Амперметр постоянного тока: включение амперметра в цепь постоянного тока
В любой электросети чрезвычайно важно знать показатели тока. От них зависит срок эксплуатации проводки и электроприборов, а также безопасность подключения. Для измерения используется специальный прибор — амперметр.
Что это такое
Амперметр — устройство для измерения силы тока. Результаты замеров он показывает в амперах. Единица измерения названа в честь ученого Андре-Мари Ампера, жившего с 1775 по 1836 гг. Он сделал большой вклад в изучение электричества.
Амперметр: внутреннее устройство
Дополнительная информация. Сила тока — электрический заряд, прошедший через проводник за 1 секунду.
Для человека безопасным является показатель не более 0,5 А. В современных розетках сила тока равна 16А, а если она подключена к трехфазной сети, то 32А.
Параметры
Амперметры бывают аналоговые и цифровые. Последние зачастую продаются не отдельно, а в составе мультиметров — универсальных приборов для замеров не только силы тока, но и других величин. В современных условиях предпочитают пользоваться именно такими устройствами из-за ряда преимуществ:
простота и скорость измерений;
бесконтактный замер, а значит, полная безопасность;
низкая погрешность.
Однако и аналоговые до сих пор востребованы. Они используются в лабораториях, на промышленных предприятиях, на ТЭЦ и других точках производства электроэнергии. Аналоговые делятся на несколько подвидов:
магнитоэлектрические (классические);
электромагнитные;
электродинамические;
ферродинамические.
Среди аналоговых конструкций ферродинамические — самые точные, но по соотношению цена-качество выигрывают магнитоэлектрические и электромагнитные.
Приборы делятся и по уровню максимальной нагрузки. Так, для измерения небольших величин используются устройства со шкалой в микроамперах и миллиамперах. Если следует узнать показатели стандартной бытовой сети или промышленной, используются шкалы в амперах и килоамперах соответственно.
Принцип работы
Амперметр показывает измерения после соединения с электрической цепью. Через него проходит ток, сила которого регистрируется за счет воздействия магнитного поля. Если говорить о классическом, магнитоэлектрическом варианте прибора, то он действует так:
На оси крепится катушка и стрелка. Над катушкой устанавливается магнит, который создает магнитное поле и задает первоначальное положение стрелки — 90 градусов относительно оси.
Если подключить устройство к сети, возникнет и второе магнитное поле, исходящее от электричества. Поля будут «соперничать» друг с другом, перетягивая к себе стрелку. От разности потенциалов магнитных полей и зависит, на каком делении в итоге остановится стрелка.
Вам это будет интересно Проверка IGBT транзисторовПринцип действия
Однако принцип действия может меняться в зависимости от конструкции амперметра.
Какой ток показывает
Устройство бывает трех типов: для измерения постоянного тока, переменного, а также универсальное, для обоих разновидностей.
В чем отличие? Постоянный ток — это движение электродов от одного полюса к другому. Из-за наличия полюсов и электронного потока есть постоянное направление. В переменной электрической цепи полюса отсутствуют. Электроды движутся вперед и назад, с переменным направлением.
Чаще используется второй тип тока — так, в жилых домах в розетках он именно переменный. Однако ряд приборов нуждается в постоянном. В телевизорах, компьютерах и подобных устройствах встроен блок питания, который задает электронному потоку единое направление.
Понять, для каких именно измерений предназначен амперметр, не сложно. Если для постоянного электричества, то будет стоять знак «—», для переменного «~». Это касается отечественной системы обозначений.
Амперметр постоянного тока
Западные и европейские приборы зачастую маркируют буквами: AC — alternating current (переменный), DC — direct current (постоянный).
Западный амперметр переменного тока
Как подключить амперметр в цепь постоянного тока
Для измерения показателей прибор подсоединяют к цепи последовательно. Сначала идет источник тока, далее — амперметр, затем потребитель.
Важно! Амперметр в цепи не устанавливают, если потребитель не подключен.
Если замеряются показатели постоянного тока, то нужно использовать подходящий для этого прибор с клеммами разной полярности. К проводу, который идет от положительного полюса источника электроэнергии, подключают клемму со знаком плюс, и, наоборот — к проводу от отрицательного со знаком минус.
Подключение амперметра постоянного тока
Для подключения амперметра в цепь переменного тока полярность соблюдать не нужно:
Отличия в подключении
Правила безопасности
Чтобы при измерениях не произошел удар током, необходимо соблюдать технику безопасности:
Перед включением амперметра в цепь отключить электропитание.
Удостовериться, что параметры источника энергии не превышают допустимые лимиты измерительного прибора. Максимальная нагрузка указана в сопроводительной документации.
Если в виду особенностей эксплуатации электросеть нельзя оставить без питания на время замеров, следует использовать бесконтактное устройство — токовые клещи.
Если планируется измерение больших токов, необходимо осуществить шунтирование катушки амперметра. Эта процедура позволит проводить через прибор лишь небольшой процент тока, но без погрешностей в измерении. Большую часть электричества возьмет на себя шунт.
При измерении переменного тока нельзя подключаться при разомкнутой вторичной обмотке трансформатора. Это приведет к возгоранию прибора. Также нужно убедиться, что на обмотке имеется надежная изоляция.
При измерении больших токов корпус амперметра следует заземлить.
Вам это будет интересно Работа с мультиметром dt 832
Еще одним правилом безопасности является соблюдение полярности при измерении постоянного тока.
Токовые клещи
Соблюдение техники безопасности позволит избежать пожаров, продлить срок эксплуатации прибора, предотвратить короткое замыкание в цепи.
Амперметры используются повсеместно. Их приобретают для научных лабораторий, промышленных предприятий, производств, занятых в изготовлении электротехнике. Приборы востребованы и в быту. С их помощью можно обнаружить неисправность в автомобиле или домашней проводке. Именно поэтому полезно знать, какими бывают амперметры и как их подключать для измерения.
Амперметр подключается последовательно или параллельно
Электрические цепи стали неотъемлемым атрибутом современной жизни. Они пронизывают практически все, и люди даже не задумываются, что стоит исчезнуть электрическому току, и наш мир будет подвержен серьезной опасности. Что же такое ток, можно ли его измерить и что дадут эти показания для обычного человека?
Законы поведения тока изучают в школе, и, в принципе, каждый старшеклассник знает о направленном движении заряженных частиц. Это перемещение электронов внутри проводника и получило название электричества.
Но любое движение в природе – пусть то движение воды в реке, перемещение воздушных масс или зарядов, может совершать определенную полезную работу. А это уже интересно с практической точки зрения.
Зная мощность, продолжительность воздействия, направление приложения любой силы, можно использовать ее в решении определенных жизненных вопросов.
