принципу действия это одни и те же лампы. Хотя старое название также используется, поэтому в разной литературе они называются по-разному.
Типы флуоресцентных ламп и их устройство
У нас в стране энергосберегающими лампами называют (люминесцентные) флуоресцентные лампы для бытового применения. Многие не знают, что лампы в виде спирали, которые используются в быту, и называются энергосберегающими, являются по принципу действия флуоресцентными лампами. Энергоэффективность приборов освещения делится на два класса: А и В.
Наиболее правильной будет классифицировать флуоресцентные лампы по различным признакам. Учитывая технологию производства и область применения, выделяют следующие типы ламп:
- Стандартные флуоресцентные лампы диаметром 26 мм, имеющие несколько слоев люминофора.
- Флуоресцентные лампы компактных размеров, имеющие трубку различной конфигурации, также покрытой люминофором.
- Лампы специального назначения.
Также флуоресцентные лампы делятся по другим признакам:
- Мощность энергии потребления.
- Световой поток.
- Цветовая температура.
- Индекс цветопередачи.
- Длина лампы.
- Размер цоколя.
- Вид подключения.
- Размещение пускателя. Размещается в корпусе лампы или в светильнике.
Основным элементом флуоресцентных ламп являются пары ртути в малой концентрации. При прохождении через них электрического тока образуется ультрафиолетовое излучение.
Люминофор – это химическое вещество, находящееся на внутренней поверхности трубки лампы, преобразующее ультрафиолетовое излучение в видимый для глаз свет. Качество света зависит от состава люминофора.
Принцип действия
При включении питания в стартере образуется небольшой тлеющий разряд, под действием него нагреваются электроды.
Один из электродов изготовлен из биметаллического материала. При нагревании он изгибается и прикасается к другому электроду. В итоге в цепи резко увеличивается электрический ток, разряд в стартере прекращается. Повышающийся ток нагревает электроды флуоресцентной лампы. они начинают выпускать электроны. Это является подготовкой к запуску работы лампы.
Электроды в стартере в это время охлаждаются, биметаллический элемент выправляется, и между электродами появляется зазор. Сила тока в схеме значительно снижается. В дросселе появляется мгновенное повышенное напряжение, которое называется напряжением самоиндукции. Оно препятствует снижению этого тока. При суммировании с напряжением цепи, напряжение самоиндукции образует в лампе короткий импульс напряжения, которого хватает для образования электроразряда в газе.
Сначала разряд возникает в аргоне, а затем, когда газ разогреется, в ртутных парах. Во время свечения лампы напряжение на электродах, а значит и электродах стартера, подключенного к лампе по параллельной схеме, меньше напряжения цепи на размер ЭДС самоиндукции, появляющейся в дросселе при загорании лампы.
Поэтому, дроссель предназначен не только для запуска люминесцентной лампы, но и в создании препятствия неограниченного повышения тока разряда. Если бы дросселя не было, то при увеличении тока лампа разрушилась бы, либо вышли из строя предохранители сети питания квартиры.
Конденсатор С1 в схеме стартера предназначен для подавления помех радиочастотных волн. А емкость С2 служит для увеличения коэффициента мощности.
Особенности и преимущества флуоресцентных ламп
Ультрафиолетовое излучение заставляет светиться люминофор видимым для глаза человека светом. Стекло колбы лампы не дает выхода вредному ультрафиолетовому излучению. Этим оно защищает наши глаза.
https://www.youtube.com/watch?v=P1xfMr5siFE
Бактерицидные лампы имеют в своей конструкции кварцевое стекло, которое легко пропускает ультрафиолет. Такие лампы применяются для дезинфекции и кварцевания помещений в медицине. Большое распространение имеют сегодня лампы с амальгамами кадмия и другими элементами. В них давление ртути снижено, вследствие чего расширяется интервал температур отдачи света до 60 градусов. Для чистой ртути эта величина составляет 25 градусов.
При возрастании температуры воздуха больше 25 градусов, температура стенок лампы и давление паров ртути повышается, а поток света снижается. Еще сильнее уменьшается поток света при снижении температуры и давления паров. При этом запуск ламп затрудняется. Поэтому в холодное время применение флуоресцентных ламп ограничено.
Чтобы решить эту проблему, разработана конструкция безртутных люминесцентных ламп, в которых давление инертного газа низкое. В них слой люминофора начинает светиться от излучения с величиной длины волны 58-147 нанометров. Так как давление газа в таких лампах не зависит от температуры воздуха, то поток света не изменяется. Сегодня существуют лампы нового поколения Т5. Они более компактны, в них используется высокочастотный пускатель.
Чем больше длина лампы, тем сильнее поток света. Это происходит из-за уменьшения анодно-катодных потер в потоке света. Поэтому выгоднее применить одну лампочку на 36 ватт, чем 2 лампы по 18 ватт. Срок действия у таких ламп ограничивается распылением катодов. Также снижают срок службы колебания напряжения сети питания и частые переключения.
Достоинства
Флуоресцентные лампы нашли широкое применение в связи с тем, что они обладают значительными достоинствами, по сравнению с простыми лампочками накаливания.
- Повышенная эффективность. Световая отдача выше в 10 раз, чем у ламп накаливания, КПД 25% по сравнению с лампами накаливания – 7%.
- Большой срок работы – до 20000 часов.
Недостатки
- Требуется подключение балласта для нормальной работы лампы.
- Устойчивая работа лампы зависит от температуры воздуха.
Излучение света оказывает на людей значительное воздействие, как психологическое, так и физиологическое, но чаще благотворное.
Самым полезным считается дневной свет. Он оказывает влияние на процессы жизни человека, обмен веществ, развитие в физическом плане и т.д. Искусственное освещение отличается от дневного света.
Лампы накаливания излучают желтый и красный спектр света, ультрафиолет отсутствует, поэтому они считаются теплыми источниками света.
Еще одним достоинством люминесцентных ламп является возможность образования света разного спектра, от теплого до дневного. Это делает богаче цветовую палитру домашнего быта. Для разных областей применения рекомендуют свои цвета.
Как изготавливают флуоресцентные лампы
Эта лампа была изобретена в 1909 году. До сих пор ее конструкция принципиально не изменилась. Их изготовление является сложным процессом. Нужна механическая хореография, которая включает в себя сварку, и плавку, а также изгибы, пайка, окраска.
Технологический процесс начинается с трубок из стекла. До этого их тщательно подвергают промывке в теплой воде для удаления примесей и грязи. Далее трубкам придается специфическая форма. Их подвергают нагреву в течение половины минуты, потом быстро сгибают по шаблону. Автоматический станок изгибает трубки со скоростью 14 штук в минуту.
Изогнутые трубки идут в камеру, в которой наносится небольшой слой фосфора на внутреннюю поверхность. Фосфор образует световой поток, преобразуя ультрафиолет, образующийся во время ионизации паров ртути. С краев трубки убирают излишки фосфора, для последующей пайки.
Теперь нужно установить компоненты электросхемы. Монтажным автоматом изготавливается катодное устройство. По ним будет поступать ток. Проводникам придается нужная форма, затем их нагревают до определенного значения температуры. Это является подготовкой к следующему этапу, потому что важно не дать катодному покрытию перейти на штырьки.
Нити лампы вставляют в опору. Эмиссионное вещество в этом процессе имеет большое значение. Она испускает электроны, участвующие в образовании светового потока. На следующем этапе соединяют подставку и стеклянную трубку. Пайка производится при высокой температуре.
Теперь остается самый важный процесс, во время которого выкачивают воздух из трубки и заполняют ее инертным газом. На этой же операции в трубку впрыскивается капля ртути, которая очень важна для образования света.
Следующий этап – это размещение проводов, чтобы установить крышку, закрывающую трубку. Крышка создает электрический контакт, и надевается на конец трубки. Она должна иметь абсолютную герметичность, чтобы не было утечки. Теперь лампа готова.
Каждый образец лампы ставят на испытательное колесо для проверки качества.
После тщательной проверки флуоресцентные лампы перевозят на упаковку. Эта операция требует необходимой точности и ловкости. С помощью фосфора, ртути и паяльных ламп изготавливается устройство, не изменившееся за последний век.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektroobustrojstvo/osveshhenie/fluorestsentnye-lampy/
Энергосберегающая люминесцентная лампа
В связи с увеличением количества электрических приборов в мире очень остро стал вопрос сбережения электроэнергии. А на постсоветском пространстве еще и значительно увеличилась плата за электроэнергию, поэтому люди вынуждены предпринимать различные меры, чтобы уменшить ее потребление. И одним из методов экономии электроэнергии является энергосберегающее освещение.
Так как у большинства людей в домах использовались обычные лампы накаливания, мало кто обращал внимание на их практичность с технической и экономической стороны. Единственное, на что люди обращали внимание, выбирая и покупая лампу, это то, какой она мощности, подразумевая при этом ее яркость.
И даже сегодня, когда в продаже имеется много разновидностей ламп, очень часто спрашивают эквивалент к лампе накаливания.
Но так как лампы накаливания уходят в прошлое в связи с очень низким КПД, на смену им приходят хорошо забытые старые люминесцентные лампы, которые благодаря маркетинговому ходу получили громкое название «ЭНЕРГОСБЕРЕГАЮЩИЕ», или новые светодиодные LED лампы.
Люминесцентные лампы
Впервые свечение газов под воздействием электрического тока наблюдал Михаил Ломоносов, пропуская электричество через колбу заполненную водородом. А первую газоразрядную лампу в 1856 году изобрел Генрих Гейслер. Но только 23 июня 1891 года Никола Тесла запатентовал полноценную систему освещения аргоновыми лампами.
После этого последовала череда экспериментов с различными газами, которые под воздействием электрического тока создавали различного цвета свечение.
И все-таки изобретателем первой люминесцентной лампы был признан Эдмунд Гермер в 1926 году, предложивший увеличить давление газа и покрывать колбы флуоресцентным порошком, благодаря которому ультрафиолетовое свечение, испускаемое возбужденной плазмой, принимает более однородное белое свечение, воспринимаемое человеческим глазом.
И так как люминесцентные лампы в отличие от ламп накаливания имеют не желтое, а белое свечение, их еще стали называть лампами дневного света.
