Омметр
Радиоэлектроника для начинающих
Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.
Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.
Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора.
В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм).
На зарубежных схемах «Ом» пишется как «Ohm».
Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.
Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.
На принципиальных схемах омметр обозначается следующим условным графическим обозначением.
Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.
Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.
Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.
Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:
- Короткое замыкание, где его быть не должно.
- Обрыв там, где должна быть замкнутая цепь.
Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.
О стрелочных измерительных приборах
Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.
Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры.
Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.
Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.
Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.
С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.
Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании.
А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора.
Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.
К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.
Преимущество стрелочных приборов
Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка
Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.
В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.
Взглянем на внутренности цифрового мультиметра.
Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.
Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.
Практическая работа с мультиметром DT-830B
Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.
Пределы измерения омметра выглядят вот так.
На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:
- 200 — на этом пределе измеряются сопротивления величиной до 200 Ом;
- 2000 — на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);
- 20k — на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);
- 200k — предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);
- Ну, и наконец, 2000k — предел для измерения сопротивлений до 2 мегаом.
Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.
Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.
А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.
У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0
Источник: https://go-radio.ru/ommetr.html
Современные приборы для измерения сопротивления изоляции
Сопротивление изоляции — характеристика, влияющая на степень безопасности эксплуатации электроустановок.
Сопротивление изоляции является важной характеристикой состояния изоляции электрооборудования. Поэтому измерение сопротивления производится при всех проверках состояния изоляции.
Для установления соответствия Rиз. нормальным значениям, а также для своевременного выявления и устранения повреждений электроустановки проводят приемосдаточные испытания (по нормам ПУЭ) и испытания в процессе эксплуатации. Помимо соответствия Rиз.
нормам, установленным Правилами технической эксплуатации электроустановок потребителей, критерием состояния изоляции служит сравнение измеренных значений с данными, полученными при предыдущих испытаниях или при вводе в эксплуатацию. Резкое снижение Rиз.
по отношению к предыдущим измерениям на (30—40%) свидетельствует о неблагополучном состоянии изоляции.
Снижение сопротивления изоляции ниже установленных норм может привести к пожару и получению электрических травм!
От состояния электроизоляции напрямую зависят потери электрического тока, связанные с возможностью его утечки из электросистемы через участки с некачественной изоляцией, ее безопасность для человека и возможность длительной безаварийной работы. Для того чтобы подобных проблем не возникало, необходимо точно придерживаться правил проектирования и эксплуатации электросетей.
Измерение сопротивления изоляции с использованием специальных методов и оборудования должно регулярно проводиться на всех электрических линиях и сетях, только так можно заранее выявить степень изношенности изоляции и ее изолирующие качества.
Основные показатели сопротивления изоляции:
- Сопротивление изоляции постоянному току Rиз. Наличие грубых внутренних и внешних дефектов (повреждение, увлажнение, поверхностное загрязнение) снижает сопротивление изоляции. Определение Rиз (Ом) производится методом измерения тока утечки, проходящего через изоляцию, при приложении к ней выпрямленного напряжения.
- Коэффициент абсорбции. Лучше всего определяет увлажнение изоляции. Коэффициент абсорбции — это отношение измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R60) к измеренному сопротивлению изоляции через 15 секунд (R15). Если изоляция сухая, то коэффициент абсорбции начительно превышает единицу, в то время как у влажной изоляции коэффициент абсорбции близок к единице. Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его значение должно быть не ниже 1.3 при температуре 10–30оС. При невыполнении этих условий изделие подлежит сушке.
- Коэффициент поляризации. Указывает способность заряженных частиц и диполей в диэлектрике перемещаться под действием электрического поля, что определяет степень старения изоляции. Коэффициент поляризации также должен значительно превышать единицу. Коэффициент поляризации — это отношение измеренного сопротивления изоляции через 600 секунд после приложения напряжения мегаомметра R600 к измеренному сопротивлению изоляции через 60 секунд (R60).
Прибор, предназначенный для измерения сопротивления изоляции, называется мегаомметром.