Поэтому ученые так заняты изучением окружающего и созданием приборов, позволяющих все измерить и просчитать. Для получения представлений о токе был изобретен прибор амперметр. Он позволяет определить количество заряженных частиц, которые за единицу времени проходят сквозь известное сечение проводника, то есть силу тока.
Что такое амперметр, его виды
Амперметром можно измерить ток в любой электрической цепи. Этот прибор несложно узнать, он обозначается латинской буквой А. Так как ток бывает разной величины, начиная от миллиампер и выше, существуют разные по мощности приборы или универсальные, в которых изменяется предел измерения. Причем для постоянного и переменного тока нужны разные типы амперметров.
Электромагнитного исполнения.
Магнитоэлектрические.
Тепловые.
Детекторного типа.
Индукционные.
Электродинамической системы.
Фотоэлектрические.
Термоэлектрические.
Магнитоэлектрическим устройством можно определить силу тока в цепях, подключенных к постоянному напряжению. Детекторного и индукционного типа – измерять переменные токи. Все остальные виды могут быть универсальными.
Высокой чувствительностью и точностью показаний обладают амперметры электродинамического и магнитоэлектрического исполнения.
Как подключают амперметр в электрическую цепь
Амперметр любого типа включают последовательно нагрузке в электрическую цепь. Тогда через него проходит тот же ток, что и через схему. Чтобы не влиять на ток, не оказывать ему препятствие, прибор выполнен с малым входным сопротивлением. Надо запомнить, что соединив амперметр параллельно с нагрузкой (неправильное подключение), весь ток пойдет через него по принципу наименьшего сопротивления. Забыв о том, как подключить амперметр, можно попросту спалить прибор!
Прежде чем выбрать устройство необходимо узнать вид тока – переменный или постоянный.
После этого взяв соответствующий амперметр (в маркировке шкалы обычно указывают знак волны для переменного напряжения и прямой линии для постоянного) выставить на нем максимальный предел измерения и только тогда подумать, как подключить амперметр в цепь. После этого необходимо снять показания прибора.
Если они значительно меньше выставленного предела измерения, например, стрелка находится в первой половине шкалы считая от ноля, тогда необходимо переставить предел на один вниз. Более точными считаются показания, когда стрелка расположена во второй половине шкалы.
В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt – в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).
По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!
Как работает шунт
Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.
Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.
Помните Закон Ома для участка электрической цепи? Вот, собственно и он:
где
U – напряжение
I – сила тока
R – сопротивление
Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:
Значит, исходя из формулы
получаем формулу:
и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.
Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).
Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.
Виды шунтов
Промышленные амперметры выглядят вот так:
На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).
На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.
А вот, собственно, и промышленные шунты:
Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.
К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:
В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.
Работа шунта на практическом примере
В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:
Сзади можно прочитать его маркировку:
Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.
0,5 – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).
Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:
Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.
Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:
И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.
Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс
Вспоминаем, что показывал наш блок питания?
Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).
Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра”
Где купить шунт
Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке:
Тесты онлайн по различным предметам и дисциплинам.
Большая подборка полезных тестов онлайн включающая экзамен охранника, мигранта, по охране труда, в ГИМС, по русскому языку, литературе, а также для получения лицензии на оружие, психологические тесты и тесты для проведения профессионального отбора (профотбора) поступающих на службу в силовые структуры — такие как вооруженные силы РФ, в том числе в военные училища (проводят военкоматы), органы внутренних дел (полицию), в том числе институты МВД РФ, министерство по чрезвычайным ситуациям (МЧС).
Тесты онлайн разработаны специально для повышения своего уровня знаний, и подходят для людей различных профессий, а также учащихся различных учебных заведений, как средних так и высших. Многие учащиеся школ, СПТУ, колледжей, институтов, академий воспользовались нашими тестами онлайн, для подготовки к успешной сдачи экзаменов. Грамотно и удобно разработанный интерфейс тестов позволяет отлично подготовится и успешно сдать экзамены.
Птичка синичка села на ветку, ветка упала птичка пропала.
Экзамены ГИМС
Билеты ГИМС катер, лодка (МП) Билеты ГИМС катер, лодка (ВВП) Билеты ГИМС катер, лодка (МП, ВВП) Билеты ГИМС катер, лодка (ВП) Билеты ГИМС гидроцикл (МП) Билеты ГИМС гидроцикл (ВП, ВВП) Билеты ГИМС гидроцикл (МП, ВП, ВВП) Экзамен права на лодку (мп) Экзамен права на лодку (вп) Экзамен права на лодку (ввп) Экзамен права на лодку (мп, ввп) Экзамен права на гидроцикл (мп) Экзамен права на гидроцикл (вп. ввп) Экзамен права на гидроцикл (мп, вп, ввп)
ВВП. 1.4. Вопросы эксплуатации маломерных судов и управления ими тест ГИМС ВВП. 2. Правила шлюзования тест ГИМС ВВП. 3. Основы навигации и радиосвязи в районе плавания тест ГИМС ВВП. 4. Основы метеорологии в районе плавания тест ГИМС М.1.1. Основы теории судна тест ГИМС
М.1.3. Уход за судовым двигателем тест ГИМС М.1.4. Судовые спасательные средства и правила их использования тест ГИМС М.1.5. Предотвращение пожаров и борьба с пожарами тест ГИМС М.1.6. Обеспечение непотопляемости тест ГИМС М.2.1. Учет воздействия ветра и течения тест ГИМС
Тест на беременность онлайн
Тест на беременность онлайн бесплатно
Тест по математике
(26):
Написать
добрый вечер! Есть ли здесь тесты по оценке личных качеств?
Огромное человеческие спасибо создателю сайта! Отдельное спасибо за пожарку!
М просто И
11.08.2019 21:23
Хороший сайт.
Сайт супер но есть недостаток нет тестов для спасателей, а то немогу нигде найти.
Очень хороший сайт тесты онлайн, готовился на нем по медицинским тестам, понравилось, помог
Хороший сайт, очень полезный, спасибо разработчикам за подготовленные тесты и экзамены, реально помогает в подготовке к экзаменам.
Что показывает амперметр? Как правильно заряжать аккумулятор
СХЕМЫ—-> СХЕМЫ АВТОЭЛЕКТРОНИКИ статьи № 1-50—-> СХЕМЫ АВТОЭЛЕКТРОНИКИ статьи № 51-100
А. ЛАВРЕНОВ, г. Иркутск
Когда заряжают аккумулятор (или аккумуляторную батарею), зарядный ток устанавливают по показаниям амперметра. А что он показывает?
Электрохимические процессы в аккумуляторе протекают на поверхности его пластин, находящихся в электролите. Для увеличения емкости аккумулятора пластины выполняют пористыми. В толще пластины, в ее порах, перемешивание электролита происходит значительно медленнее, чем на ее поверхности и в прилегающем слое электролита. Замечено, что чем больше зарядный ток, тем интенсивнее происходят нежелательные процессы в толще пластин, т. е.