Схема подключения люминесцетной лампы
- 1 – стеклянная колба с инертным газом покрытая тонким слоем люминофора;
- 2 – два электрода;
- 3 – стартер;
- 4 – дроссель;
- 5 – конденсаторы.
При включении выключателя замыкается электрическая цепь. Дроссель и конденсаторы предназначены для запуска, так как для того, чтобы зажечь газ, находящийся в лампе, необходим повышенный электрический разряд. Между катодом и электродом возникает поток электронов и нагревает инертный газ и пары ртути, которые испускают ультрафиолетовое свечение, невидимое человеческому глазу.
Люминофор, покрывающий стеклянную колбу, преобразует ультрафиолетовые лучи в видимый свет (от состава люминофора зависит цвет изменяемого света). После нагревания газа до необходимой температуры, стартер прерывает электрическую цепь. Когда газ в трубке начинает остывать, стартер опять замыкает электрическую цепь.
Таким образом, лампа находится под напряжением четверть времени, что и обуславливает ее экономичность в сравнении с лампой накаливания, которая потребляет электроэнергию постоянно. Еще экономичность люминесцентной лампы определяется за счет величины светового потока, который гораздо выше, чем у лампы накаливания такой же мощности.
Энергопотребление лампы накаливания выше в 3 – 5 раз, чем у люминесцентной лампы (при одинаковой освещенности).
Сейчас привыкли называть «экономками» обычные люминесцентные лампы, только компактной формы, за счет колбы специальной конструкции и электронной пусковой микросхемы. Они бывают интегрированными (со встроенной пусковой микросхемой), которые можно вкручивать в тот же патрон, что и лампы накаливания – цоколь Е27 и Е14. И неинтегрированные (с отдельно подключаемой схемой), с цоколями G24 и G13, в основном применяются в настольных лампах.
Интегрированные лампы
Неинтегрированные лампы
Достоинства люминесцентной лампы
К достоинствам люминесцентных ламп можно отнести качество освещенности, но при условии, что эти лампы являются качественными и используются многоуровневые системы люминофора, делающие свет от них наиболее близкий к дневному.
Срок службы люминесцентных ламп в четыре раза превышает срок службы лампы накаливания. Производители заявляют различные сроки, но примерно они составляют около 4000 часов против 1000 часов работы лампы накаливания. Но так как основную массу «экономок» составляет продукция из Китая, то предугадать, сколько проработает лампочка (а может и вообще не включится), невозможно.
Также к достоинствам можно отнести еще и наличие гарантии, если бы не одно «НО» – все зависит от продавца: если он упрется и не захочет менять лампу по гарантии, то те силы, время и деньги, которые вы можете потратить на доказательство своей правоты, будет гораздо разумнее потратить на приобретение нескольких новых ламп. К сожалению, пока в нашей стране законодательство по защите прав потребителя далеко от совершенства.
Люминесцентные лампы. Устройство и принцип работы
Люминесценция — излучение, которое не требует нагрева тел и может возникать в газообразных, жидких и твердых телах под действием, например, ударов электронов, движущихся со скоростями, достаточными для возбуждения.
Люминофоры — твердые или жидкие вещества, способные излучать свет под действием различного рода возбудителей.
В люминесцентных и ряде других типов газоразрядных ламп используют фотолюминесценцию — оптическое излучение, возникающее в результате поглощения телами оптического излучения, но с другой длиной волны.
Электрические лампы, в которых электроэнергия превращается в световую непосредственно, независимо от теплового состояния вещества, за счет люминесценции, называются люминесцентными.
В зависимости от давления газа в лампе бывают люминесцентные лампы низкого давления (ЛНД) и высокого давления.
Люминесцентные лампы — это газоразрядные лампы низкого давления, в которых возникающее в результате газового разряда невидимое для человеческого глаза ультрафиолетовое излучение преобразуется люминофорным покрытием в видимый свет (принцип работы люминесцентной лампы).
Устройство люминесцентных ламп
Люминесцентная лампа представляет собой стеклянную герметически закрытую трубку, внутренняя поверхность которой покрыта тонким слоем люминофора. Из трубки удален воздух и в нее введены небольшое количество газа (аргона) и дозированная капля ртути.
Внутри трубки на ее концах, в стеклянных ножках, укреплены биспиральные электроды из вольфрама, соединенные с двухштырьковыми цоколями, служащими для присоединения лампы к электрической сети посредством специальных патронов. При подаче электрического тока к лампе между электродами возникает электрический разряд в парах ртути, в результате электролюминесценции паров лампа излучает свет.
И если раньше люминесцентные лампы выглядели в основном как длинные белые трубочки различной длины, то теперь повсеместно встречаются люминесцентные лампы с обычными цоколями для использования в стандартных светильниках и люстрах. Это так называемые энергосберегающие лампы, приобретающие все более широкое использование наряду с галогенными лампами и светодиодными светильниками.
Достоинства и преимущества люминесцентных ламп
Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются:
- более высокий коэффициент полезного действия (15 — 20%);
- высокая световая отдача и в несколько раз больший срок службы ламп (при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания);
- правильный выбор ламп по цветности может создать освещение, близкое к естественному;
- благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;
- люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено (очень чувствительные к повышениям напряжения лампы накаливания быстро перегорают);
- малая себестоимость;
- низкая яркость поверхности и ее низкая температура (до 50 °С).
Принцип действия люминесцентных ламп
Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали.
В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора.
Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500 — 2000в на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом.
Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения. В своем движении электроны встречаются с нейтральными атомами газа, заполнителя полости трубки, и ионизируют их, выбивая электроны с верхней орбиты в пространство.
Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии.
Цвета люминесцентных ламп
Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света:
- трубки с гелием светятся светло-желтым или бледно-розовым светом;
- трубки с неоном — красным светом;
- трубки с аргоном — голубым светом.
Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения.
Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки.
Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути.
Аргон способствует надежному горению разряда в трубке.
Утилизация люминесцентных ламп
В свете современных тенденций мы стремимся экономить электроэнергию. Для этого мы покупаем энергосберегающие лампочки, которые, как правило, являются люминесцентными. При покупке люминесцентных энергосберегающих ламп надо ответственно подходить к вопросу их утилизации, так как они в своем составе содержать вещества, очень вредные для окружающей среды, в частности, ртуть.
Надо знать, понимать и помнить, что эти лампочки нельзя просто так выкинуть в мусорное ведро и вместе с остальным мусором отправить на мусорную свалку. Это преступное отравление экологической среды Вашего района. Такие лампы необходимо сдавать в специальные пункты утилизации.
Вы можете отнести энергосберегающие лампочки на утилизацию в свою управляющую компанию и сдать их туда совершенно бесплатно. Закон обязывает управляющие компании ставить у себя специальные контейнеры для сбора у населения токсичных ламп.
Наш дежурный электрик в Королеве сообщил, что специальный контейнер для передачи на утилизацию люминесцентных ламп стоит в гипермаркете «Глобус» на входе. Адрес магазина: г. Королев, ул. Коммунальная, д.1. Электрик в Щелково подтвердил, что в щелковском «Глобусе» также стоит контейнер для лампочек (адрес: г.
Щелково, Пролетарский пр-т, д. 18). Такую же информацию мы получили от нашего мастера электрика в Пушкино: пушкинский «Глобус» на Ярославском шоссе также принимает лампочки на утилизацию.
Лампочки, батарейки и ртутные градусники потом поступают в специальные пункты, с которыми у сети заключены соответствующие договоры.
А наш электрик в Сергиевом Посаде, который выезжал для проведения электромонтажных работ на одном из районных предприятий, так и не смог найти компанию по утилизации ламп в Сергиевом Посаде. Пришлось обращаться в московский пункт приема люминесцентных ламп.
Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Мытищах.
Источник: http://elektrik-korolev.ru/luminischent.html
Люминесцентные лампы
ИТС »Оборудование »Лампы »Люминесцентные
ХАРАКТЕРИСТИКИ
ПРИМЕНЕНИЕ
ПОДКЛЮЧЕНИЕ
Люминесцентные лампы являются одним из основных источников освещения в офисных помещениях, на предприятиях, в общественных местах.
До недавнего времени такая ситуация была обусловлена несколькими факторами: утилитарным внешним видом, ограниченным модельным рядом и довольно сложным, для рядового пользователя, обслуживанием.
Однако, с недавних пор, появился довольно большой выбор бытовых люминесцентных ламп, как в плане новых конструкций и эксплуатационных характеристик, так и по внешнему виду и удобству эксплуатации.
При этом замена в квартире всех лампочек накаливания на энергосберегающие люминесцентные источники света сэкономит до 80% электроэнергии.
Устройство и принцип действия люминесцентной лампы.
Стеклянная колба, наполненная инертным газом и парами ртути, покрыта изнутри слоем люминофора. Она может иметь различные размеры и разнообразные формы. Для подачи электроэнергии имеется от 2 до 4 электродов и набор элементов под общим названием — схема запуска.
В бытовых устройствах она располагается внутри корпуса, у офисных и промышленных образцов схема запуска является частью осветительного прибора предназначенного для использования определённого типа люминесцентных ламп.
Группа электродов состоит из двух или четырех токопроводящих контактных стержней, между которыми натянута нить накаливания. Ее покрывают специальным эмиссионным веществом для более интенсивного излучения электронов в процессе функционирования, а также для увеличения срока службы изделия.
Все люминесцентные лампы, независимо от особенностей их конструкции, имеют сходный принцип функционирования. На электроды подается ток, после чего они разогреваются и начинают постепенно испускать электроны.
Однако интенсивности электронного потока недостаточно для возникновения между электродами тлеющего разряда — потока ионизированного газа.
После того как электроды разогрелись, активизируется схема управления отвечающая за запуск. Этот элемент посылает кратковременный импульс напряжения, зажигающий в колбе лампы, вначале инертный газ, а затем ртутные пары. Ионизация электрическим током соединения этих двух веществ дает свет в ультрафиолетовом диапазоне.
Так как ультрафиолетовое излучение находится в невидимой для человека части спектра, его необходимо преобразовать в видимое свечение. Это осуществляет люминофор – специальное вещество нанесённые на внутреннюю часть колбы.
Основные технические и световые характеристики
Цветопередача.