Современной промышленностью изготавливается целый ряд приборов для измерения сопротивления изоляции (мегаомметры):
1151 IN — Измеритель сопротивления изоляции
1152 MF — Измеритель сопротивления изоляции
1800 IN — Измеритель сопротивления изоляции
1801 IN — Измеритель сопротивления изоляции
1832 IN — Измеритель сопротивления изоляции
1851 IN — Измеритель сопротивления изоляции
2732 IN — Измеритель сопротивления изоляции
2751 IN — Измеритель сопротивления изоляции
2801 IN — Измеритель сопротивления изоляции
2803 IN — Измеритель сопротивления изоляции
2804 IN — Измеритель сопротивления изоляции
4101 IN — Измеритель сопротивления изоляции
4102 MF — Измеритель сопротивления изоляции
4103 IN — Измеритель сопротивления изоляции
4104 IN — Измеритель сопротивления изоляции
4153 IN — Измеритель сопротивления изоляции
6200 IN — Измеритель сопротивления изоляции
6201 IN — Измеритель сопротивления изоляции
6210 IN — Измеритель сопротивления изоляции
6211 IN — Измеритель сопротивления изоляции
6212 IN — Измеритель сопротивления изоляции
APPA 605 — Мегомметр
APPA 607 — Мегомметр
CA 6523 — Измеритель сопротивления изоляции
CA 6525 — Измеритель сопротивления изоляции
CA 6543 — Измеритель сопротивления изоляции
CA 6545 — Измеритель сопротивления изоляции
CA 6547 — Измеритель сопротивления изоляции
CA 6549 — Измеритель сопротивления изоляции
DM1008S — Измеритель сопротивления изоляции
DM1528S — Измеритель сопротивления изоляции
Fluke 1503 — Измеритель изоляции
Fluke 1507 — Измеритель изоляции
Fluke 1550B — Мегаомметр
Fluke 1577 — Измеритель изоляции
Fluke 1587 — Измеритель изоляции
M261 — Измеритель изоляции — приставка к токовым клещам серии M266
MG1000 — Измеритель сопротивления изоляции
MG500 — Измеритель сопротивления изоляции
MI 2077 — Измеритель сопротивления изоляции
MI 2094 — Комплексная высоковольтная испытательная установка
MI 3103 — Мегаомметр
MI 3121 — Измеритель сопротивления изоляции и целостности электрических цепей
MI 3121H 2,5кВ — Измеритель сопротивления изоляции и целостности электрических цепей
MI 3200 — Многофункциональный измеритель сопротивления изоляции
MI 3201 — Многофункциональный измеритель параметров изоляции
MI 3202 — Измеритель параметров изоляции
MIC-1000 — Измеритель сопротивления, увлажнённости и степени старения электроизоляции
MIC-2 — Измеритель сопротивления электроизоляции
MIC-2500 — Измеритель сопротивления, увлажнённости и степени старения электроизоляции
MIC-3 — Измеритель сопротивления электроизоляции, проводников присоединения к земле и выравнивания потенциалов
MIC-5000 — Измеритель сопротивления, увлажненности и степени старения электроизоляции
MS5201 — Измеритель изоляции
АМ-2002 — Мегаомметр
АМ-2004 — Мегаомметр
АМ-2015 — Высоковольтный тестер изоляции
АМ-2082 — Измеритель сопротивления изоляции
АМ-2125 — Тестер сопротивления изоляции высоковольтный
АМ-3083 — Импульсный тестер обмоток
Е6-24 — Мегаоммметр
ЦС0202-1 — Мегаомметр
ЦС0202-2 — Мегаомметр
ЭС0202/1Г — Мегаомметр
ЭС0202/2Г — Мегаомметр
ЭС0210/1 — Мегаомметр
ЭС0210/1Г — Мегаомметр
ЭС0210/2 — Мегаомметр
ЭС0210/2Г — Мегаомметр
ЭС0210/3 — Мегаомметр
ЭС0210/3Г — Мегаомметр
Источник: http://www.elpriz.ru/cgi-bin/articles/view.cgi?id=23
Измерители сопротивления заземления
От состояния общего контура заземления здания, сооружения или других объектов с действующими электроустановками зависит не только безопасность обслуживающего персонала и проживающих людей в жилых помещениях. Исправное состояние отдельных элементов системы заземления: общего контура, соединительных шин, проводов заземляющих корпуса электрооборудования и других составляющих, обеспечивает стабильную безаварийную работу электроустановок.
Металлические элементы контура заземления, особенно находящиеся под грунтом, подвергаются коррозии, конструкция постепенно разрушается и перестает выполнять свои функции по защите, оборудования и обслуживающего персонала. Поэтому требуется периодический контроль состояния системы заземления.
Методика проверки последовательно описана в требованиях ПУЭ (Правила устройства электроустановок) Одним из важнейших параметров системы является сопротивление контура, для его измерения существует отработанная методика и специальные измерительные приборы.
статью ⇒ Заземление и зануление: назначение, отличие, особенности
Принцип действия заземления
Металлические корпуса оборудования на производственных предприятиях и бытовые приборы в жилых помещениях, по требованиям ПУЭ и других нормативных актов, руководящих документов подлежат заземлению. Эта мера обеспечивает безопасность потребителей электроэнергии, пользователей бытовыми приборами и обслуживающий персонал электрооборудования.
Работает это следующим образом, при возникновении замыкания токопроводящей части фазного провода с элементами корпуса происходит выравнивание потенциалов всех замкнутых элементов. Напряжение между корпусом, фазой и заземляющим контуром становится одинаковым.
Следовательно, нет разницы потенциалов между землей и полом в помещении. При прикосновении к корпусу оборудования ток не будет переткать с корпуса через человеческое тело в пол или другое оборудование, таким образом, исключается поражение электрическим током.
Основные требования к сопротивлению контура заземления на различных объектах
Одним из важнейших параметров системы заземления является сопротивление контура, контрольные измерения которого производится не реже чем один раз в год, после окончания монтажных работ.
В сетях на промышленных объектах, где нейтрали понижающих трансформаторов, генераторов заземляются на общий контур заземления, в однофазных сетях жилого фонда с любыми источниками питания контуры заземления в любое время года с любым составом грунта должны иметь установленную ПУЭ величину сопротивление.
Напряжение в сети электропитания | 220- 127 | 380-220 | 660-380 |
Сопротивление с естественными заземлителями (Ом) | 60 | 30 | 15 |
Сопротивление контура с повторными заземлителями (Ом) | 8 | 4 | 2 |
Источник: http://electric-tolk.ru/pribory-dlya-izmereniya-soprotivleniya-zazemleniya/
Какой прибор измеряет сопротивление в электрической цепи?
Радиоэлектроника для начинающих
Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.
Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.
Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора.
В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм).
На зарубежных схемах «Ом» пишется как «Ohm».
Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.
Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.
На принципиальных схемах омметр обозначается следующим условным графическим обозначением.
Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.
Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.
Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.
Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:
- Короткое замыкание, где его быть не должно.
- Обрыв там, где должна быть замкнутая цепь.
Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.
Измерение тока. Виды и приборы. Принцип измерений и особенности
Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.