старение аккумулятора. Поэтому зарядный ток ограничивают, находя компромисс между быстротой зарядки и интенсивностью старения аккумулятора от большого тока. Общепринято заряжать свинцовые стартерные батареи аккумуляторов током, численно равным в амперах одной десятой емкости в ампер-часах. А инструкция по эксплуатации этих батарей [1] рекомендует, например, для батареи 6СТ55 ток зарядки и того меньше — 2,75 А, т. е. 0,05 емкости.
Много лет зарядные устройства изготавливают по одной структурной схеме: сетевой трансформатор—двуполупериодный выпрямитель (иногда мостовой)— реостат—амперметр. Добавим в зарядную цепь устройства измерительный резистор сопротивлением 0,1 Ом, а вместо одного амперметра включим последовательно три — магнитоэлектрический (авометр ТЛ-4), электромагнитный Э421 и мультиметр M890F (см. схему на рис. 1).
Авометр и мультиметр установим на измерение постоянного тока.
Подключим к зарядному устройству аккумуляторную батарею и по магнитоэлектрическому амперметру РА1 установим реостатом R1 зарядный ток 1,9 А. Кому-то покажется странным, но при этом электромагнитный амперметр РА2 покажет 2,7 А, а электронный РАЗ — 1,87 А. Все приборы проверены и при измерении постоянного тока давали одинаковые показания.
Незначительная разница в показаниях амперметров РА1 и РАЗ объясняется только естественной погрешностью приборов, а вот причина существенного отличия показания амперметра РА2 в том, что ток в цепи сильно отличается от постоянного. Известно, что амперметр электромагнитной системы измеряет эффективное значение переменного тока, а магнитоэлектрический и электронный — среднее.
Именно среднее значение зарядного тока определяет электрический заряд, передаваемый аккумуляторной батарее.
Подадим напряжение, падающее на измерительном резисторе R2, на вход Y осциллографа (скорость развертки — 2 мс/дел., чувствительность — 0,2 В/дел.) и снимем ряд осциллограмм при значениях тока 1, 2 и 3 А, устанавливаемых по амперметру ТЛ-4.
Осциллограммы (рис. 2,а, б и в соответственно) сильно напоминают по форме напряжение на выходе однополупериодного выпрямителя, хотя каждая «полусинусоида» несколько искажена: ее вершина приплюснута сверху и на клонена вправо.
Зарядный ток возникает в момент, когда напряжение на выходе выпрямителя превышает ЭДС заряжаемой батареи, при этом электрохимические процессы имеют нелинейный характер. Подключение к выходу выпрямителя сглаживающего конденсатора С1 емкостью 4700 мкФ форму зарядного тока практически не изменило. А вот и самое интересное: эти «полусинусоиды» на осциллограмме рис.
2,б, например, имеют высоту в точке максимума два деления шкалы осциллографа, а это соответствует 4 А. Вы помните, что показывали амперметры?
Давайте теперь поэкспериментируем с зарядным устройством на тринисторе. Такие устройства привлекательны тем, что благодаря отсутствию громоздкого мощного реостата малогабаритны, имеют значительно более высокий КПД и надежность. Для эксперимента я выбрал устройство, описанное в [2]. Напряжение вторичной обмотки — 27 В эфф., амперметр оставил один — ТЛ-4, измерительный резистор сопротивлением 0,1 Ом тот же.
Осциллограмма на рис. 3,а соответствует показаниям амперметра 1 А; амплитуда тока достигает 3,2 деления шкалы осциллографа — 6,4 А. Осциллограммы рис. 3,б и 3,в — при показаниях амперметра также 2 и 3 А. Кривые 2,в и 3,в близки между собой по амплитуде, так как трансформатор использовался один и тот же, реостат в положении, когда сопротивление почти минимально, и тринистор открыт почти весь полупериод.
Я проводил эти опыты с целью рассказать радиолюбителям и автомобилистам, что при использовании сетевых зарядных устройств через аккумуляторную батарею протекает пульсирующий ток с пиковым значением, в 24 раза большим, чем показывают амперметры. Поэтому зарядный ток необходимо устанавливать только по амперметру, показывающему среднее значение тока, например, магнитоэлектрическому.
Согласно Инструкции прекращать зарядку следует после того, как в течение трех часов интенсивного «кипения» плотность электролита и напряжение на выводах батареи будут оставаться постоянными. И не надо пугаться, когда напряжение достигнет 2,7 В на один элемент.
Это происходит вследствие того, что отрицательные пластины покрыты положительными ионами водорода, возникает дополнительная разность потенциалов, достигающая 0,33 В. Она исчезнет через 23 ч после отключения зарядного устройства. Зарядкой «асимметричным» током [3] мне не удалось заметно увеличить емкость ни у одной из десятка послуживших батарей. Это дает повод поставить под сомнение целесообразность такого метода зарядки.
Имея точный вольтметр, ареометром можно не пользоваться, а плотность электролита вычислять по эмпирической формуле: у = Е1 — 0,84, где Е1 — ЭДС аккумулятора (одного элемента); у — плотность электролита, приведенная к температуре 15 °С.
ЛИТЕРАТУРА
1. Батареи аккумуляторные свинцовые стартерные необслуживаемые. Инструкция по эксплуатации ЖУИЦ. 563410.003.ИЭ. 1989 г. 2. Воевода В. Простое тринисторное зарядное устройство. — Радио, 2001, № 11, с. 35. 3. Зудов А. Зарядное устройство. — Радио, 1979, № 3,с. 44.
Какой ток покажет амперметр, если напряжение U=15 В, сопротивления R1=5 Ом, R2=10 Ом
Какой ток покажет амперметр, если напряжение \(U=15\) В, сопротивления \(R_1=5\) Ом, \(R_2=10\) Ом, \(R_3=10\) Ом и \(R_4=5\) Ом. Внутренним сопротивлением амперметра пренебречь.