Является одной из главных характеристик изделия, зависит от состава люминофора. На сегодняшний день разработано множество составов, которые дают довольно широкую цветовую гамму. Наиболее распространенными оттенками для домашнего использования являются жёлтые, тёплые цвета, имеющие температуру около 2700 К.
Для офисных помещений наибольшее распространение получило белое «дневное» искусственное освещение, которое находятся в диапазоне температур 4000 — 4500К. Довольно часто можно встретить лампы холодного белого цвета, используемые в специальных осветительных приборах на производстве и в медицине, они имеют цвет свечения до 6000 — 6500 К.
Для удобства пользователя была разработана специальная классификация цветов люминесцентных ламп:
- ЛКБ – естественный холодный;
- ЛДЦ – дневной с улучшенной цветопередачей;
- ЛТБ – белый теплый;
- ЛД – дневной;
- ЛБ – белый;
- ЛЕЦ – естественный с улучшенной цветопередачей;
- ЛХБ – холодный белый.
Кроме этого определённые добавки в люминофор могут изменять и цветность лампового света, делать его розовым, голубым, зелёным. Этот эффект широко используется в рекламной индустрии и коммерции. К примеру, люминесценции лампы розового цвета часто используют для подсветки стеклянных витрин мясных отделов. Это значительно улучшает внешний вид продукта.
Цоколь.
В зависимости от конструкции используются две принципиальных формы цоколя.
Лампы в виде прямой трубки имеют двухконтактные штырьковые цоколи, расположенные по краям. Одной из разновидностей такой конструкции, использующейся в изделиях небольшого размера, является штырьковый цоколь для U-образной колбы, встроенный в пускорегулирующее устройство.
Патронные цоколи – имеют классическую форму с резьбой и могут быть использованы в бытовых устройствах освещения, без каких либо ограничений.
Область и особенности применения
Выпускается множество разновидностей люминесцентных ламп, которые получили широкое применение в самых разнообразных областях.
Иногда их называют лампами дневного света, вместе с тем, в зависимости от спектра цветопередачи различают следующие типы:
- с цветопередачей, аналогичной солнечному свету — получили наибольшее распространение в офисах, производственных цехах, общественных организациях, образовательных учреждениях;
- с улучшенной цветопередачей — выставочные залы, галереи, музеи, больницы, коммерческие организации специализирующиеся на продаже художественных товаров, красок, тканей и т.п.;
- с высоким уровнем изучения в красном и синем спектре — подсветка аквариумов, теплиц, оранжерей, используется в магазинах торгующих растениями;
- со смещением спектра в синий и УФ диапазон — применяется в сочетании с искусственными источниками дневного света для декорирования аквариумов с кораллами.
- со светом в чистом ультрафиолетовом диапазоне — солярии и косметические салоны, в устройствах автозагара;
- с ультрафиолетовым излучением высокой мощности — в медицинских учреждениях в качестве антибактериального освещения (аналогично кварцевым лампам).
Достоинства и недостатки.
Из основных достоинств люминесцентных ламп можно выделить следующие:
- Сравнительно высокий КПД до 20-25%.
Это значительно выше, чем у лампочки накаливания — 7-8%;
- Высокий уровень светоотдачи, в 10 раз выше, чем у лампочки накаливания;
- Длительный срок службы — 15000-20000 часов (до 1000 часов у лампочки накаливания);
- Низкая температура стеклянной колбы позволяет использовать в осветительных приборах из чувствительных к температуре материалов;
- Можно довольно точно подбирать цветовые оттенки, даже из различных партий и производителей изделий.
Однако у люминесцентных изделий есть и некоторые недостатки:
- Достаточно высокая стоимость;
- Опасность химического заражения и отравления ртутными испарениями при разрушении;
- Мерцание при неисправной работе стартера, перепадах напряжения в электросети, окончании срока эксплуатации;
- Появление раздражающего звука при эксплуатации;
- Довольно требовательны эксплуатационным температурам окружающей среды. Не работают при отрицательных, максимальная температура эксплуатации у большинства моделей около 55°С.
На данный момент новые модели с электронными пускорегулирующими аппаратами значительно расширили рабочий диапазон температур
.
Линейные люминесцентные лампы.
Вопреки названию линейная люминесцентная лампа может иметь, как прямую, так и u-образную и даже кольцевую форму. В соответствии с ГОСТ 6825-64 существовало три типа таких изделий с различной мощностью и длиной трубки:
- 20 Ватт — 600 мм;
- 40 Ватт — 1200 мм;
- 80 Ватт — 1500 мм.
На данный момент рынок заполнен различными моделями среди которых наиболее популярными считаются изделия стандартов Т4, Т5 и Т8. Диаметр трубок составляет 12,5, 16 и 26 мм соответственно.
Наиболее популярная длина трубки 590 мм. Это связано со стандартом ячейки потолка Армстронг (600х600 мм) на который ориентируется большинство производителей осветительных приборов для офисных и общественных помещений.
Подключение люминесцентной ламы
Двумя элементами, без которых функционирование люминесцентной лампы является невозможным, являются стартер и дроссель.
Стартер представляет собой небольшую неоновую лампочку с расположенными в ней двумя биметаллическими электродами, которые в нормальном положении разомкнуты. После подачи электроэнергии электроды в стартере замыкаются. Электроэнергия передается на дроссель, в результате чего сила тока возрастает почти в три раза, практически моментально разогревая электроды внутри колбы.
Остывая, биметаллические контакты размыкаются. В момент их размыкания дроссель создает высоковольтный запускающий импульс, благодаря самоиндукции, возникающей в его обмотке. Этот импульс приводит к возникновению разряда в газоконденсатной среде внутри колбы, зажигая ее.
Существуют стартеры на 127 Вольт, которые работают в двухламповых схемах и на 220 Вольт, предназначенные для одной ламповых схем. Они НЕ взаимозаменяемы, так что перед установкой необходимо прочитать маркировку.
Стартер является элементом, который наиболее часто выходит из строя. Если в осветительном приборе погасла одна или несколько ламп необходимо, прежде всего, заменить стартеры.
Данная схема запуска характерна для светильников использующих электромагнитный балласт или по другому – электромагнитный пускорегулирующий аппарат (ЭмПРА). Его применение довольно широко распространено, однако системы подключения основанные на ЭмПРА, на данный момент являются морально устаревшим оборудованием.
Они имеют следующие недостатки:
- довольно долгий запуск 1-3 сек, в зависимости от степени износа изделия;
- неприятный звук, возникающий в процессе функционирования пластин дросселя, который со временем усиливается;
- мерцание (эффект стробоскопа), негативно влияющее на зрение.
Подключение люминесцентной лампы при помощи электронного пускорегулирующего устройства (ЭПРА) имеет принципиально другую схему активации. Прежде всего ЭПРА функционирует в высокочастотном диапазоне 25-133 кГц, используя выходной каскад на транзисторах и трансформатор.
Применение ЭПРА имеет следующие преимущества:
- отсутствие мерцания и шума в процессе функционирования;
- отсутствие стартеров в схеме управления;
- увеличение срока службы и экономия электроэнергии до 20%;
- некоторые модели выпускаются с возможностью регулировки яркости свечения.
Применение люминесцентных ламп, безусловно, даст положительный экономический эффект в любой организации, частном доме или квартире. Кроме того, можно довольно точно подобрать цвет к уже использующимся образцам.
Однако стремительное распространение светодиодных ламп составило значительную конкуренцию, так как они превосходят люминесцентные по многим параметрам кроме стоимости.
На данный момент наиболее популярными производителями являются:
- Космос (Россия);
- OSRAM (Германия);
Источник: https://eltechbook.ru/lampa_ljuminescentnaja.html
Энергосберегающие лампы дневного света
Источник: http://paulmann-light.ru/enegry_saving.html
Лампы: в чём их отличия и как выбирать
Лампы: в чём их отличия и как выбирать
Лампы: в чём их отличия и как выбирать
Лампы: в чём их отличия и как выбирать
При выборе типа лампы, используемой в светильнике, надо руководствоваться как техническими характеристиками, так и дизайнерской задачей. С технической точки зрения учитываются несколько факторов.
Чтобы помочь потребителю разобраться в данных вопросах, рассмотрим, как устроены лампы, их достоинства и недостатки.
Энергосберегающая лампа
Все о люминесцентной лампе и даже больше
Все о люминесцентной лампе и даже больше
Все о люминесцентной лампе и даже больше
Люминесцентная лампа представляют группу газоразрядных источников света, но используется намного чаще в сравнении с более простыми аналогами. Их популярность обусловлена рядом достоинств. Поэтому, даже относительно высокая стоимость не является помехой приобретению источника света данного вида.
В каких областях применяются?
Люминесцентные лампы: описание, характеристики, типы, подключение в быту
Вступление
Весь мир уже давно твердит об экономии электроэнергии и под этот гомон навязывает покупку дорогих энергосберегающих ламп. Однако, уже лет 50 известен альтернативный лампам накаливания, способ освещения. Это освещение люминесцентными лампами. Правда вопрос их утилизации и эко безопасности оставляет массу вопросов.
Люминесцентные лампы: описание и устройство
Люминесцентные лампы, по внешнему виду, представляют собой стеклянную колбу, различной формы, белого цвета с торчащими на краях контактами подключения.
Справка: Первые люминесцентные лампы были созданы в России в 1936-40 году группой под руководством Вавилова С.И.
Форма люминесцентных ламп может быть в виде стержня (трубка), тора, или спиралей. При производстве из колбы лампы выкачивают воздух и закачивают инертный газ. Именно поведение инертного газа под действием электричества приводит к свечению лампы, создавая потоки холодного или теплого света, который принято называть «дневным». Отсюда второе название этих ламп, лампы дневного света.
Стоит отметить, что светить лампа не смогла, если бы с внутренней стороны на колбу не был нанесен люминофор, а в самой лампе не находилась бы ртуть.
Именно ртуть стала тем фактором, который вытесняет этот тип ламп с рынка. Опасность ртутных загрязнений при разбиении ламп вызывает много вопросов и экологов мира.
Как работает люминесцентная лампа
Инертный газ в лампе нужен для создания тлеющего разряд (поток ионизированных частиц инертного газа). Ртуть нужна для усиления этого разряда. Люминофор нужен для преобразования ультрафиолетового света, в свет видимого спектра. Электроды нужны для подключения лампы в электрическую схему и создания разряда электронов.