Измерение тока рекомендуется делать в следующих случаях:
- После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
- Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
- При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
- Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
- Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
- Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока
Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.
Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток.
Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера.
Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.
Измерение тока приборами
Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.
- Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.
- Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.
Порядок измерения силы тока мультиметром:
- Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
- Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
- Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
- Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.
- Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
- Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
- Отключить питание цепи и отсоединить мультиметр.
- Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.
Способы измерения тока
Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.
При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.
Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.
Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.
Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто.
Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток.
Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.
Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/izmerenie-toka/
Как измерить сопротивление мультиметром – что надо знать
14.05.2017
Есть немало ситуаций, когда будет полезно знать, как измерить сопротивление мультиметром и есть ли разница, каким устройством это лучше делать. Даже если человек не является заядлым радиолюбителем, то при домашних работах с электрикой часто возникает необходимость как минимум «прозвонить» провода – по сути, убедиться, что сопротивление провода находится в пределах допустимого.
Как мультиметр измеряет сопротивление
Принцип измерения сопротивления основан на законе Ома, который в упрощенном варианте гласит, что сопротивление проводника равно отношению напряжения на этом проводе к силе тока, которая по нему протекает. Формула выглядит как R (сопротивление) = U (напряжение) / I (сила тока). То есть, 1 Ом сопротивления говорит о том, что по проводу протекает ток номиналом в 1 Ампер и напряжением 1 Вольт.
Соответственно, при пропускании заранее измеренного тока с известным напряжением через проводник, можно вычислить его сопротивление. По сути, омметр (прибор, которым измеряют сопротивление) представляет собой источник тока и амперметр, шкала которого проградуирована в Омах.
Какой мультиметр использовать
Измерительные приборы делятся на универсальные (мультиметры) и специализированные, которые предназначены для выполнения одной операции, но проводят ее максимально быстро и точно. В мультиметре омметр является только составляющей частью прибора и его еще надо включить в соответствующий режим. Специализированные устройства, в свою очередь, также требуют некоторых навыков использования – надо знать, как их правильно подключить и интерпретировать полученные данные.
Как пользоваться аналоговым и цифровым мультиметрами – на следующем видео:
Специализированные измерительные приборы
Из закона Ома понятно, что стандартным мультиметром не получится замерить большие сопротивления, так как в качестве источника питания там используются стандартные пальчиковые, либо батарейка типа «Крона» – прибору попросту не хватит мощности.
Если часто возникает необходимость выполнить замер большого сопротивления, к примеру, изоляции, то надо приобретать мегаомметр.
В качестве источника тока он использует динамомашину или мощную батарею с повышающим трансформатором – в зависимости от класса устройства он может генерировать напряжение от 300 до 3000 Вольт.
Отсюда следует вывод, что у задачи, к примеру, как измерить мультиметром сопротивление заземления, не может быть однозначного ответа – в этом случае надо воспользоваться специализированным прибором, предназначенным именно для этой цели.
Измерение проводятся по определенным правилам и применение таких устройств это удел специалистов – без профильных знаний получить правильный результат достаточно проблематично.
Теоретически можно проверить у заземления сопротивление тестером, но это потребует сборки дополнительной электроцепи, для которой потребуется как минимум мощный трансформатор, наподобие такого, что используется на сварочных аппаратах.
Цифровой и аналоговый мультиметры
Внешне эти устройства легко отличить друг от друга – у цифрового данные выводятся на дисплей цифрами, а у аналогового циферблат проградуирован и на нужное значение указывает стрелка. Соответственно, цифровое устройство проще в использовании, так как сразу показывает готовое значение, а при работе с аналоговым придется еще дополнительно интерпретировать выдаваемые данные.
Дополнительно, при работе с такими устройствами, надо учитывать, что у цифрового мультиметра есть датчик разрядки источника питания – если силы тока батареи недостаточно, то он просто откажется работать.
Аналоговый же в такой ситуации ничего не скажет, а будет просто выдавать неправильные результаты.
В остальном, для бытовых целей подойдет любой мультиметр, на шкале которого указан достаточный предел измерения сопротивления.
Включение мультиметра в режим омметра и выбор пределов измерений
Управление мультиметром производится с помощью круглой поворотной ручки, вокруг которой расчерчена шкала, поделенная на секторы. Друг от друга они отделены линиями или просто надписи на них отличаются цветом. Чтобы включить мультиметр в режим омметра надо повернуть ручку в зону сектора, обозначенного значком «Ω» (омега). Цифры, которыми будет обозначаться режимы работы могут быть подписаны тремя способами:
- Ω, kΩ – x1, x10, x100, MΩ. Обычно такие обозначения используются на аналоговых устройствах, у которых то, что показывает стрелка еще надо переводить в привычные значения. Если шкала проградуирована, к примеру, от 1 до 10, то при включении каждого из режимов отображаемый результат надо домножать на указанный коэффициент.
- 200, 2000, 20k, 200k, 2000k. Такая запись применяется на электронных мультиметрах и показывает в каком диапазоне можно измерять сопротивление при установке переключателя в определенную позицию. Приставка «k» обозначает префикс «кило», что в единой системе измерений соответствует цифре 1000. Если выставить мультиметр на 200k и он покажет цифру 186 – это значит, что сопротивление равно 186000 Ом.
- Ω – Если на корпусе омметра есть только такой значок, значит мультиметр способен автоматически определять диапазон. Циферблат такого устройства обычно может отображать не только цифры, но и буквы, к примеру, 15 kОм или 2 MОм.
У первых двух способов подписи шкалы есть прямая зависимость точности отображения результатов и их погрешности. Если сразу включить максимальный диапазон, то сопротивление порядка 100-200 Ом скорее всего будет показано неправильно.