Задача №7.1.27 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Если посмотреть на представленную схему, то можно заметить, что амперметр (сопротивление которого пренебрежимо мало) и резистор \(R_2\) соединены с резистором \(R_3\) параллельно, значит на резисторах наблюдается одинаковое напряжение. Запишем для них следствие из закона Ома для участка цепи:
\[\left\{ \begin{gathered} U = {I_2}{R_2} \hfill \\ U = {I_3}{R_3} \hfill \\
\end{gathered} \right.\]
То есть:
\[{I_2}{R_2} = {I_3}{R_3}\]
\[{I_2} = {I_3}\frac{{{R_3}}}{{{R_2}}}\]
По условию этой задачи \(R_2=10\) Ом и \(R_3=10\) Ом, то есть они одинаковы, поэтому:
\[{I_2} = {I_3}\]
Получается, что ток \(I\), протекающий через сопротивление \(R_1\), равен сумме одинаковых токов \(I_2\) и \(I_3\), поэтому верно:
\[{I_2} = \frac{I}{2}\;\;\;\;(1)\]
Чтобы найти ток \(I\), нужно определить общее сопротивление цепи \(R\). Так как сопротивления \(R_2\) и \(R_3\), как уже было сказано, соединены параллельно, а внутренним сопротивление амперметра можно пренебречь, то их эквивалентное сопротивление \(R_{23}\) равно:
Получается, что вся электрическая цепь состоит из трех последовательно соединенных сопротивлений \(R_1\), \(R_{23}\) и \(R_4\), поэтому общее сопротивление \(R\) равно:
Как подключить амперметр и вольтметр: схема, способы подключения, в цепь постоянного тока
Амперметр – это электроизмерительный прибор, предназначенный для фиксации силы постоянного либо переменного тока, протекающего в цепи — то есть устройство для измерения тока. Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток.
Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким). Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность. Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор.
Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.
Что такое амперметр и вольтметр
Амперметры нашли свое применение в разных промышленных и бытовых сферах. Их регулярно используют на больших предприятиях, которые связаны с выработкой и распределением тепловой и электроэнергии. Кроме того, их применяют в:
электрических лабораториях;
строении автомобилей;
точных науках;
строительных работах.
Подключение амперметра
Важно! Однако, помимо средних и крупных компаний, рассматриваемую технику используют обычные люди. Фактически каждый электрик с соответствующими навыками имеет в арсенале такое устройство, которое дает возможность провести измерения параметров потребления электрической энергии приборами, узлами автомобиля и др.
Чтобы определить параметры тока в электрической цепи, используют спецприборы — амперметры. Приспособление включается последовательно в изучаемую электроцепь, и, из-за очень малого внутреннего сопротивления, такой измерительный аппарат не будет вносить какие-то значительные изменения в электрических параметрах цепи.
Амперметр
Вольтметр является устройством, выступающим как измерительное приспособление показателей напряжения до 1000В в сетях с постоянным и переменным током, промышленной частоты и применяется для общего анализа и проведения статистических замеров. Лучшие приспособления будут обладать крайне высоким, бесконечным сопротивлением. Благодаря большому сопротивлению устройства будет достигнута крайне высокая точность, широкие сферы применения.
Вольтметр
Предназначение амперметра
Ещё на старых советских автомобилях устанавливалось некое подобие амперметра, но оно было менее функциональным и информативным, нежели современные модели. Такое устройство работало только “в одну сторону” и показывало направление тока, то есть, к АКБ или из нее. Иными словами, такой прибор лишь давал информацию, заряжается АКБ или разряжается в данный момент времени.
Современные модели в случае правильного подключения предоставляют гораздо больше полезной информации автолюбителю. Это стало возможным благодаря тому, что амперметры стали цифровыми, соответственно, могут считывать не только направление электрического тока, но и другие сведения. Они показывают нагрузку с достаточно высокой точностью, что значительно повышает их функциональность.
В целом, амперметр в автомобиле позволяет контролировать следующие характеристики бортовой сети:
Прогресс заряда АКБ. Этот показатель зависит от следующих факторов: уровень заряда АКБ, температурные условия, тип движения и так далее.
Разряд АКБ. Потребление тока изменяется в зависимости от внешних факторов. Знание этой информации позволяет приблизительно оценить время автономной работы и текущее состояние аккумулятора.
Состояние генератора. Работоспособность во время движения, прогресс зарядки АКБ.
Оценка текущей мощности генератора. Амперметр показывает, хватает ли мощности для удовлетворения текущей нагрузки. Особенно важна эта характеристика, если на автомобиле установлена дополнительная техника, потребляющая электроэнергию, например, мощная акустическая система, инвертор 12-220V.
Показатели потребления тока. Это позволяет понять, какой ток расходуется всеми потребителями в текущий момент времени.
Реальная мощность оборудования. По амперметру без труда можно вычислить уровень потребления каждого прибора. Зная напряжение легко вычислить текущую мощность, время автономной работы и другие интересные данные.
Зависимость между текущей нагрузкой и потреблением. Амперметр позволяет узнать, насколько сильно меняется уровень потребления при использовании того или иного оборудования. Так, например, можно выяснить, достаточно ли получает энергии АКБ во время работы двигателя.
Выше перечислены только наиболее важные функциональные возможности амперметра. Продвинутые модели предоставляют информацию еще о нескольких десятках ключевых характеристик автомобиля.
Как подобрать шунт для амперметра
Для расчета параметров дополнительной цепи применяют формулуRш=Rвн*Iпр/(Iвх-Iпр), где:
Rш – сопротивление шунта;
Rвн – внутреннее сопротивление амперметра (приведено в техпаспорте);
Iпр – максимальный ток, на который рассчитан прибор;
Iвх – входной ток (источника) до разветвления цепи.
Как включается амперметр в цепь с шунтом
Характеристики приборов
Конструкция амперметра достаточно проста: стрелка с катушкой, находящейся в поле постоянного магнита. Принцип функционирования рассматриваемого устройства крайне прост: во время его включения по катушке будет течь электроток. Под воздействием силы Ампера катушка будет поворачиваться до того момента, пока упругость возвратных пружин не совпадет с силой Ампера.
Нормальное функционирование вольтметра возможно при температурных показателях воздуха не более 25 — 30 градусов с влажностью до 80% и атмосферным давлением 650 — 800 мм ртутного столба. Частота питающей электросети составляет 50 Гц и имеет показатели напряжения 220В (частота не более 400 Гц). На показатели замеров значительное воздействие окажет форма кривой переменного напряжения электросети.
Возможности приспособления оценивают посредством таких параметров и величин:
Сопротивление рассматриваемого устройства.
Диапазон замеряемых показателей напряжения.
Категория точности замеров.
Диапазон границ частоты напряжения в переменной цепи.
Включение амперметра в электрическую цепь [ править | править код ]
В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт.
Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ).
При высоких напряжениях (выше 1000В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.
Разновидности
Точность измерений рассматриваемого устройства будет зависеть от принципа воздействия и разновидности приспособления. Согласно распространенной классификации все амперметры можно разделить на такие виды:
Магнитоэлектрические.
Электромагнитные.
Электродинамические.
Термоэлектрические.
Цифровые.
Ферродинамические.
Есть и иные аппараты специализированного назначения, чтобы измерять силу тока. Их применяют в узкопрофильных сферах, они не распространены настолько, как указанные выше.