После подачи напряжения на контакты лампы, электроды внутри колбы начинают испускать электроны, которые перемещаясь по колбе, пытаются создать разряд. Однако, в нормальных параметрах схемы силы тока не достаточно для создания разряда. Поэтому, в схему подключения люминесцентной лампы обязательно включают устройство, создающее разовый электрический разряд для старта свечения.
Источник: https://ehto.ru/montazh-elektriki/osveshhenie/lyuminestsentnye-lampy-opisanie
Разница между лампами накаливания и люминесцентными — Дом из соломы. Дневник эко-стройки « Дом из соломы
Rating: +0
Почему стоило бы заменить «лампочку ильича» на люминесцентную лампу? Менять её пора потому, что в XXI веке она уже давно морально и экономически устарела. Теперь существует много альтернативных и более эффективных источников освещения. И первым в этом ряду стоит люминесцентная лампа.
Этот источник света относится к поколению газоразрядных светильников. В них люминофор, находящийся на стенке лампы с внутренней стороны, от ультрафиолетового излучения начинает светиться. Излучение получается в результате электрического разряда, происходящего в газе. Для этого лампу наполняют газом аргоном, парами ртути.
Преимущества люминесцентных ламп относительно ламп накаливания
№ | Лампы накаливания (особенности) | Люминесцентные лампы (особенности) |
1 | Световая отдача ниже. | Световая отдача выше в 7—8 раз. |
2 | Недолговечные. | Служат долго. Срок измеряется несколькими тысяч часов. |
3 | Утомляют глаза. | Глаза не утомляют и не слепят. Свет излучают мягкий и рассеянный. |
4 | При освещении вызывают искажение цветового восприятия предметов. | Свет похож на дневной. Поэтому цвет предметов не искажается, а воспринимается также как при естественном освещении. |
5 | Травмоопасны. При случайной подаче в сеть вместо фазного напряжения (220 В) линейного (380 В) взрываются через несколько минут. | Легко выдерживают высокое напряжение (380 В). При этом почти не нагреваются. |
Мощность, выпускаемых люминесцентных ламп, варьируется в широких пределах – от 5 до 150 Ватт.
Состав люминофора, от которого зависит свечение, тоже может быть различным. Буквенные аббревиатуры в маркировке люминесцентных ламп показывают, какого свечения будут лампы:
- лампы ЛД — светятся дневным светом,
- лампы ЛБ — светятся белым светом,
- лампы ЛХБ — светятся холодно-белым светом,
- лампы ЛТБ — светятся тепло-белым светом.
Цифры, стоящие после буквенного обозначения, сообщают о мощности лампы. Например, ЛХБ20 означает: лампа люминесцентная холодно-белого свечения мощностью 20 Ватт.
Недостатки люминесцентных ламп
На свете нет ничего совершенного, и в люминисцентных лампах тоже есть недостатки.
- они имеют не всегда удобные для установки в светильники (габариты)
- для их запуска требуется специальное пуско-регулирующее устройство
- в холодных помещениях (а это уже ниже +10° С) может даже не включиться
- без защитных конденсаторов создает помехи для электронной аппаратуры
Несмотря на мелкие недочёты в их конструкции, они всё шире применяются. Их устанавливают в настольных и настенных светильниках, в люстрах. Наиболее востребованные в быту лампочки мощностью от 13 до 65 Ватт.
Подводя итог, становится очевидным, что время лампочек из позапрошлого века уходит безвозвратно. Современность требует использования более экономичных, долговечных и безопасных источников освещения. Как говорится, можно ненадолго задержаться, но время не остановить
***
Если нужно будет искать входные двери в Москве, не забудьте про возможность подсветки — есть и такие варианты по ссылке
Источник: http://biodoma.ru/raznica/elektrika/raznica-mezhdu-lampami-nakalivaniya-i-lyuminescentnymi/
Люминесцентная лампа: устройство, принцип работы, виды, маркировка
Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания.
С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих.
Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.
Устройство и принцип работы
Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.
Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.
Рис. 1. Устройство и принцип действия люминесцентной лампы
Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:
- На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
- При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
- Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит активация и последующей свечение люминофора.
Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.
Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.
Разновидности
Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.
По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:
- Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
- Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.
По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.
Рис. 2. Разновидности колбы
По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с цоколем типа W и F, но они используются довольно редко.
Рис. 3. Разновидности цоколей
По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.
Рис. 4. Цветовая температура
Маркировка
Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.
Отечественная
Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.
Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:
- Д – дневного спектра;
- ХБ – холодное белое свечение;
- Б – белого цвета;
- ТБ – белый теплых оттенков;
- ЕБ – белый естественного спектра;
- УФ – ультрафиолетового спектра;
- Г – голубого цвета;
- С – синего оттенка;
- К – красный спектр излучения;
- Ж – желтого оттенка
- З – зеленого цвета.
Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.
В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:
- А – амальгамного типа;
- Б – с быстрым пуском;
- К – кольцевого вида;
- Р – рефлекторные лампы
- У – U образные.
Зарубежная
Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.
Тип свечения определяется цифровым кодом с буквенным пояснением на английском:
- 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
- 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
- 765 – голубого оттенка с посредственным уровнем передачи цветов;
- 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
- 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
- 840 – белого оттенка с хорошим уровнем передачи цветов;
- 865 – дневного спектра с хорошей цветопередачей;
- 880 – дневной спектр с отличной степенью передачи света;
- 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
- 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
- 954/965 – люминесцентные устройства с непрерывным спектром.
Технические характеристики
Важными техническими характеристиками для люминесцентных ламп являются:
- Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
- Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
- Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
- Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
- Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
- Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и G13 штырькового образца и другие.
Особенности подключения к сети
В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.
Электромагнитный балласт
Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.
Рис. 5. Схема подключения с электромагнитным балластом
Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.
Электронный балласт
Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.
Рис. 6. Использование электронного балласта
Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.
Причины выхода из строя
Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.
Наиболее частыми причинами выхода люминесцентных ламп со строя являются:
- перегорание нити накала – характеризуется полным отсутствием свечения;
- нарушение целостности контактов – также не дает лампе загореться;
- разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
- перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
- обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
- замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.
Плюсы и минусы
В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.
К преимуществам люминесцентных устройств следует отнести:
- Достаточно высокая эффективность, в сравнении с теми же лампами накаливаниявыдают на порядок больший световой поток на каждый ватт потребленнойэлектроэнергии;
- Имеет несколько вариантов цветового спектра, что делает обоснованным ихприменение для различных целей;
- Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот жепоказатель у ламп накаливания и галогенок;
- Достаточно большое разнообразиеконструкций – компактные, большие, удлиненные и т.д.
Однако и недостатков у люминесцентных ламп существует немало:
- Гораздо более высокая стоимость;
- Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
- Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
- Стабильность работы во многом зависит от температуры и влажности окружающей среды;
- Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
- В сравнении со светодиодными светильниками, бояться механических повреждений;
- Не поддаются классическим методам управления яркостью.
Область применения
Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.
В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.
Источник: https://www.asutpp.ru/lyuminestsentnaya-lampa.html
Флуоресцентные лампы (люминесцентные). Виды и устройство. Работа
В современный период флуоресцентные лампы получили широкое применение среди других видов осветительных ламп. Уже в 70-х годах они начали заменять обычные лампы накаливания на производстве и в различных учреждениях. Они имеют достаточно высокую эффективность, качественно освещают помещения и территории.
Флуоресцентная лампа – это источник света, получаемого от свечения разрядов газа. Она состоит из стеклянной трубки, на внутренней поверхности которой нанесен слой люминофора. На торцах трубки находятся электроды в виде спиралей. В полость трубки закачан инертный газ и пары ртути. Под напряжением на электродах в лампе образуется разряд газа, ток проходит по парам ртути, возникает свечение.
Технология изготовления этих ламп постоянно совершенствуется, уменьшаются размеры, повышается яркость и качество света. С 2000-х годов такие лампы используются в домашнем хозяйстве. В настоящее время лампы получили название люминесцентных. По сути и принципу действия это одни и те же лампы. Хотя старое название также используется, поэтому в разной литературе они называются по-разному.
Типы флуоресцентных ламп и их устройство
У нас в стране энергосберегающими лампами называют (люминесцентные) флуоресцентные лампы для бытового применения. Многие не знают, что лампы в виде спирали, которые используются в быту, и называются энергосберегающими, являются по принципу действия флуоресцентными лампами. Энергоэффективность приборов освещения делится на два класса: А и В.
Наиболее правильной будет классифицировать флуоресцентные лампы по различным признакам. Учитывая технологию производства и область применения, выделяют следующие типы ламп:
- Стандартные флуоресцентные лампы диаметром 26 мм, имеющие несколько слоев люминофора.
- Флуоресцентные лампы компактных размеров, имеющие трубку различной конфигурации, также покрытой люминофором.
- Лампы специального назначения.
Также флуоресцентные лампы делятся по другим признакам:
- Мощность энергии потребления.
- Световой поток.
- Цветовая температура.
- Индекс цветопередачи.
- Длина лампы.
- Размер цоколя.
- Вид подключения.
- Размещение пускателя. Размещается в корпусе лампы или в светильнике.
Основным элементом флуоресцентных ламп являются пары ртути в малой концентрации. При прохождении через них электрического тока образуется ультрафиолетовое излучение.
Люминофор – это химическое вещество, находящееся на внутренней поверхности трубки лампы, преобразующее ультрафиолетовое излучение в видимый для глаз свет. Качество света зависит от состава люминофора.
Принцип действия
При включении питания в стартере образуется небольшой тлеющий разряд, под действием него нагреваются электроды.
Один из электродов изготовлен из биметаллического материала. При нагревании он изгибается и прикасается к другому электроду. В итоге в цепи резко увеличивается электрический ток, разряд в стартере прекращается. Повышающийся ток нагревает электроды флуоресцентной лампы. они начинают выпускать электроны. Это является подготовкой к запуску работы лампы.
Электроды в стартере в это время охлаждаются, биметаллический элемент выправляется, и между электродами появляется зазор. Сила тока в схеме значительно снижается. В дросселе появляется мгновенное повышенное напряжение, которое называется напряжением самоиндукции. Оно препятствует снижению этого тока. При суммировании с напряжением цепи, напряжение самоиндукции образует в лампе короткий импульс напряжения, которого хватает для образования электроразряда в газе.