Щупы прибора надо воткнуть в соответствующие гнезда – черный в «COM», а красный в то, возле которого среди других обозначений есть значок «Ω».
Прозвонка проводов – проверка целостности участка электрической цепи
Прозванивать провода мультиметром можно двумя способами, использование которых зависит от наличия в приборе звукового сигнала. Эта функция, если она есть, на разных приборах может включаться разными положениями переключателя – поэтому надо обращать внимание на значки, что нарисованы на корпусе прибора.
Зуммер показан как точка, справа от которой нарисованы три полукруга, каждый из последующих больший предыдущего. Искать такой значок надо либо отдельно, либо над самой маленькой цифрой из сопротивлений, либо возле значка диода, который отображается как стрелка на линии, острым концом упирающаяся в еще одну, перпендикулярную первой, линию.
Если включить тестер в режим прозвонки, то он будет подавать звуковой сигнал, если сопротивление измеряемого проводника будет меньше 50 Ом. В некоторых приборах это может быть 100 Ом, поэтому если нужна точность, то надо свериться с паспортом устройства.
Наглядно про прозвонку проводов на видео:
Порядок прозвонки прост и интуитивно понятен – установить переключатель напротив значка зуммера и щупами коснуться концов проводника, который надо «прозвонить»:
- Если провод целый, то мультиметр издаст звуковой сигнал.
- Если провод целый, но из-за его длины сопротивление больше чем то, при котором срабатывает зуммер, то на дисплее отобразится цифра, показывающая его значение.
- Если сопротивление значительно больше чем диапазон, на который рассчитан этот режим работы, то на дисплее отобразится единица – значит надо переставить переключатель на другой режим и повторить измерение.
- Если целостность провода нарушена, то никакой индикации не произойдет.
Если для «прозвонки» проводников используется аналоговый мультиметр без звукового сигнала, то он выставляется на минимальный диапазон измерений – если при прикосновении щупов к проводу стрелка показывает значение стремящееся к нолю, значит провод целый. То же самое касается цифровых приборов без зуммера.
Перед тем, как проверить сопротивление проводников, сначала всегда надо выполнить тест самого устройства – прикоснуться щупами друг к другу. Также надо проверить как прибор реагирует на человеческое тело – у некоторых людей достаточно низкое сопротивление и если прижимать концы провода к щупам руками, то прибор может показать что проводник целый, даже если это не так.
Проведение измерений сопротивления и какие могут возникнуть нюансы
Щупы мультиметра подключаются в те же гнезда и в целом, измерение сопротивления выполняется практически так же, как и прозвонка проводов, но так как проверить при этом надо не просто целостность проводника, то у этого процесса есть некоторые особенности.
- Выбор границ измерений. Когда измеряемое сопротивление хотя бы примерно известно, то регулятором выставляется ближайшее большее значение (если мультиметр не определяет его автоматически). Если сопротивление точно неизвестно, то стоит начать измерения с самого большого значения, постепенно переключая мультиметр на меньшее.
- Когда нужна точность, то обязательно надо учитывать погрешности. К примеру, если есть на резисторе указано сопротивлением 1 кОм (1000 Ом), то во-первых надо учитывать допуски для его изготовления, которые составляют 10%. Как итог – реальные цифры могут быть в диапазоне от 900 до 1100 Ом. Во-вторых – если взять тот же резистор и выставить мультиметр на максимальное значение, к примеру 2000 kОм, то прибор может показать единицу, т.е. 1000 Ом. Если после этого перевести переключатель в положение 2 kОм, то вероятнее всего прибор покажет другую – более точную цифру, к примеру, 0,97 или 1,04.
- Если надо проверить сопротивление детали, которая впаяна в плату, то как минимум один из ее выводов надо выпаивать. В противном случае прибор покажет неправильный результат, так как с высокой долей вероятности параллельно проверяемой детали на схеме есть другие проводники.
Если проверяется элемент с несколькими выводами, то эту деталь надо полностью выпаивать из схемы.
- Человеческое тело проводит ток и обладает определенным электрическим сопротивлением. Поэтому, как и в случае с впаянными в плату деталями, надо исключить возможность их контакта с посторонними предметами – в данном случае это руки замеряющего. В крайнем случае можно прижимать пальцами одной руки контакт к щупу, но прикасаться другой рукой ко второму категорически недопустимо – результат измерений в таком случае будет заведомо неверным.
- В ряде случаев надо учитывать переходное сопротивление контактов – даже чистый припой или ножки неиспользованных радиодеталей со временем может покрываться оксидной пленкой, поэтому место контакта желательно хотя бы минимально зачистить или процарапать концом щупа.
Как проверить сопротивление провода наглядно показано на видео:
Как измерять сопротивление мультиметром – итоги
Управление современных цифровых мультиметров, да и большинство аналоговых, сделано максимально удобным для оператора и не требует глубоких познаний.
Оно интуитивно понятно даже непрофессионалу без профильного образования – зачастую для освоения и правильного использования прибора достаточно вспомнить школьные уроки физики по построению и проверке электроцепей.
Желательно при проведении измерений помнить про перечисленные выше нюансы, ведь они в любом случае «вылезут» в процессе использования мультиметра.
Источник: https://yaelectrik.ru/elektroprovodka/kak-izmerit-soprotivlenie-multimetrom
Измерение сопротивления изоляции электрооборудования
Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.
Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.
Стандарты измерения изоляции
Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов ( кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли.
Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители. В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей.
Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.
Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение.
Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими.
Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.
Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы.
Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В — 100 кОм.
Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.
Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ — не ниже четвертой ( IV) , у члена бригады –должна быть третья группа ( III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ. Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.
В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение.
Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования ( ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП).
В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.
Важно, чтобы соблюдался температурный режим и уровень влажности, допустимый при измерении сопротивления: температура изоляции не должна подниматься выше +35 градусов Цельсия и опускаться ниже +5 градусов. Степень увлажненности рассчитывается по формуле Kабс=R60/R15, где R60 – измеренное сопротивление изоляции через 60 секунд после приложения напряжения мегаоомметра, R15 – через 15 секугд. Отношение этих двух величин называется коэффициентом абсорбции.
Практика измерения сопротивления изоляции электрооборудования показывает, что оптимальная влажность воздуха для достижения коэффициента абсорбции, отличающегося от заводских показателей не более, чем на 20%, должна быть не выше 80%. Коэффициент абсорбции не должен превышать величину 1,3 (нормируется в ПТЭЭП) при температуре от +10 до +30 градусов Цельсия.
Если по результатам измерений электрооборудование имеет коэффициент абсорбции ниже 1,3- оно подлежит сушке.
Измерение сопротивления изоляции электроустановок производится с помощью цифровых измерителей с преобразованием напряжения, либо мегаоомметры генераторного типа. Ежегодная поверка приборов проводится органами Госстандарта РФ, в Санкт-Петербурге — ФГУ Тест –Санкт Петербург, или ВНИИМ им. Д.И.Менделеева о чем выдаются свидетельства о проверке. Если проверка не проведена в срок, прибор к эксплуатации не допускается.
Измерение сопротивления изоляции групповых кабельных линий электропроводок проводится мегаоомметрами на 1 кВ для магистральных кабелей — на напряжение 2,5 кВ . Для измерения сопротивления изоляции электрооборудования после монтажа значения напряжения мегаомметра (0,5 или 1 кВ) указаны в НД ПУЭ ,глава 1.8 в таб. 1.8.34.
Заключение о непригодности проводки делается в случае, если после измерения сопротивления изоляции выясняется, что сопротивление менее нормируемого значения.
Порядок измерения сопротивления изоляции
В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5). Мегаомметры серии Ф. 4100, с электронным питанием от электросети, рассчитаны на номинальное рабочее напряжение 100, 500, 1000 (Ф4101, Ф4102). Мегаоомметры ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) уже не выпускаются, тем не менее, мегаомметры типа M l101 М, МС-05, МС-06 используются с большим успехом.
Минимальный класс точности приборов – четвертый. Измерение сопротивления изоляции электроустановок происходит путем присоединения мегаоомметров к схеме. Присоединение проводится с помощью гибких одножильных проводов. Сопротивление изоляции этих проводов, длина которых должна составлять не менее 2-3 метров, должна составлять 100 Мом.
Концы проводов маркируются, на них со стороны мегаоомметра надеваются оконцеватели, а противоположные концы снабжаются зажимами типа «крокодил», при этом зажимы снабжаются специальными щупами или изолированными ручками. Провода при измерении сопротивления изоляции электроустановок «не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.
При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) — к проводнику тока».
Измерение сопротивления изоляции силовых кабелей и электропроводок
Начало измерения сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить.
Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаоомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию.
При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.
Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.
Источник: http://www.gorod812.com/blog/izmerenie-soprotivleniya-izolyatsii-elektrooborudovaniya
Каким прибором измеряют сопротивление проводника? — Станки, сварка, металлообработка
Сопротивление элементов электрической цепи — важнейший параметр, поскольку от него зависит величина протекающего в цепи тока. А сила тока, в свою очередь, определяет сечение проводов, номинал автоматов защиты и многое другое. Какой же используют прибор для измерения сопротивления в той или иной ситуации?
Принципы измерения электрического сопротивления
Различают два вида электрического сопротивления: активное и реактивное.
Активное или резистивное
Это противодействие материала движению электрически заряженных частиц, имеющее место при любом виде тока.
Закон Ома наглядно
Определяется из закона Ома для участка цепи: R = U/I, где:
- R — сопротивление участка цепи, Ом;
- U — падение напряжения на участке цепи, В;
- I — сила тока на данном участке, А.
Таким образом, для вычисления активного сопротивления элемента требуется приложить к его выводам некоторое известное напряжение и замерять силу протекающего в цепи тока.
Реактивное
Существует только в цепях переменного тока, подразделяется на два типа:
Емкостное сопротивление в цепи переменного тока
Для расчета реактивного сопротивления применяются более сложные методики и приборы.
Конструкция простейшего омметра
Омметр — прибор для измерения активного сопротивления. Самый простой вариант — аналоговый или стрелочный. Действие основано на способности протекающего по проводнику тока создавать магнитное поле, значительно усиливающееся при сматывании провода в катушку.
Внутри аналогового омметра имеются такие компоненты:
- подвижная катушка на пружинке с присоединенной к ней стрелкой;
- постоянный магнит;
- блок ограничивающих резисторов R (нужный выбирается переключателем);
- источник питания — батарейка или аккумулятор;
- щупы с разъемами для подключения к прибору.
При подсоединении щупов к выводам проверяемого элемента с сопротивлением RX, цепь замыкается и через катушку течет ток.
Его величина зависит от RX, а ограничивающий резистор R исключает возможность короткого замыкания. От силы тока зависит индукция магнитного поля, создаваемого катушкой, и, соответственно, сила ее взаимодействия с постоянным магнитом.
Чем выше эта сила, тем больше смещается катушка, растягивая пружину, и тем дальше отклонится прикрепленная к ней стрелка. Подключая разные ограничивающие резисторы, меняют чувствительность прибора — от нее зависит диапазон измерений.