Электромагнитный
Приспособления с электромагнитным принципом функционирования не оснащаются двигающейся катушкой, в отличие от магнитоэлектрических разновидностей приборов. Конструкция рассматриваемых устройств намного проще. В корпусе располагается спецустройство и 1 либо более сердечников, установленных на оси.
Рассматриваемый тип амперметра обладает меньшей восприимчивостью в сравнении с магнитоэлектрическим устройством, потому точность замеров аппарата будет значительно ниже. Достоинствами подобных приспособлений станет универсальность функционирования. Это значит, что они способны измерить силу тока в цепи постоянного и переменного токов. Это в значительной мере расширит сферу использования подобного устройства.
Электромагнитный амперметр
Магнитоэлектрический
Принцип воздействия подобной разновидности устройств основан на взаимодействии магнитного поля и двигающейся катушки, которая находится в конструкции приспособления.
Преимуществами рассматриваемого изделия станет невысокое энергопотребление при работе, повышенная восприимчивость и точность замеров. Каждый магнитоэлектрический прибор оснащается равномерным градуированием измерительной шкалы. Подобное даст возможность производить высокоточные замеры.
Важно! К минусам рассматриваемого приспособления относят сложность внутреннего устройства, присутствие двигающейся катушки. Подобное изделие не считается универсальным, поскольку оно подойдет лишь для постоянного тока.
Невзирая на минусы амперметра, такая разновидность аппарата широко распространена в разных промышленных сферах, в лабораториях.
Прибор амперметр служит для измерения силы пока в цепях с переменным и постоянным напряжением. Подключение происходит последовательно.
Идеальный амперметр не оказывает влияния на цепь, но создать его в реальной жизни невозможно, так как любой проводник имеет внутреннее сопротивление.
Такой прибор существует лишь в теории, где влияние устройства не учитывается в связи с допустимой погрешностью расчетов. Для повышения точности производимых измерений сопротивление амперметра стремятся сделать минимальным.
Отличия амперметров различных конструкций
Амперметр постоянного тока, предназначенный для измерения малых значений, может иметь в основании магнитоэлектрическую систему. Его принцип действия основан на взаимодействии катушки, через которую протекает ток и постоянного магнита.
Преимуществом такой конструкции является высокая чувствительность и равномерная шкала. Недостатками магнитоэлектрической системы является невозможность работы с переменным током и сложность конструкции. Высокая цена на магниты также снижает конкурентную способность приборов такого типа.
Наиболее точная фиксация показаний начинается после 2/3 шкалы. Данная система применяется и на вольтметрах.
Магнитоэлектрическая система
В отличие от предыдущего прибора амперметр переменного тока в своей основе имеет электромагнитную систему. Наиболее часто такие устройства используются в сетях на 50-60 Герц. Устройство амперметра предполагает наличие одного либо двух сердечников, соединенных с стрелочным механизмом.
Преимуществом конструкции является универсальность, позволяющая помимо переменного измерять и постоянный ток. Сопротивление амперметра электромагнитного типа выше, чем у других моделей, что отражается в худшую сторону на точность результата. Шкала нелинейная, поэтому показания амперметра считать затруднительно.
В некоторых случаях в первой половине шкалы ставится точка, говорящая о невозможности измерить ток в данном диапазоне, сохраняя в норме погрешность.
Электромагнитный измеритель
Для уменьшения воздействия влияния внешних магнитных полей используются амперметры ферродинамического типа. Устройство характеризуется высокой точностью измерений.
Это позволяет отказаться от установки в приборе дополнительных защитных экранов. В основе конструкции лежит замкнутый ферримагнитный провод. Стрелки амперметра показывает измеряемую величину на нелинейной шкале.
Показания амперметра можно снять с требуемой погрешностью не во всем диапазоне измерений, а лишь начиная со значения, обозначенного точкой.
Ферродинамический высокоточный прибор
Среди стрелочных амперметров существует электродинамический тип. Особую популярность он не получил из-за высокой чувствительности к окружающим магнитным полям.
Перед тем как подключить амперметр важно обеспечить защиту от внешнего воздействия. Преимуществом прибора является его универсальность.
Также при хорошем магнитном экранировании прибор покажет высокую точность, поэтому электродинамические устройства используются для поверки других амперметров.
Цифровой измеритель силы тока наиболее удобен в пользовании, так как сразу показывает требуемое значение без необходимости получения данных с помощью стрелок амперметра. Часто он входит в состав мультиметра или электронного вольтамперметра.
Наиболее современные приборы имеют возможность автоматически выбирать предел измерений. Прибор не чувствителен к горизонтальному либо вертикальному положению.
Точность измерений зависит от дискретизации и алгоритма, заложенного для осуществления снятия показаний.
Мультиметр с функцией цифрового амперметра
Схемы подключения
Независимо от конструкции подсоединение прибора в сеть производится исключительно последовательно, что показывает схема подключения амперметра изображенная ниже. Подключение параллельно равносильно короткому замыканию, так как внутреннее сопротивление прибора очень мало. Правильность подключения прибора обеспечивает его сохранность и отсутствие повреждений в электросхеме.
Прибор для лабораторных измерений Э537
Перед тем как подключить амперметр важно учесть:
постоянный или переменный ток в сети;
соблюдается ли полярность прибора;
стрелка амперметра должна находиться за серединой шкалы;
предел измерения больше максимально возможного скачка тока в электросхеме;
окружающая среда соответствует рекомендуемым параметрам;
измерительное место находится без воздействия вибрации.
Стандартное подключение амперметра для измерения силы тока в цепи
Для измерения больших токов используются шунты. Амперметр подключается к выводам резистора параллельно. Результаты измерений подлежат дальнейшей обработке для вычисления силы тока протекающей в цепи.
Измерение силы тока в цепи с помощью шунта
Для гальванического разделения силовой и контрольной цепи используют измерительные трансформаторы тока. Амперметр подключается к специальным выводам. Используется такая схема для измерения токов, превышающих предел измерений прибора.
Создание гальванической развязки с помощью измерительного трансформатора
Производить измерения на цифровом амперметре гораздо проще. на него не воздействуют вибрация, правильное положение и магнитные поля. Не столь критично отреагирует прибор и на неправильно выбранную полярность. Превышать предел измерений не рекомендуется, так как можно повредить устройство. Большинство высокотоковых выходов мультиметров не имеют защиты плавким предохранителем.
Выбор положения, требуемого для измерения тока с помощью цифрового мультиметра
Бесконтактное измерение тока
Для осуществления измерения силы тока без разрыва схемы существует специальный вид электрических амперметров под названием токовые клещи. Принцип действия основан на измерении магнитного поля, образующегося вокруг проводника с током. Данный эффект проявляется на переменном напряжении.