Сначала разряд возникает в аргоне, а затем, когда газ разогреется, в ртутных парах. Во время свечения лампы напряжение на электродах, а значит и электродах стартера, подключенного к лампе по параллельной схеме, меньше напряжения цепи на размер ЭДС самоиндукции, появляющейся в дросселе при загорании лампы.
Поэтому, дроссель предназначен не только для запуска люминесцентной лампы, но и в создании препятствия неограниченного повышения тока разряда. Если бы дросселя не было, то при увеличении тока лампа разрушилась бы, либо вышли из строя предохранители сети питания квартиры.
Конденсатор С1 в схеме стартера предназначен для подавления помех радиочастотных волн. А емкость С2 служит для увеличения коэффициента мощности.
Особенности и преимущества флуоресцентных ламп
Ультрафиолетовое излучение заставляет светиться люминофор видимым для глаза человека светом. Стекло колбы лампы не дает выхода вредному ультрафиолетовому излучению. Этим оно защищает наши глаза.
https://www.youtube.com/watch?v=P1xfMr5siFE
Бактерицидные лампы имеют в своей конструкции кварцевое стекло, которое легко пропускает ультрафиолет. Такие лампы применяются для дезинфекции и кварцевания помещений в медицине. Большое распространение имеют сегодня лампы с амальгамами кадмия и другими элементами. В них давление ртути снижено, вследствие чего расширяется интервал температур отдачи света до 60 градусов. Для чистой ртути эта величина составляет 25 градусов.
При возрастании температуры воздуха больше 25 градусов, температура стенок лампы и давление паров ртути повышается, а поток света снижается. Еще сильнее уменьшается поток света при снижении температуры и давления паров. При этом запуск ламп затрудняется. Поэтому в холодное время применение флуоресцентных ламп ограничено.
Чтобы решить эту проблему, разработана конструкция безртутных люминесцентных ламп, в которых давление инертного газа низкое. В них слой люминофора начинает светиться от излучения с величиной длины волны 58-147 нанометров. Так как давление газа в таких лампах не зависит от температуры воздуха, то поток света не изменяется. Сегодня существуют лампы нового поколения Т5. Они более компактны, в них используется высокочастотный пускатель.
Чем больше длина лампы, тем сильнее поток света. Это происходит из-за уменьшения анодно-катодных потер в потоке света. Поэтому выгоднее применить одну лампочку на 36 ватт, чем 2 лампы по 18 ватт. Срок действия у таких ламп ограничивается распылением катодов. Также снижают срок службы колебания напряжения сети питания и частые переключения.
Достоинства
Флуоресцентные лампы нашли широкое применение в связи с тем, что они обладают значительными достоинствами, по сравнению с простыми лампочками накаливания.
- Повышенная эффективность. Световая отдача выше в 10 раз, чем у ламп накаливания, КПД 25% по сравнению с лампами накаливания – 7%.
- Большой срок работы – до 20000 часов.
Недостатки
- Требуется подключение балласта для нормальной работы лампы.
- Устойчивая работа лампы зависит от температуры воздуха.
Излучение света оказывает на людей значительное воздействие, как психологическое, так и физиологическое, но чаще благотворное.
Самым полезным считается дневной свет. Он оказывает влияние на процессы жизни человека, обмен веществ, развитие в физическом плане и т.д. Искусственное освещение отличается от дневного света.
Лампы накаливания излучают желтый и красный спектр света, ультрафиолет отсутствует, поэтому они считаются теплыми источниками света.
Еще одним достоинством люминесцентных ламп является возможность образования света разного спектра, от теплого до дневного. Это делает богаче цветовую палитру домашнего быта. Для разных областей применения рекомендуют свои цвета.
Как изготавливают флуоресцентные лампы
Эта лампа была изобретена в 1909 году. До сих пор ее конструкция принципиально не изменилась. Их изготовление является сложным процессом. Нужна механическая хореография, которая включает в себя сварку, и плавку, а также изгибы, пайка, окраска.
Технологический процесс начинается с трубок из стекла. До этого их тщательно подвергают промывке в теплой воде для удаления примесей и грязи. Далее трубкам придается специфическая форма. Их подвергают нагреву в течение половины минуты, потом быстро сгибают по шаблону. Автоматический станок изгибает трубки со скоростью 14 штук в минуту.
Изогнутые трубки идут в камеру, в которой наносится небольшой слой фосфора на внутреннюю поверхность. Фосфор образует световой поток, преобразуя ультрафиолет, образующийся во время ионизации паров ртути. С краев трубки убирают излишки фосфора, для последующей пайки.
Теперь нужно установить компоненты электросхемы. Монтажным автоматом изготавливается катодное устройство. По ним будет поступать ток. Проводникам придается нужная форма, затем их нагревают до определенного значения температуры. Это является подготовкой к следующему этапу, потому что важно не дать катодному покрытию перейти на штырьки.
Нити лампы вставляют в опору. Эмиссионное вещество в этом процессе имеет большое значение. Она испускает электроны, участвующие в образовании светового потока. На следующем этапе соединяют подставку и стеклянную трубку. Пайка производится при высокой температуре.
Теперь остается самый важный процесс, во время которого выкачивают воздух из трубки и заполняют ее инертным газом. На этой же операции в трубку впрыскивается капля ртути, которая очень важна для образования света.
Следующий этап – это размещение проводов, чтобы установить крышку, закрывающую трубку. Крышка создает электрический контакт, и надевается на конец трубки. Она должна иметь абсолютную герметичность, чтобы не было утечки. Теперь лампа готова.
Каждый образец лампы ставят на испытательное колесо для проверки качества.
После тщательной проверки флуоресцентные лампы перевозят на упаковку. Эта операция требует необходимой точности и ловкости. С помощью фосфора, ртути и паяльных ламп изготавливается устройство, не изменившееся за последний век.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektroobustrojstvo/osveshhenie/fluorestsentnye-lampy/
Энергосберегающая люминесцентная лампа
В связи с увеличением количества электрических приборов в мире очень остро стал вопрос сбережения электроэнергии. А на постсоветском пространстве еще и значительно увеличилась плата за электроэнергию, поэтому люди вынуждены предпринимать различные меры, чтобы уменшить ее потребление. И одним из методов экономии электроэнергии является энергосберегающее освещение.
Так как у большинства людей в домах использовались обычные лампы накаливания, мало кто обращал внимание на их практичность с технической и экономической стороны. Единственное, на что люди обращали внимание, выбирая и покупая лампу, это то, какой она мощности, подразумевая при этом ее яркость.
И даже сегодня, когда в продаже имеется много разновидностей ламп, очень часто спрашивают эквивалент к лампе накаливания.
Но так как лампы накаливания уходят в прошлое в связи с очень низким КПД, на смену им приходят хорошо забытые старые люминесцентные лампы, которые благодаря маркетинговому ходу получили громкое название «ЭНЕРГОСБЕРЕГАЮЩИЕ», или новые светодиодные LED лампы.
Люминесцентные лампы
Впервые свечение газов под воздействием электрического тока наблюдал Михаил Ломоносов, пропуская электричество через колбу заполненную водородом. А первую газоразрядную лампу в 1856 году изобрел Генрих Гейслер. Но только 23 июня 1891 года Никола Тесла запатентовал полноценную систему освещения аргоновыми лампами.
После этого последовала череда экспериментов с различными газами, которые под воздействием электрического тока создавали различного цвета свечение.
И все-таки изобретателем первой люминесцентной лампы был признан Эдмунд Гермер в 1926 году, предложивший увеличить давление газа и покрывать колбы флуоресцентным порошком, благодаря которому ультрафиолетовое свечение, испускаемое возбужденной плазмой, принимает более однородное белое свечение, воспринимаемое человеческим глазом.
И так как люминесцентные лампы в отличие от ламп накаливания имеют не желтое, а белое свечение, их еще стали называть лампами дневного света.
Схема подключения люминесцетной лампы
- 1 – стеклянная колба с инертным газом покрытая тонким слоем люминофора;
- 2 – два электрода;
- 3 – стартер;
- 4 – дроссель;
- 5 – конденсаторы.
При включении выключателя замыкается электрическая цепь. Дроссель и конденсаторы предназначены для запуска, так как для того, чтобы зажечь газ, находящийся в лампе, необходим повышенный электрический разряд. Между катодом и электродом возникает поток электронов и нагревает инертный газ и пары ртути, которые испускают ультрафиолетовое свечение, невидимое человеческому глазу.
Люминофор, покрывающий стеклянную колбу, преобразует ультрафиолетовые лучи в видимый свет (от состава люминофора зависит цвет изменяемого света). После нагревания газа до необходимой температуры, стартер прерывает электрическую цепь. Когда газ в трубке начинает остывать, стартер опять замыкает электрическую цепь.
Таким образом, лампа находится под напряжением четверть времени, что и обуславливает ее экономичность в сравнении с лампой накаливания, которая потребляет электроэнергию постоянно. Еще экономичность люминесцентной лампы определяется за счет величины светового потока, который гораздо выше, чем у лампы накаливания такой же мощности.
Энергопотребление лампы накаливания выше в 3 – 5 раз, чем у люминесцентной лампы (при одинаковой освещенности).
Сейчас привыкли называть «экономками» обычные люминесцентные лампы, только компактной формы, за счет колбы специальной конструкции и электронной пусковой микросхемы. Они бывают интегрированными (со встроенной пусковой микросхемой), которые можно вкручивать в тот же патрон, что и лампы накаливания – цоколь Е27 и Е14. И неинтегрированные (с отдельно подключаемой схемой), с цоколями G24 и G13, в основном применяются в настольных лампах.
Интегрированные лампы
Неинтегрированные лампы
Достоинства люминесцентной лампы
К достоинствам люминесцентных ламп можно отнести качество освещенности, но при условии, что эти лампы являются качественными и используются многоуровневые системы люминофора, делающие свет от них наиболее близкий к дневному.