Цифровой омметр
Цифровой омметр — современный вариант. Вместо аналогового измерительного механизма используются датчики напряжения и тока, отсылающие сигнал на микропроцессор. Тот анализирует данные и выводит результат на жидкокристаллический дисплей.
Преимущества перед аналоговыми:
- высокая точность показаний;
- результаты измерений легко читаются (при использовании аналогового омметра приходится вглядываться в шкалу);
- компактные размеры;
- дополнительные функции: память, фиксация показаний и пр.
Недостаток цифровых моделей: датчики опрашивают цепь через определенные временные интервалы, потому невозможно отследить изменения измеряемого параметра в режиме реального времени.
Из-за этого профессиональные мастера-электронщики часто отдают предпочтение аналоговым моделям.
В быту применяют не омметры, а мультиметры — многофункциональные приборы для измерения нескольких параметров (сопротивление, напряжение, сила тока, емкость конденсатора и т.д.).
Мегаомметры
Важное значение имеет величина сопротивления изоляции токоведущих частей, поскольку она обеспечивает безопасную эксплуатацию электроустановки и предотвращает короткое замыкание. Изоляцию изготавливают из диэлектриков — материалов с высоким электрическим сопротивлением, измеряемым мегаомами.
Потому для создания тока в цепи напряжения источника, тока имеющегося в обычном омметре недостаточно. Мегаомметр оснащен генератором постоянного тока, приводимым в действие вращением рукоятки. Он способен развивать напряжение до 2,5 кВ.
Вместо двух разъемов для подключения щупов, как у омметра, в мегаомметре имеется три с такой маркировкой:
- «З» (в некоторых моделях «Rx»): земля;
- «Л» («-»): линия;
- «Э»: экран.
Первые два разъема используют при измерении сопротивления изоляции между токоведущими частями и землей либо между разными фазами. При помощи разъема «Э» нейтрализуют помехи, влияющие на точность показаний.
Мегаомметры также делятся на аналоговые и цифровые. В первых применяется тот же измерительный механизм, что и в обычных омметрах.
При работе с мегаомметром из-за высокого напряжения требуется осторожность; после измерений необходимо по особой методике разрядить наведенную прибором высоковольтную разность потенциалов (заряд накапливается протяженными участками кабелей).
Измерительные мосты постоянного тока
Недостаток омметров — большая погрешность. В обычных условиях она допустима, но в ряде случаев требуется более точное определение сопротивления.
Для измерения собирают мостовую схему из 4-х резисторов, один из которых — тестируемый (Rx), а три других — образцовые регулируемые (R1, R2, R3).
Одну диагональ моста подключают к полюсам источника питания, к другой через выключатель и ограничивающий резистор подсоединяют амперметр высокой чувствительности (милли- или микроамперметр). Подстраивая резисторы R1, R2 и R3, проверяющий балансирует мост — добивается, чтобы на амперметре отобразился «0».
Такая ситуация наступит при равенстве произведений сопротивлений на противоположных плечах моста, откуда определяют сопротивление Rx тестируемого элемента по формуле: Rx = (R1*R3)/R2.
Контура заземления
Залог надлежащей работы защитного заземления — его низкое сопротивление.
Требуется регулярно проверять сопротивление контура заземления, поскольку он может возрастать из-за следующих причин:
- окисление (коррозия) поверхности электродов заземлителя;
- увеличение удельного сопротивления грунта;
- нарушение контакта между токопроводящей шиной и заземлителем из-за коррозии или механических повреждений.
Измерение сопротивления заземлителя также вычисляют по закону Ома для участка цепи.
Для этого на определенном расстоянии от тестируемого заземлителя, в грунт вбивают основной и вспомогательный измерительный электроды, затем соединяют их проводами с заземлителем.
Полученную цепь подключают к калиброванному источнику питания и замеряют две величины:
- протекающий в цепи ток I;
- падение напряжения U на участке между тестируемым заземлителем и вспомогательным электродом.
Искомое сопротивление определяют делением: R = U / I.
Измерение контура заземления
Описанный метод амперметра и вольтметра является наиболее простым, но дает значительную погрешность. Поэтому работа современных приборов основана на более точных методах, например, компенсационном. Сопротивление контуров заземления измеряют как аналоговыми приборами (МС-08, Ф4103-М1, М4116), так и цифровыми.
Весьма удобны приборы с токоизмерительными клещами, обладающие следующими преимуществами:
- не используются дополнительное оборудование и электроды (необходимо двое токоизмерительных клещей);
- не требуется разрывать цепь заземлителя.
Удельного сопротивления грунта
Некоторые из приборов для измерения сопротивления контура заземлителя, дополнительно снабжены функцией определения удельного сопротивления грунта. Для этого электроды подключают по иной схеме. Например, часто используют метод 4-х электродов.
Важно не располагать электроды ближе 20 м от коллекторов, металлических башен и прочих конструкций с хорошей проводимостью, так как они сильно искажают результаты измерений.
В цепях переменного тока
В цепях переменного тока помимо активного сопротивления имеет место реактивное. Для его измерения применяются другие приборы.
Петли фаза-ноль
Сопротивление участка электросети от трансформатора на подстанции до розетки нормируется. Если оно вследствие ошибок при монтаже или неверного подбора сечения проводов окажется завышенным, это приведет к несбалансированному режиму работы и даже аварии.
Данный участок представляет собой петлю, образованную фазным и нулевым проводниками. Отсюда и название — петля фаза-ноль.