Измерение тока без разрыва цепи
Показания амперметра имеют меньшую точность по сравнению с приборами, подключаемыми последовательно. При лабораторных измерения данный способ не используется, но в бытовых целях такой вид измерений достаточно удобен. Безопасность и простота работы с токовыми клещами намного выше, чем при использовании аналоговых приборов.
Контроль тока заряда аккумуляторной батареи автомобиля
При использовании зарядного устройства существует необходимость замерять силу тока амперметром. Это позволяет контролировать процесс накопления энергии аккумулятором и избегать перезаряда с недозарядом. В результате срок службы АКБ значительно увеличивается.
После включения цепи амперметр покажет ток заряда. Точность измерений и прочие характеристики амперметра не столь важны для контроля передачи энергии. Погрешность измерения тоже не столь важна, так как следить необходимо за уменьшением показаний стрелки амперметра. Прибор, показывающий через несколько часов одно и тоже значение, говорит об полном заряде аккумулятора.
При работе множества аппаратуры возникает необходимость контроля силы тока. Стрелки амперметров или цифры на экране дискретного прибора показывают пользователю эту физическую величину. Производимые измерения необходимы как для поддержания рабочего состояния так и для сигнализации об возникновении аварийной ситуации.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Амперметры. Виды и работа. Устройство и применение. Особенности
Чтобы измерить силу тока в некоторой электрической цепи, существуют приборы, называемые амперметры. Они включаются в цепь по последовательной схеме. Внутреннее сопротивление амперметров очень мало, поэтому такое измерительное устройство не влияет на параметры электрического тока измеряемой цепи. Единицей измерения силы тока является ампер.
Шкалы приборов могут градуироваться в различных долях ампера: микроамперах, миллиамперах и т.д. Соответственно такие приборы называют микроамперметрами, миллиамперметрами и т.д. Чтобы расширить пределы измерений, амперметры включают в цепь с применением трансформатора, либо в параллели с шунтом. В этом случае только небольшая часть тока будет протекать через амперметр, а основная часть тока пойдет через шунт.
Для крепления шунта к амперметру применяются специальные гайки. Запрещается подключать шунт к амперметру при включенном питании электрической сети. Полярность прибора при подключении также имеет большое значение. Если перепутать полярность, то стрелка прибора будет уходить в другую сторону, а цифровой амперметр, покажет отрицательную величину.
Виды амперметров
Точность показаний прибора зависит от принципа действия и вида устройства.
Первый вид в свою очередь делится на следующие устройства:
Магнитоэлектрические.
Электромагнитные.
Электродинамические.
Ферродинамические.
По виду измеряемого тока амперметры делятся:
Для переменного тока.
Для постоянного тока.
Существуют и другие специализированные приборы для измерения тока, которые применяются в узконаправленных областях, и не распространены так широко, как перечисленные выше.
Магнитоэлектрические амперметры
Принцип действия такого вида прибора основывается на взаимодействии магнитного поля магнита и подвижной катушки, находящейся в корпусе прибора.
Достоинствами такого амперметра является низкое потребление электроэнергии при функционировании, высокая чувствительность и точность измерений. Все магнитоэлектрические амперметры оснащены равномерной градуировкой шкалы измерений. Это позволяет произвести измерения с высокой точностью.
К недостаткам магнитоэлектрического амперметра относится его сложность внутренней конструкции, наличие движущейся катушки. Такой прибор не является универсальным, так как он действует только для постоянного тока.
Несмотря на недостатки, магнитоэлектрический вид прибора широко применяется в различных областях промышленности, в лабораторных условиях.
Электромагнитные
Амперметры с электромагнитным принципом работы не имеют в своем устройстве движущейся катушки, в отличие от магнитоэлектрических моделей. Устройство их значительно проще. В корпусе находится специальное устройство и один или несколько сердечников, которые установлены на оси.
Электромагнитный амперметр имеет меньшую чувствительность, по сравнению с магнитоэлектрическим прибором. А значит, точность его измерений будет ниже. Преимуществами таких приборов является универсальность работы. Это означает, что они могут измерять силу тока как в цепи постоянного, так и переменного тока. Это значительно расширяет его сферу применения.
Электродинамические
Метод работы таких приборов заключается во взаимодействии электрических полей токов, которые проходят по электромагнитным катушкам. Конструкция прибора состоит из подвижной и неподвижной катушки. Универсальная работа на любом виде тока является основным достоинством электродинамических амперметров.
Из недостатков стоит выделить большую чувствительность, так как они реагируют даже на незначительные магнитные поля, расположенные в непосредственной близости к ним. Подобные поля способны создавать для электродинамических приборов большие помехи, поэтому такие амперметры применяют только в защищенном экраном месте.
Ферродинамические
Такие приборы, обладают наибольшей эффективностью и точностью измерений. Магнитные поля, расположенные рядом с прибором, не оказывают на него заметного влияния, поэтому нет необходимости в установке дополнительных защитных экранов.
Конструкция такого амперметра включает в себя замкнутый ферримагнитный провод, а также сердечник и неподвижную катушку. Такое устройство позволяет повысить надежность работы прибора. Поэтому ферродинамические виды амперметров чаще всего используются в военной промышленности и оборонных учреждениях. К его преимуществам также можно отнести удобство и простоту пользования, точность всех измерений, по сравнению с ранее рассмотренными видами приборов.
Цифровые
Кроме рассмотренных приборов, существует цифровой вид амперметров. В настоящее время они все шире используются в различных сферах производства, а также в бытовых условиях. Такая популярность цифровых приборов связана с удобством пользования, небольшими размерами и точными измерениями. Вес прибора также очень незначительный.
Цифровые модификации используют в различных условиях, он невосприимчив к вибрациям, в отличие от механических аналоговых приборов.
Цифровые приборы, не боятся незначительных механических ударов, которые возможны от работающего рядом оборудования. Расположение в вертикальной или горизонтальной плоскости прибора не имеет влияния на его работоспособность, так же как изменение температуры и давления. Поэтому такой прибор применяют в условиях внешней среды.
Измерение переменного и постоянного тока
Все рассмотренные приборы способны измерять постоянный ток. Однако иногда требуется измерить силу переменного тока. Если у вас для этого нет отдельного амперметра, то можно собрать элементарную схему.
Существуют и специальные приборы, измеряющие переменный ток. Оптимальным выбором прибора будет мультиметр, в котором имеется возможность измерения переменного тока.
Чтобы выполнить правильное измерение, необходимо определить вид тока, то есть, переменный ток в сети, или постоянный. В противном случае измерение будет ошибочным.
Общий принцип действия амперметра
Если рассматривать классический принцип работы амперметра, то его действие заключается в следующем.