Срок службы люминесцентных ламп в четыре раза превышает срок службы лампы накаливания. Производители заявляют различные сроки, но примерно они составляют около 4000 часов против 1000 часов работы лампы накаливания. Но так как основную массу «экономок» составляет продукция из Китая, то предугадать, сколько проработает лампочка (а может и вообще не включится), невозможно.
Также к достоинствам можно отнести еще и наличие гарантии, если бы не одно «НО» – все зависит от продавца: если он упрется и не захочет менять лампу по гарантии, то те силы, время и деньги, которые вы можете потратить на доказательство своей правоты, будет гораздо разумнее потратить на приобретение нескольких новых ламп. К сожалению, пока в нашей стране законодательство по защите прав потребителя далеко от совершенства.
Люминесцентные лампы. Устройство и принцип работы
Люминесценция — излучение, которое не требует нагрева тел и может возникать в газообразных, жидких и твердых телах под действием, например, ударов электронов, движущихся со скоростями, достаточными для возбуждения.
Люминофоры — твердые или жидкие вещества, способные излучать свет под действием различного рода возбудителей.
В люминесцентных и ряде других типов газоразрядных ламп используют фотолюминесценцию — оптическое излучение, возникающее в результате поглощения телами оптического излучения, но с другой длиной волны.
Электрические лампы, в которых электроэнергия превращается в световую непосредственно, независимо от теплового состояния вещества, за счет люминесценции, называются люминесцентными.
В зависимости от давления газа в лампе бывают люминесцентные лампы низкого давления (ЛНД) и высокого давления.
Люминесцентные лампы — это газоразрядные лампы низкого давления, в которых возникающее в результате газового разряда невидимое для человеческого глаза ультрафиолетовое излучение преобразуется люминофорным покрытием в видимый свет (принцип работы люминесцентной лампы).
Устройство люминесцентных ламп
Люминесцентная лампа представляет собой стеклянную герметически закрытую трубку, внутренняя поверхность которой покрыта тонким слоем люминофора. Из трубки удален воздух и в нее введены небольшое количество газа (аргона) и дозированная капля ртути.
Внутри трубки на ее концах, в стеклянных ножках, укреплены биспиральные электроды из вольфрама, соединенные с двухштырьковыми цоколями, служащими для присоединения лампы к электрической сети посредством специальных патронов. При подаче электрического тока к лампе между электродами возникает электрический разряд в парах ртути, в результате электролюминесценции паров лампа излучает свет.
И если раньше люминесцентные лампы выглядели в основном как длинные белые трубочки различной длины, то теперь повсеместно встречаются люминесцентные лампы с обычными цоколями для использования в стандартных светильниках и люстрах. Это так называемые энергосберегающие лампы, приобретающие все более широкое использование наряду с галогенными лампами и светодиодными светильниками.
Достоинства и преимущества люминесцентных ламп
Основным преимуществом люминесцентных ламп по сравнению с лампами накаливания являются:
- более высокий коэффициент полезного действия (15 — 20%);
- высокая световая отдача и в несколько раз больший срок службы ламп (при затрате той же мощности достигается значительно большая освещенность по сравнению с лампами накаливания);
- правильный выбор ламп по цветности может создать освещение, близкое к естественному;
- благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;
- люминесцентные лампы значительно менее чувствительны к повышениям напряжения, поэтому их экономично применять на лестничных клетках и в помещениях, освещаемых ночью, когда в сети напряжение повышено (очень чувствительные к повышениям напряжения лампы накаливания быстро перегорают);
- малая себестоимость;
- низкая яркость поверхности и ее низкая температура (до 50 °С).
Принцип действия люминесцентных ламп
Принцип действия люминесцентной лампы низкого давления основан на дуговом разряде в парах ртути низкого давления. Получающееся при этом ультрафиолетовое излучение преобразуется в видимое в слое люминофора, покрывающего внутренние стенки лампы. Лампы представляют собой длинные стеклянные трубки, в торцы которых впаяны ножки, несущие по два электрода, между которыми находится катод в виде спирали.
В трубку лампы введены пары ртути и инертный газ, главным образом аргон. Назначением инертных газов является обеспечение надежного загорания лампы и уменьшение распыления катодов. На внутреннюю поверхность трубки нанесен слой люминофора.
Если к электродам, вставленным в концы стеклянной трубки, которая заполнена разряженным инертным газом или парами металла, приложить напряжение из расчета не менее 500 — 2000в на 1 м длины трубки, то свободные электроны в полости трубки начинают лететь в сторону электрода с положительным зарядом.
Когда к электродам приложено переменное напряжение, направление движения электронов изменяется с частотой приложенного напряжения. В своем движении электроны встречаются с нейтральными атомами газа, заполнителя полости трубки, и ионизируют их, выбивая электроны с верхней орбиты в пространство.
Возбужденные таким образом атомы, вновь сталкиваясь с электронами, снова превращаются в нейтральные атомы. Это обратное превращение сопровождается излучением кванта световой энергии.
Цвета люминесцентных ламп
Каждому инертному газу и парам металла соответствует свой спектральный состав излучаемого света:
- трубки с гелием светятся светло-желтым или бледно-розовым светом;
- трубки с неоном — красным светом;
- трубки с аргоном — голубым светом.
Смешивая инертные газы или нанося люминофоры на поверхность разрядной трубки, получают различные оттенки свечения.
Люминесцентные лампы дневного и белого света выполняют в виде прямой или дугообразной трубки из обычного стекла, не пропускающего короткие ультрафиолетовые лучи. Электроды изготавливают из вольфрамовой проволоки.
Трубку заполняют смесью аргона и паров ртути. Внутри поверхность трубки покрыта люминофором — специальным составом, который светится под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в парах ртути.
Аргон способствует надежному горению разряда в трубке.
Утилизация люминесцентных ламп
В свете современных тенденций мы стремимся экономить электроэнергию. Для этого мы покупаем энергосберегающие лампочки, которые, как правило, являются люминесцентными. При покупке люминесцентных энергосберегающих ламп надо ответственно подходить к вопросу их утилизации, так как они в своем составе содержать вещества, очень вредные для окружающей среды, в частности, ртуть.
Надо знать, понимать и помнить, что эти лампочки нельзя просто так выкинуть в мусорное ведро и вместе с остальным мусором отправить на мусорную свалку. Это преступное отравление экологической среды Вашего района. Такие лампы необходимо сдавать в специальные пункты утилизации.
Вы можете отнести энергосберегающие лампочки на утилизацию в свою управляющую компанию и сдать их туда совершенно бесплатно. Закон обязывает управляющие компании ставить у себя специальные контейнеры для сбора у населения токсичных ламп.
Наш дежурный электрик в Королеве сообщил, что специальный контейнер для передачи на утилизацию люминесцентных ламп стоит в гипермаркете «Глобус» на входе. Адрес магазина: г. Королев, ул. Коммунальная, д.1. Электрик в Щелково подтвердил, что в щелковском «Глобусе» также стоит контейнер для лампочек (адрес: г.
Щелково, Пролетарский пр-т, д. 18). Такую же информацию мы получили от нашего мастера электрика в Пушкино: пушкинский «Глобус» на Ярославском шоссе также принимает лампочки на утилизацию.
Лампочки, батарейки и ртутные градусники потом поступают в специальные пункты, с которыми у сети заключены соответствующие договоры.
А наш электрик в Сергиевом Посаде, который выезжал для проведения электромонтажных работ на одном из районных предприятий, так и не смог найти компанию по утилизации ламп в Сергиевом Посаде. Пришлось обращаться в московский пункт приема люминесцентных ламп.
Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Мытищах.
Источник: http://elektrik-korolev.ru/luminischent.html
Люминесцентные лампы
ИТС »Оборудование »Лампы »Люминесцентные
ХАРАКТЕРИСТИКИ
ПРИМЕНЕНИЕ
ПОДКЛЮЧЕНИЕ
Люминесцентные лампы являются одним из основных источников освещения в офисных помещениях, на предприятиях, в общественных местах.
До недавнего времени такая ситуация была обусловлена несколькими факторами: утилитарным внешним видом, ограниченным модельным рядом и довольно сложным, для рядового пользователя, обслуживанием.
Однако, с недавних пор, появился довольно большой выбор бытовых люминесцентных ламп, как в плане новых конструкций и эксплуатационных характеристик, так и по внешнему виду и удобству эксплуатации.
При этом замена в квартире всех лампочек накаливания на энергосберегающие люминесцентные источники света сэкономит до 80% электроэнергии.
Устройство и принцип действия люминесцентной лампы.
Стеклянная колба, наполненная инертным газом и парами ртути, покрыта изнутри слоем люминофора. Она может иметь различные размеры и разнообразные формы. Для подачи электроэнергии имеется от 2 до 4 электродов и набор элементов под общим названием — схема запуска.
В бытовых устройствах она располагается внутри корпуса, у офисных и промышленных образцов схема запуска является частью осветительного прибора предназначенного для использования определённого типа люминесцентных ламп.
Группа электродов состоит из двух или четырех токопроводящих контактных стержней, между которыми натянута нить накаливания. Ее покрывают специальным эмиссионным веществом для более интенсивного излучения электронов в процессе функционирования, а также для увеличения срока службы изделия.
Все люминесцентные лампы, независимо от особенностей их конструкции, имеют сходный принцип функционирования. На электроды подается ток, после чего они разогреваются и начинают постепенно испускать электроны.
Однако интенсивности электронного потока недостаточно для возникновения между электродами тлеющего разряда — потока ионизированного газа.
После того как электроды разогрелись, активизируется схема управления отвечающая за запуск. Этот элемент посылает кратковременный импульс напряжения, зажигающий в колбе лампы, вначале инертный газ, а затем ртутные пары. Ионизация электрическим током соединения этих двух веществ дает свет в ультрафиолетовом диапазоне.
Так как ультрафиолетовое излучение находится в невидимой для человека части спектра, его необходимо преобразовать в видимое свечение. Это осуществляет люминофор – специальное вещество нанесённые на внутреннюю часть колбы.
Основные технические и световые характеристики
Цветопередача.
Является одной из главных характеристик изделия, зависит от состава люминофора. На сегодняшний день разработано множество составов, которые дают довольно широкую цветовую гамму. Наиболее распространенными оттенками для домашнего использования являются жёлтые, тёплые цвета, имеющие температуру около 2700 К.