Порядок действий при расчете сопротивления:
- вольтметром замеряют напряжение U1 между фазой и нулем в розетке. В идеале следует замерять ЭДС на выводах обмотки трансформатора, но доступа к нему обычно нет;
- в розетку включают нагрузку и последовательно с ней — амперметр. Нагрузка подбирается так, чтобы сила тока I в цепи была стабильной и составляла 10 – 20 А. При меньших значениях завышенное сопротивление петли может себя не проявить;
- вольтметром определяется падение напряжения U2 на нагрузке.
Расчет производят так:
- вычисляют полное сопротивление цепи: R1 = U1/I;
- рассчитывают сопротивление нагрузки: R2 = U2/I;
- определяют сопротивление петли фаза-ноль путем вычитания из полного сопротивления цепи сопротивления нагрузки: Rп = R1 – R2.
Обычным мультиметром выполнить измерения нельзя — он дает большую погрешность. Требуются приборы повышенной точности — класса 0,2. Это измерители лабораторного уровня: они часто поверяются и требуют от оператора высокой квалификации.Вместо амперметра и вольтметра по отдельности для измерения сопротивления петли фаза-ноль, используют специальные приборы.
Как правильно варить нержавейку электродами?
Иногда их называют «измерителями тока короткого замыкания», но это не совсем верно: непосредственно токи КЗ прибор не определяют, он лишь вычисляет его значение, основываясь на результатах измерения (по обычному закону Ома).
Прибор содержит:
- высокоточный амперметр;
- высокоточный вольтметр;
- нагрузочный резистор;
- элементы питания для функционирования цифрового блока обработки данных.
Пользователю достаточно вставить щупы в розетку и нажать кнопку «пуск». Измеритель сам выполнит порядок действий, описанный выше, и отобразит результат на дисплее.
по теме
Как правильно пользоваться прибором для измерения сопротивления изоляции:
В процессе эксплуатации электросети приходится замерять сопротивление самых разных ее элементов. Для этого выпускают широкий перечень приборов, каждый из которых имеет свое назначение и не может быть заменен другими.
Источник: https://stanki-info.com/kakim-priborom-izmeryayut-soprotivlenie-provodnika/
Чем измеряют сопротивление изоляции
› Инструмент
01.11.2019
Всё о и для ремонта квартир и загородного строительства своими руками. На сайте вы найдете ответы на вопросы связанные с ремонтом квартиры, загородном строительсве которые вам помогут реализовать ваши мечты и сэкономить ваши деньги.
Сопротивление — это величина, которая отображает способность материалов сопротивляться прохождению электрического тока. Чем она ниже, тем меньше потерь электричества на проводниках и тем большее количество тока можно передать безопасно. Сопротивление изоляции кабеля позволяет оценить целостность оболочек, а значит, определить, пригодно ли изделие для использования.
От целостности изоляции электропроводок зависит безопасность и долговечность провода.
Современные изделия имеют несколько оболочек для разных целей, расположенных друг под другом: защиты от электромагнитных помех, поражения током людей, разрыва, попадания влаги, воздействия агрессивных сред.
Чтобы убедиться в целостности всех слоев, нужно проводить испытания. Их цель — убедиться в том, что оболочки не повреждены на всей длине изделия. Поэтому тест должен быть неразрушающим. Единственный вариант — измерить сопротивление изоляции кабеля.
Сопротивление проводника рассчитывается по формуле:
где R — искомая величина, удельное сопротивление материала (табличная величина), l — длина проводника, S — площадь сечения.
Из формулы видно, что, чем больше площадь проводника, тем ниже будет его сопротивление. На этом и основывается принцип испытания целостности через измерения изоляции кабеля. В случае её повреждения площадь, по которой проходит ток, уменьшится, как результат — повысится сопротивление.
Результаты испытания изоляции кабелей и допустимое сопротивление изоляции должны быть равны или отличаться незначительно. Конкретные цифры поданы в сопутствующей изделиям технической документации. Также можно определить, сколько должно быть сопротивление по формуле, представленной выше.
Значение берите из таблицы ниже, длина изделия измеряется в метрах, площадь — в мм2.
Нормы сопротивления изоляции кабеля: таблица удельных сопротивлений материалов при нормальных условиях
В работе понадобится специальный инструмент. Также есть несколько процедур, которые нужно провести перед тем, как начать испытание изоляции.
Условия для проведения теста
Перед тем как измерить сопротивление изоляции, нужно знать о микроклимате помещения. В таблице выше указаны удельные сопротивления материалов при нормальной температуре (+20°C). При повышении этого значения повышается удельное сопротивление материалов, а с ним — сопротивление изоляции проводов и кабелей. Снижение температуры влияет на показатель незначительно. Но, если между слоями есть лед, его не удастся выявить, так как вещество не проводит электричество.
Изменение удельного сопротивления высчитывается по формуле
где — удельное сопротивление при температуре +20°С, а — температурный коэффициент (табличное значение), t — температура воздуха.
Значение а — небольшое, например, для меди оно равно 0,0068, а для алюминия — 0,00429.
Идеальная температура воздуха для испытания — +20°С. При ней все результаты будут максимально приближены к табличным значениям. Если не удается создать нормальное термическое условие, то нужно позаботиться о том, чтобы в помещении температура была выше 0°С, иначе не удастся выявить наличие влаги под оболочками.
Оборудование
Замер сопротивления изоляции выполняют с помощью мегаомметра. Существует оборудование для разных типов проводки и для определения разных характеристик. Некоторые устройства способны предоставить просто значения, другие определяют наличие воды, влажность оболочек.