На оси кронштейна вместе с постоянным магнитом расположен стальной якорь с закрепленной на нем стрелкой. Воздействуя на якорь, постоянный магнит передает ему магнитные свойства. В этом случае позиция якоря находится вдоль силовых линий, проходящих вдоль магнита.
Такая позиция якоря определяет нулевое расположение стрелки по градуированной шкале. При протекании тока от генератора или другого источника по шине, возле нее возникает магнитный поток. Силовые линии этого потока в точке расположения якоря направлены под прямым углом к силовым линиям магнита.
Магнитный поток, образованный электрическим током, действует на якорь, который стремится повернуться на 90 градусов. В этом ему мешает магнитный поток, образованный в постоянном магните. Сила взаимодействия двух потоков зависит от направления и величины электрического тока, протекающего по шине. На эту величину и происходит отклонение стрелки прибора от нуля.
Сфера применения
Цифровые и аналоговые амперметры, используются в различных отраслях промышленности и народного хозяйства. Особенно широко они применяются в энергетической отрасли промышленности, радиоэлектронике, электротехнике. Также их могут использовать в строительстве, в автомобильном и другом транспорте, в научных целях.
В бытовых условиях прибор также часто используется обычными людьми. Амперметр полезно иметь с собой в автомобиле, на случай выявления неисправностей электрооборудования в пути.
Аналоговые приборы до сих пор также применяются в различных областях жизни. Их преимуществом является то, что для работы не требуется подключение питания, так как они пользуются электричеством от измеряемой цепи. Также их удобство состоит в отображении данных.
Многим людям привычнее смотреть за стрелкой. Некоторые устройства оснащены регулировочным винтом, который позволяет точно настроить стрелку на нулевое значение.
Инертность работы прибора отрицательно влияет на его применяемость, так как для стрелки необходимо время для нахождения устойчивой позиции.
Как выбрать
Для более точных измерений следует выбирать прибор сопротивлением до 0,5 Ом. Лучше, если зажимы контактов будут покрыты специальным антикоррозийным слоем.
Корпус должен быть качественного изготовления, без повреждений, желательно герметичного исполнения, для предотвращения проникновения влаги. Это продлит его срок службы и повысит точность показаний.
Наиболее удобный вид амперметра – это цифровой. Хотя в настоящее время более популярными являются мультиметры, в состав которых также входит функция измерения тока.
Запрещается подключение амперметра в сеть напрямую без нагрузки, во избежание выхода его из строя. При измерениях нельзя прикасаться к неизолированным токоведущим элементам прибора, так как возможен удар электрическим током. При работе с амперметром следует соблюдать осторожность и внимательность.
Амперметр – это электроизмерительный прибор, предназначенный для фиксации силы постоянного либо переменного тока, протекающего в цепи — то есть устройство для измерения тока.
Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким).
Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.
Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор. Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.
Схемы подключения амперметра
Рисунок — Схема прямого включения амперметра
Рисунок — Схема косвенного включения амперметра через шунт и трансформатор тока
Сфера применения амперметров
Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии. Также их используют в:
— электролабораториях;
— автомобилестроении;
— точных науках;
— строительстве.
Но не только средние и крупные предприятия используют этот прибор: они востребованы и среди обычных людей. Практически любой опытный автоэлектрик имеет в арсенале подобное устройство, позволяющее проводить замеры показателей электропотребления приборов, узлов автомобилей и пр.
Типы амперметров
Исходя из вида отсчетного устройства амперметры делятся на приборы с:
— со стрелочным указателем;
— со световым указателем;
— с пишущим устройством;
— электронные устройства.
По принципу действия амперметры разделяются на:
1. Электромагнитные – предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.
2. Магнитоэлектрические — предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.
3. Термоэлектрические приборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара. Протекающий по проводку ток вызывает его нагрев, который фиксируется термопарой. Формирующееся излучение своим влиянием вызывает отклонение рамки на угол, который пропорционален силе тока.
4. Ферродинамические приборы — состоят из замкнутого магнитопровода, выполненного из ферромагнитного материала, сердечника и неподвижной катушки. Характеризуются высокой точностью измерения, надёжностью конструкции и низкой чувствительностью к воздействию электромагнитных полей.
5. Электродинамические устройства предназначены для замеров величины силы тока в цепях постоянного / переменного токов повышенных частот (до 200 Гц). Они чувствительны к перегрузкам и внешним электромагнитным полям. Но из-за высокой точности замеров их используют в роли контрольных приборов для поверки действующих амперметров.
6. Цифровые амперметры – современная модель приборов, сочетающая преимущества аналоговых приборов. На сегодня такие устройства завоевывали лидирующие позиции. Это объясняется удобством в работе, легкостью использования, небольшими размерами и высокой точностью получаемых результатов измерений. Кроме того, цифровые приборы можно использовать в разнообразных условиях: он не боится тряски, вибрации и пр. воздействий.
Рассмотрим несколько амперметров разных производителей и разных типов:
1. Амперметры Ам-2 DigiTOP
Технические характеристики:
— Количество входов 1
— Измеряемый переменный ток 1 50 А
— Погрешность измерения 1%
— Дискретность индикации 0,1 А
— напряжение питания -100-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм
Работоспособность и долговечность бытовой электротехники зависят от качества получаемой электроэнергии. Как правило, к выходу из строя электронной техники, будь то холодильники, телевизоры или стиральные машины, приводит повышение напряжения выше допустимых пределов. Наиболее опасно длительное повышение напряжения выше допустимой отметки. При этом выходят из строя блоки питания электронной техники, перегреваются обмотки электродвигателей, нередко происходит возгорание.
2. Амперметр лабораторный Э537
Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.
Класс точности 0,5.
Диапазоны измерения 0,5 / 1 A;
Масса 1,2 кг.
Технические характеристики амперметра Э537:
Конечное значение диапазона измерений 0,5 А/1 А
Класс точности 0,5
Область нормальных частот (Гц) 45 — 100 Гц
Область рабочих частот (Гц) 100 — 1500 Гц
Габаритные размеры 140 х 195 х 105 мм
3. Амперметр СА3020
Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.
Диапазон частот по замеряемым токам от 45 до 850 Герц;
Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;
напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;
Потребляемая устройством мощность не больше чем 4 ВА;
Размерные габариты 144x72x190 мм;
Масса не больше чем 0,55 кг;
Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.
Подключение амперметра в цепи постоянного и переменного тока
Всем нам известно, что амперметр – это прибор для измерения тока, который измеряется в Амперах. Меряет амперы – значит, амперметр.
Но, для того, чтобы замерить ток, необходимо амперметр правильно подключить в цепь. Будь то цепь постоянного или переменного тока. Ведь неправильное включение прибора может привести к выходу его из строя.