Для офисных помещений наибольшее распространение получило белое «дневное» искусственное освещение, которое находятся в диапазоне температур 4000 — 4500К. Довольно часто можно встретить лампы холодного белого цвета, используемые в специальных осветительных приборах на производстве и в медицине, они имеют цвет свечения до 6000 — 6500 К.
Для удобства пользователя была разработана специальная классификация цветов люминесцентных ламп:
- ЛКБ – естественный холодный;
- ЛДЦ – дневной с улучшенной цветопередачей;
- ЛТБ – белый теплый;
- ЛД – дневной;
- ЛБ – белый;
- ЛЕЦ – естественный с улучшенной цветопередачей;
- ЛХБ – холодный белый.
Кроме этого определённые добавки в люминофор могут изменять и цветность лампового света, делать его розовым, голубым, зелёным. Этот эффект широко используется в рекламной индустрии и коммерции. К примеру, люминесценции лампы розового цвета часто используют для подсветки стеклянных витрин мясных отделов. Это значительно улучшает внешний вид продукта.
Цоколь.
В зависимости от конструкции используются две принципиальных формы цоколя.
Лампы в виде прямой трубки имеют двухконтактные штырьковые цоколи, расположенные по краям. Одной из разновидностей такой конструкции, использующейся в изделиях небольшого размера, является штырьковый цоколь для U-образной колбы, встроенный в пускорегулирующее устройство.
Патронные цоколи – имеют классическую форму с резьбой и могут быть использованы в бытовых устройствах освещения, без каких либо ограничений.
Область и особенности применения
Выпускается множество разновидностей люминесцентных ламп, которые получили широкое применение в самых разнообразных областях.
Иногда их называют лампами дневного света, вместе с тем, в зависимости от спектра цветопередачи различают следующие типы:
- с цветопередачей, аналогичной солнечному свету — получили наибольшее распространение в офисах, производственных цехах, общественных организациях, образовательных учреждениях;
- с улучшенной цветопередачей — выставочные залы, галереи, музеи, больницы, коммерческие организации специализирующиеся на продаже художественных товаров, красок, тканей и т.п.;
- с высоким уровнем изучения в красном и синем спектре — подсветка аквариумов, теплиц, оранжерей, используется в магазинах торгующих растениями;
- со смещением спектра в синий и УФ диапазон — применяется в сочетании с искусственными источниками дневного света для декорирования аквариумов с кораллами.
- со светом в чистом ультрафиолетовом диапазоне — солярии и косметические салоны, в устройствах автозагара;
- с ультрафиолетовым излучением высокой мощности — в медицинских учреждениях в качестве антибактериального освещения (аналогично кварцевым лампам).
Достоинства и недостатки.
Из основных достоинств люминесцентных ламп можно выделить следующие:
- Сравнительно высокий КПД до 20-25%.
Это значительно выше, чем у лампочки накаливания — 7-8%;
- Высокий уровень светоотдачи, в 10 раз выше, чем у лампочки накаливания;
- Длительный срок службы — 15000-20000 часов (до 1000 часов у лампочки накаливания);
- Низкая температура стеклянной колбы позволяет использовать в осветительных приборах из чувствительных к температуре материалов;
- Можно довольно точно подбирать цветовые оттенки, даже из различных партий и производителей изделий.
Однако у люминесцентных изделий есть и некоторые недостатки:
- Достаточно высокая стоимость;
- Опасность химического заражения и отравления ртутными испарениями при разрушении;
- Мерцание при неисправной работе стартера, перепадах напряжения в электросети, окончании срока эксплуатации;
- Появление раздражающего звука при эксплуатации;
- Довольно требовательны эксплуатационным температурам окружающей среды. Не работают при отрицательных, максимальная температура эксплуатации у большинства моделей около 55°С.
На данный момент новые модели с электронными пускорегулирующими аппаратами значительно расширили рабочий диапазон температур
.
Линейные люминесцентные лампы.
Вопреки названию линейная люминесцентная лампа может иметь, как прямую, так и u-образную и даже кольцевую форму. В соответствии с ГОСТ 6825-64 существовало три типа таких изделий с различной мощностью и длиной трубки:
- 20 Ватт — 600 мм;
- 40 Ватт — 1200 мм;
- 80 Ватт — 1500 мм.
На данный момент рынок заполнен различными моделями среди которых наиболее популярными считаются изделия стандартов Т4, Т5 и Т8. Диаметр трубок составляет 12,5, 16 и 26 мм соответственно.
Наиболее популярная длина трубки 590 мм. Это связано со стандартом ячейки потолка Армстронг (600х600 мм) на который ориентируется большинство производителей осветительных приборов для офисных и общественных помещений.
Подключение люминесцентной ламы
Двумя элементами, без которых функционирование люминесцентной лампы является невозможным, являются стартер и дроссель.
Стартер представляет собой небольшую неоновую лампочку с расположенными в ней двумя биметаллическими электродами, которые в нормальном положении разомкнуты. После подачи электроэнергии электроды в стартере замыкаются. Электроэнергия передается на дроссель, в результате чего сила тока возрастает почти в три раза, практически моментально разогревая электроды внутри колбы.
Остывая, биметаллические контакты размыкаются. В момент их размыкания дроссель создает высоковольтный запускающий импульс, благодаря самоиндукции, возникающей в его обмотке. Этот импульс приводит к возникновению разряда в газоконденсатной среде внутри колбы, зажигая ее.
Существуют стартеры на 127 Вольт, которые работают в двухламповых схемах и на 220 Вольт, предназначенные для одной ламповых схем. Они НЕ взаимозаменяемы, так что перед установкой необходимо прочитать маркировку.
Стартер является элементом, который наиболее часто выходит из строя. Если в осветительном приборе погасла одна или несколько ламп необходимо, прежде всего, заменить стартеры.
Данная схема запуска характерна для светильников использующих электромагнитный балласт или по другому – электромагнитный пускорегулирующий аппарат (ЭмПРА). Его применение довольно широко распространено, однако системы подключения основанные на ЭмПРА, на данный момент являются морально устаревшим оборудованием.
Они имеют следующие недостатки:
- довольно долгий запуск 1-3 сек, в зависимости от степени износа изделия;
- неприятный звук, возникающий в процессе функционирования пластин дросселя, который со временем усиливается;
- мерцание (эффект стробоскопа), негативно влияющее на зрение.
Подключение люминесцентной лампы при помощи электронного пускорегулирующего устройства (ЭПРА) имеет принципиально другую схему активации. Прежде всего ЭПРА функционирует в высокочастотном диапазоне 25-133 кГц, используя выходной каскад на транзисторах и трансформатор.
Применение ЭПРА имеет следующие преимущества:
- отсутствие мерцания и шума в процессе функционирования;
- отсутствие стартеров в схеме управления;
- увеличение срока службы и экономия электроэнергии до 20%;
- некоторые модели выпускаются с возможностью регулировки яркости свечения.
Применение люминесцентных ламп, безусловно, даст положительный экономический эффект в любой организации, частном доме или квартире. Кроме того, можно довольно точно подобрать цвет к уже использующимся образцам.
Однако стремительное распространение светодиодных ламп составило значительную конкуренцию, так как они превосходят люминесцентные по многим параметрам кроме стоимости.
На данный момент наиболее популярными производителями являются:
- Космос (Россия);
- OSRAM (Германия);
Источник: https://eltechbook.ru/lampa_ljuminescentnaja.html
Энергосберегающие лампы дневного света
Источник: http://paulmann-light.ru/enegry_saving.html
Лампы: в чём их отличия и как выбирать
Лампы: в чём их отличия и как выбирать
При выборе типа лампы, используемой в светильнике, надо руководствоваться как техническими характеристиками, так и дизайнерской задачей. С технической точки зрения учитываются несколько факторов.
Чтобы помочь потребителю разобраться в данных вопросах, рассмотрим, как устроены лампы, их достоинства и недостатки.
Энергосберегающая лампа
Энергосберегающая лампа
Компактная люминесцентная лампа состоит из 3 основных компонентов: цоколя, люминесцентной лампы и электронного блока. Цоколь предназначен для подключения лампы к сети. Электронный блок (ЭПРА: электронный пускорегулирующий аппарат) обеспечивает зажигание (пуск) и дальнейшее горение люминесцентной лампы.
ЭПРА преобразует сетевое напряжение 220 В в напряжение, необходимое для работы люминесцентной лампы. Благодаря ЭПРА энергосберегающая лампа зажигается без мерцания и работает без мигания свойственного обычным люминесцентным лампам. Люминесцентная лампа наполнена парами ртути и инертным газом (аргоном), а её внутренние стенки покрыты люминофорным покрытием.
Под действием высокого напряжения в лампе происходит движение электронов. Столкновение электронов с атомами ртути образует невидимое ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в видимый свет.
Благодаря механизму действия энергосберегающих ламп удаётся добиться снижения потребления электроэнергии на 80% по сравнению с лампами накаливания при аналогичном световом потоке. Помимо пониженного потребления световой энергии энергосберегающие лампы выделяют меньше тепла, чем лампы накаливания.
Незначительное тепловыделение позволяет использовать компактные люминесцентные лампы большой мощности в хрупких бра, светильниках и люстрах, в которых от ламп накаливания с высокой температурой нагрева может оплавляться пластмассовая часть патрона, либо сам провод. Из-за более равномерного распределение света энергосберегающие лампы снижают утомляемость человеческого глаза.
Люминесцентные лампы
Люминесцентные лампы
Люминесцентная лампа – это газоразрядная лампа низкого давления. Ультрафиолетовое излучение, возникающее в результате газового разряда невидимо для человеческого глаза. Оно преобразуется люминофорным покрытием в видимый для нас свет. Принцип работы люминесцентной лампы похож на компактные энергосберегающие лампы (см. выше).
Лампы накаливания
Лампы накаливания
Лампы накаливания традиционно используются на протяжении многих лет и по-прежнему являются наиболее широко применяемым источником света. Они дают приятный свет со спектром, сдвинутым в инфракрасную область. Цветные лампы прекрасно подходят для создания декоративных специальных эффектов, а зеркальные лампы, излучающие направленный свет, позволяют создать необходимый световой акцент.