Измерение сопротивления изоляции кабеля — настолько важная процедура, что за ней следят государственные органы. Испытания можно проводить только с использованием оборудования, которое внесено в специальный реестр. Ежегодно приборы отдаются на проверку работоспособности, после которой на них наносят голограмму, штамп с информацией о сроке годности.
При выборе устройств для измерений сопротивления изоляции проводов нужно руководствоваться следующим:
Тип проводников, которые будут тестироваться. В зависимости от него, подбирается диапазон, в котором способен работать мегаомметр. Тип индикации. Существуют аналоговые (со стрелкой и циферблатом), световые, графические приспособления.
Точность каждого из них гарантирует государственный орган контроля (если изделие внесено в соответствующий реестр) — тип индикации влияет лишь на простоту, скорость работы. Удобнее всего использовать изделия с дисплеем. Но они при прочих равных условиях стоят дороже остальных. Климатическое исполнение.
Для измерения сопротивления изоляции в условиях Крайнего Севера нужны особые модели. Компактность. Зависит от источника питания — электрогенератор, аккумулятор, гальванический элемент.
Дополнительные возможности. Существуют мультиметры, в конструкции которых предусмотрен мегаомметр. С ними можно не только проверить сопротивление изоляции, но и померить напряжение, силу тока, коэффициент абсорбции (силу поглощения влаги).
Мегоомметр с дисплеем позволяет проводить измерение сопротивление изоляции в разы быстрее
Классификация проводов
При измерениях сопротивлений важны типы кабелей. Существуют разные классификации. Для данных целей важно напряжение, которое можно пропускать через изделие. В зависимости от него продукция делится на следующие типы:
Высоковольтные — для тока свыше 1000 Вольт. Низковольтные — для напряжения до 1000 Вольт;
Контрольные — провода, которые используют в оборудовании. К ним относятся вторичные цепи РУ, цепи питания отделителей, управляющих элементов, защиты, автоматики.
В зависимости от типа проводки используется соответствующий прибор для проверки.
Существуют нормативы, по которым определяется пригодность изделий к эксплуатации в зависимости от результатов измерения сопротивления изоляции (из расчета на 1000 метров):
для высоковольтных — не ниже 10 МОм; для низковольтных — не менее 0,5 МОм;
контрольные — не ниже 1 МОм.
Подробнее о нормах сопротивления изоляции кабеля — в п. 6.2. ПТЭЭП и п. 1.8.37 ПУЭ.
Испытанию подлежат все проводники. Отличаются временные промежутки, с которыми проводят измерение сопротивления изоляции электропроводки:
замеры проводников мобильных электроустановок — не реже одного раза в полгода; электропроводка наружных электроустановок, а также оборудования, установленного в опасных помещениях, проверяется на соответствие нормам раз в год.
проверка сопротивления изоляции остальных выполняется раз в три года.
Проведение подобных испытаний необходимо, в первую очередь, для обеспечения безопасности сети. Это не просто требование органов контроля, которое нужно проводить «для галочки». Поэтому интервалы, с которыми проводят проверку, могут изменяться. Следует проводить внеочередные тесты, если есть подозрения, что изоляция могла быть повреждена.
Работа с проводниками различных типов
Порядок того, как проверить защиту изделий, зависит от их типа. Алгоритм работы с каждым видом проводников несколько отличается. Поэтому нужно рассмотреть инструкции по работе с разными вариантами электропроводки.
Общим для всех случаев правилом является проверка наличия напряжения в сети с помощью специальных приборов. Если состояние кабеля достоверно неизвестно, он считается активным.
Сопротивление оболочек измеряют следующим образом:
Устанавливают испытательное заземление на непроверяемые жилы. Зажимы монтируют на сторону, с которой будет проводиться тестирование. Разводят друг от друга жилы кабеля, находящиеся с противоположной от заземления стороны.
Устанавливают/включают предупреждающие и запрещающие знаки — плакаты, конусы, световые таблички. Для большей безопасности рекомендуется поручить кому-нибудь охранять территорию, на которой проводится проверка изоляции.
Проверять кабельную продукцию с помощью мегаомметра на 2,5 кВ в течение 1 минуты.
Записать результаты замера в блокнот.
При работе с высоковольтными проводами испытания проводятся на каждой жиле. Если нужно проверить изоляцию на низковольтных кабелях, тестируют следующие пары:
А-В; В-С; А-С; А-N; В-N; С-N; А-РЕ; В-РЕ; С-Р; нуль и земля, предварительно отсоединив первый от нулевой шины.
Особенность работы с контрольной проводкой
Контрольную проводку можно тестировать на оборудовании, не отключая жилы от схемы. Немного отличается способ подсоединения оборудования:
Один вывод мегаомметра подключают к испытуемой жиле. Второй щуп присоединяют либо к заземлению, либо к неиспытуемой жиле.
Остальные жилы соединяют между собой и заземляют.
Что потребуют органы контроля?
Органы государственного контроля, в частности пожарная инспекция, могут потребовать протоколы измерения сопротивления изоляции. В них содержится информация о полученных данных, условиях, при которых проведено испытание, приборе, исполнителе. Поэтому подобную работу можно доверить только организации, у которой есть разрешение на выполнение подобных исследований. Если замеры сделает обычный электрик, протокол не будет иметь силы.
Хорошо, если работник организации умеет выполнять подобную работу. Контроль сопротивления изоляции стоит осуществлять для себя, чтобы быть уверенным в качестве используемых проводников, их безопасности для имущества и окружающих.
Источник: https://instrument16.ru/instrument/chem-izmeryayut-soprotivlenie-izolyatsii.html