Амперметр подключается к электрической цепи последовательно
То есть у нас есть провод, по нему течет электрический ток от источника этого самого тока к потребителю, которым может выступать электрический прибор.
Чтобы измерить ток амперметром, нам необходимо обесточить (отключить) источник питания. Затем необходимо разорвать цепь – в прямом и переносном смысле. Грубо говоря, разрезать провод.
Теперь у нас получится два провода. Берем амперметр, подключаем к прибору две половины разрезанного провода. Нужно учесть тот факт, что ток, протекающий в цепи должен быть меньше максимально измеряемого тока прибора. Максимально измеряемый ток прибора должен быть написан на самом приборе или в документации к нему.
Максимальный ток в цепи можно рассчитать, зная напряжение, нагрузку и сечение провода. Провода должны быть изолированы (покрыты изоляцией), а на концах зачищены.
После того, как провода подключены и надежно закреплены в амперметре, можно включать питание и прибор покажет величину тока в цепи, который и пройдет через амперметр.
Но так никто не делает, потому что разрезанные провода до добра не доводят.
У амперметра малое внутреннее сопротивление, это сделано для того, чтобы оно минимально влияло на величину измеряемого тока. При подключении амперметра в цепь переменного тока не имеет значения, куда подключать прибор.
При подключении амперметра в цепь постоянного тока, если стрелка будет отклоняться в другую сторону, или же будет показывать ноль – следует поменять полярность, поменять провода местами.
Подключение амперметра через шунт
Если ток в цепи окажется больше, чем ток прибора, то можно рассчитать и использовать шунт для измерения тока большей величины. В этом случае цепь разделится на две ветви. У одной будет малое сопротивление амперметра, а у второй большое сопротивление подобранного шунта. Большой ток разделится пропорционально сопротивлениям и по амперметру пройдет малый ток, по шунту – большой. (Более подробно об этом явлении).
Измерение тока амперметром через трансформатор тока или клещи
Бывают случаи, когда надо замерить ток в кабеле, на шине изолированной шине. Шина – это медная полоса определенного сечения, по которой протекает ток, не автомобильное колесо
Разрезать кабель или шину бывает накладно, да и бессмысленно. В этом случае можно воспользоваться измерительными клещами или трансформатором тока.
Трансформатор тока имеет две обмотки – высшую и низшую, которые не связаны между собой. Ток приходит на высшую, затем создается ЭДС (более подробно про принцип действия ТТ) и во вторичной обмотке протекает ток, пропорциональный числу витков обмоток.
Так вот, если есть необходимость замерить ток, то на кабель вешают «бублик», он же – ТТ. А уже к трансформатору тока присоединяют амперметр. Тут главное правильно быть проинструктированным и не наделать дел.
Получается мы снимаем ток амперметром со вторичной обмотки, преобразованный в меньшую сторону и безопасный для измерения и амперметра.
Такой же принцип используется и в измерительных клещах, только и амперметр и ТТ находятся в одном корпусе. Да и плюс ко всему первичная обмотка клещей размыкается одним нажатием кнопки на корпусе и потом замыкается.
Эти два описанных решения гораздо удобнее, чем разрезать провод и садить к амперметру. Главное следить за диапазонами измеряемых приборами и протекаемых в электрических цепях токов.
Мультиметры позволяют измерять постоянный ток до 10 Ампер. Но их часто палят, так как неправильно подключают концы на прибор, не учитывают величину тока в проводах Но это в основном молодые люди. Часто для «починки» такой неисправности необходимо просто заменить предохранитель в приборе.
Ну, и в конце хотелось бы еще раз повторить основную мысль всего повествования:
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Причины повреждения кабелей
Определение температуры термосопротивления по ГОСТ
Расчет тока трансформатора по мощности и напряжению
Выпрямительные диоды: расшифровка, обозначение, ВАХ
Амперметр это измерительный прибор для определения силы тока, измеряемой в амперах. В соответствии с возможностями прибора, его шкала имеет градуировку, обозначающую микроамперы, миллиамперы, амперы или килоамперы. Для проведения измерений, производится последовательное включение амперметра в электрическую цепь с тем участком, где необходимо измерить силу тока. Чтобы увеличить пределы измерений, производится включение амперметра через шунт или трансформатор.
Наиболее распространенной является схема амперметра, где движущаяся стрелка совершает поворот на такой угол наклона, который пропорционален величине измеряемой силы.
Виды амперметров
По своему действию все амперметры разделяются на электромагнитные, магнитоэлектрические, тепловые, электродинамические, детекторные, индукционные, фото- и термоэлектрические. Все они предназначены для измерения силы постоянного или переменного тока. Среди них, наиболее чувствительными и точными, являются электродинамические и магнитоэлектрические амперметры.
Во время работы магнитоэлектрического амперметра, создается крутящий момент, через взаимодействие между полем в постоянном магните и током, проходящим через обмотку рамки. С этой рамкой и соединяется стрелка, движущаяся по шкале. Поворот стрелки осуществляется на величину угла, пропорциональную силе тока.
Устройство амперметра
В состав электродинамического амперметра входят подвижная и неподвижная катушки, соединенные последовательно или параллельно. Токи, проходящие через катушки, взаимодействуют между собой, в результате чего происходит отклонение подвижной катушки, с которой соединяется стрелка. При включении в электрический контур, осуществляется последовательное соединение амперметра с нагрузкой. В случае большой силы тока или высокого напряжения, соединение производится через трансформатор.
Амперметр: как измерять ток
Когда речь заходит про измерение тока, 90% обычных людей прежде всего представляет замер напряжения. Но другие параметры электропитания не менее важны. Потому надо разобраться, что из себя представляет амперметр переменного тока.
Особенности
Как нетрудно понять уже по названию, амперметр — это устройство для определения силы тока в амперах или производных кратных (дольных) единицах системы СИ. Конкретная единица измерения определяется точностью каждого прибора. В любую электрическую цепь амперметр включается по последовательной схеме по отношению к обследуемому участку цепи. В результате критически важно внутреннее сопротивление прибора.
В идеале оно должно быть сведено к нулю, чтобы предотвратить воздействие внутренней среды аппарата на объект и не понизить точность промера.
Чтобы расширить пространство измерений, используют шунты либо трансформатор. Шунтами оборудуются те устройства, которые рассчитаны на использование в цепях как постоянного, так и переменного тока. Правила безопасности категорически запрещают использование амперметров при прямом подсоединении к источнику питания. Это неизбежно провоцирует короткое замыкание. Но приборы, измеряющие силу тока, могут иметь различное исполнение — и об этом тоже надо сказать.
Разновидности амперметров
Принято делить их на 3 главных типа конструкций:
стрелочный электромеханический;
стрелочный электронный;
полностью цифровой с современными стандартами индикации измерений.