Несмотря на многообразие типоразмеров ламп накаливания, отличающихся номинальным напряжением, мощностью и родом тока, все они объединены единым физическим принципом получения видимого излучения (нагрев электрическим током вольфрамовой нити до температуры 2200-2800°С) и сходством применяемых во всех конструкциях основных составляющих элементов: стеклянная колба; вольфрамовая нить; электроды.
Зеркальная лампа
Зеркальная лампа
Верхняя часть колбы зеркальной лампы покрыта отражающим свет слоем. Зеркальное покрытие защищает конструкцию лампы от перегрева, и в то же время позволяет самой лампе светить ярче. При этом другая часть колбы остается матовой, а свет от нее равномерный, рассеянный. Срок службы такой лампы 600-1000 часов.
Галогенные лампы
Галогенные лампы
Галогенные лампы излучают приятный белый свет с отличной цветопередачей. Основаны на том же принципе, что и лампы накаливания, но с применением «галогенного цикла». Вольфрамовая нить накаливания окружена инертным газом, содержащим галогениды.
Благодаря специально созданным условиям вылетающие частички нити возвращаются обратно, что значительно продлевает срок службы лампочки и предотвращает почернение колбы. Если к галогенной лампе холодного света добавить отражатель, то освещаемые такой лампой объекты не будут нагреваться. Кроме того, галогенная лампа дает больше света, чем лампа накаливания при одинаковой мощности.
При использовании галогенных ламп обратите внимание на одну особенность – эти лампы очень чувствительны к перепадам напряжения.
Параметры | люминисцентные лампы | компактные энергосберегающие лампы | металлогалогенные лампы | зеркальная лампа | галогенные лампы |
Срок службы, час* | 3000-6000 | 6000-15000 | 1000 | до 1000 | |
Световой поток, Лм** | 110-7500 | 100-10000 | 1000-30000 | 70-18000 | 30-11000 |
Световая отдача лм/Вт*** | 25-104 | 25-80 | 50-95 | 7-18 | до 30 |
Цветовая температура указывается в градусах Кельвина**** | 2700-6500 | 3000-6000 | 2500-2900 | 2700-4000 | |
Недостатки | большие габариты, наличие ртути, необходимость специальной аппаратуры включения | наличие ртути, необходимость специальной аппаратуры включения, пульсации светового потока | низкая светоотдача, малый срок службы | ||
Достоинства | высокая световая отдача, большой срок службы | компактность, хорошая цветопередача | идеальная цветопередача, простота включения, дешевизна | ||
Основные области применения лампы | внутреннее освещение административных помещений, магазинов и т.д. | архитектурное, художественное освещение, акцентир. освещение | освещение жилых помещений | архитектурное, художественное освещение, акцентир. освещение |
* Зависит от стабильности напряжения в сети, также повысить срок службы можно используя схемы для плавного включения ламп. ** Световым потоком называется вся мощность излучения источника света, оцениваемая по световому ощущению глаза человека и измеряется в люменах. *** Световая отдача показывает с какой экономичностью потребляемая электрическая мощность преобразуется в свет.
Теоретически достигаемая максимальная величина при полном преобразовании энергии в видимый свет составляет 683 лм/Вт. Реально достижимые значения, разумеется, значительно ниже и находятся между 10 лм/Вт и 150 лм/Вт.
**** Цветовая температура любого источника электромагнитных волн, в том числе световых, определяется путем сопоставления спектральных характеристик источника и абсолютно черного тела.
Абсолютно черное тело (излучатель Планка) – тело, которое поглощает все падающие на него излучения, независимо от длины волны и направления излучения. Цветовая температура указывается в градусах Кельвина (обозначение К), отсчитываемых от абсолютного нуля. Шкала Кельвина отличается от шкалы Цельсия только положением нуля: положение нуля на шкале Кельвина на 273 градуса ниже нуля по Цельсию.
Она, таким образом, выше на 273 градуса, чем та же температура, выраженная в градусах Цельсия.
Источник: http://www.dizar.ru/company/news/lampy_v_chyem_ikh_otlichiya_i_kak_vybirat/
Все о люминесцентной лампе и даже больше
Все о люминесцентной лампе и даже больше
Люминесцентная лампа представляют группу газоразрядных источников света, но используется намного чаще в сравнении с более простыми аналогами. Их популярность обусловлена рядом достоинств. Поэтому, даже относительно высокая стоимость не является помехой приобретению источника света данного вида.
В каких областях применяются?
В каких областях применяются?
Раньше основное целевое назначение подобных осветительных приборов сводилось к организации систем освещения административных и общественных зданий (больниц, магазинов, школ, офисных помещений), что было связано с довольно массивной конструкцией. Сегодня люминесцентные лампы характеризуются более совершенным устройством (компактные размеры, электронное пускорегулирующее устройство в качестве замены устаревшего магнитного варианта).
Дополнительно к этому упрощает эксплуатацию и стандартный цоколь, который позволяет устанавливать такие источники света вместо аналога с нитью накаливания.
Люминесцентная лампа в современном исполнении широко применяется в быту (освещение частных домов, квартир), рекламе (вывески, щиты). Еще одно направление – фасадная подсветка. Больше прочих разновидностей источников света люминесцентные лампы также подходят для освещения крупных территорий и масштабных объектов.
Строение и принцип работы
Строение и принцип работы
Основные конструкционные элементы: трубка или колба (в зависимости от исполнения), один или два цоколя, что также определяется моделью изделия, внутри установлены электроды. Люминесцентная лампа с внутренней стороны покрыта люминофором, без которого было бы невозможно преобразовать затрачиваемую энергию в световое излучение. Внутри колбы/трубки находится инертный газ, ртутные пары.
При подаче электричества между электродами образуется тлеющий разряд. Идеальные условия для такого явления: невысокий уровень давления в колбе наряду с малым значением тока. В результате прохождения электрического тока через газообразную среду возникает ультрафиолетовое излучение.
Для того чтобы люминесцентная лампа обеспечивала видимый глазу свет, используется явление люминесценции. Как раз для этого внутренние стенки трубки или колбы источника света покрываются люминофором.
Принцип действия данного вида лампы описан не полностью, так как для полноценной работы необходимо обеспечить еще и нормальные условия эксплуатации. Речь идет о дополнительной аппаратуре, которая снижает значение тока до нужного уровня, чтобы осветительный прибор не вышел из строя. Раньше для этой цели применялись электромагнитные пускорегулирующие элементы (их еще называют балластом), сегодня более популярны электронные аналоги.
Если подключать люминесцентные лампы при помощи второго из вышеназванных вариантов балласта, в результате можно добиться значительного снижения шумового эффекта (гула) во время работы, а еще источники света в таких условиях перестают мерцать.
Какие бывают разновидности ламп
Какие бывают разновидности ламп
Существует несколько исполнений, которые отличаются по спектру излучения. Выделяют всего три вида:
- стандартные;
- специальные;
- лампы люминесцентные с улучшенной светопередачей.
Излучение первого варианта характеризуется различными оттенками белого цвета. Это обусловлено тем, что конструкцией предусмотрено однослойное покрытие люминофора. В результате область применения таких источников света несколько сужается. Их обычно используют при организации осветительных систем производственных, административных и общественных объектов (офисы, магазины и прочее).
Различные формы исполнения
Исполнения специального типа характеризуются разным спектром излучения. Их главная задача – обеспечение максимально естественных условий для пребывания в различных помещениях. Например, существуют люминесцентные лампы дневного света, а также варианты конструкций, предназначенные для установки в аквариумах специально для растений или животных.
Существуют еще исполнения, которые используют в помещениях, где разводят птиц. Дополнительно к тому встречаются источники света декоративного целевого назначения. Их главное отличие от прочих вариантов – разноцветное свечение.
Лампы с улучшенной светопередачей имеют одно главное преимущество перед остальными видами, о нем довольно красноречиво говорит название таких источников света – более качественная передача цветов. Это достигается путем нанесения многослойного покрытия (3-5 слоев люминофора) на внутреннюю поверхность колбы/трубки.
Классификация по виду цоколя
Классификация данного вида осветительного прибора осуществляется еще и на основании отличий в конструкциях:
- Линейные исполнения.
- Компактные люминесцентные лампы.
Первый вариант называется еще трубчатым. А, кроме того, эта разновидность бывает прямой и U-образной конструкции. Линейные источники света подразделяются на группы еще и на основании отличий в размерах (длина и диаметр).
Причем наблюдается прямая зависимость между габаритами изделия и его мощностью: чем длиннее лампа, тем выше значение данного параметра. Диаметр колбы также отличается: Т4, Т5, Т8, Т10, Т12. Из обозначения можно узнать размер изделия в дюймах.
Тип цоколя для таких источников света – G13.
Подразделяются на исполнения по конструкции колбы
Люминесцентные лампы компактного типа подразделяются на исполнения по конструкции колбы (она может быть изогнута в разных вариантах) и цоколю: E14, E27, E40, а также 2D, G23, G27, G24, G53 и несколько подвидов (G24Q1, G24Q2, G24Q3). Первые три из вышеназванных конструктивных элементов дают возможность устанавливать осветительный прибор вместо исполнений с нитью накаливания.
Обзор плюсов и минусов
Обзор плюсов и минусов
Если более подробно изучить характеристики основных вариантов источников света (галогенные, лампы накаливания, люминесцентные и светодиодные аналоги), то можно выделить их сильные и слабые стороны. Например, по интенсивности нагрева из всех существующих конструкций выигрывают лишь светодиодные исполнения, тогда как люминесцентные лампы все же греются, хоть и в несколько меньшей мере, чем источники света с нитью накаливания.
По степени хрупкости газоразрядные приборы уступают варианту на базе диодов. Зато уровень мощности у люминесцентных исполнений и светодиодных источников света находится почти на одном уровне. Для примера, оба исполнения обеспечивают примерно одинаковую интенсивность освещения (700-800 лм) при мощности с разницей всего в 5 Вт. Больше всех потребляют энергию лампы накаливания.
Еще один параметр для сравнения – срок функционирования. Безусловно, лидируют светодиодные исполнения (в среднем до 50 000 часов работы). Однако из всех остальных аналогов люминесцентные лампы выделяются довольно продолжительным периодом эксплуатации (от 4 000 до 20 000 часов), на что оказывают влияние условия работы.