Какие есть конденсаторы

Для чего и зачем нужны электролитические конденсаторы (электролиты) и как их менять

Какие есть конденсаторы

Электролитические конденсаторы обладают большой емкостью. Они используются в основном в цепях питания, где требуется фильтрация напряжения от помех.

Их чего состоят

Больших емкостей можно добиться только с помощью химических источников.

Электролитические конденсаторы являются химическими источниками тока. У них, как и у аккумуляторов, есть катод, анод и электролит. А также те же самые недостатки, что и у аккумуляторов.

Поэтому, такие конденсаторы и называются электролитическими. Среди радиолюбителей и электронщиков они сокращенно называются электролитами.

По составу электролита они бывают: жидкого и сухого типа. Еще есть оксидно-полупроводниковые, а также оксидно-металлические.
Обозначаются на принципиальных схемах также, как и обычный, но только с указанием полярности в виде знака +.

Характеристики электролитического конденсатора

К характеристикам можно отнести емкость и рабочее напряжение. Они указаны на корпусе.

Маркировки у электролитов по сути нет, основана информация указывается на корпусе. Микрофарады обозначаются µF, а рабочее напряжение в V.

А вообще, есть еще понятие ESR.

Рабочее напряжение ни в коем случае нельзя превышать.

Преимущества и недостатки

Преимущества электролитических конденсаторов:

  • Большая емкость;
  • Компактность.

Недостатки:

  • Со временем электролит высыхает, теряется емкость;
  • Работает только на низких частотах;
  • Ограничения по эксплуатационным условиям и риск вздутия/взрыва.

Разберём подробнее преимущества и недостатки электролитов.

Большая емкость

Электролитические конденсаторы обладают большой емкостью, и это их отличительная и самая главная особенность среди остальных конденсаторов.

Емкость обозначается в микрофарадах (мкФ), поскольку электролиты с меньшими значениями не выпускают.

Они обычно выпускаются от нескольких мкФ, до нескольких Ф (1 000 000 мкФ).

Компактность

Благодаря химическим источникам, конденсаторы большой емкости намного компактнее, чем если бы их делали керамическими или пленочными.

Емкость конденсатора можно увеличить только за счет его обкладок, диэлектрика и геометрии. Поэтому электролиты лидируют по соотношению емкость/габариты.

Ионисторы

Разновидность электролитических конденсаторов — это ионисторы. Они обладают большей емкостью (например, 3000 Ф), и работают в основном как резервный или автономный низковольтный источник питания схемы. А также поддерживает схему в спящем режиме без другого источника.

Высыхание электролита

Основная проблема таких конденсаторов – это высыхание электролита. Обычно такая проблема проявляется из-за того, что техникой долго не пользуются или нарушаются условия эксплуатации (перегрев корпуса). Из-за этого электролит начинает высыхать, поэтому происходит потеря емкости.

Можно восстановить емкость конденсатора путем разбавления засохшего электролита дистиллированной водой (как аккумулятор), но это не выгодно. Лучше и надежнее всего заменить старый на новый, аналогичный по параметрам.

Работа на низких частотах

Это скорее особенность, чем недостаток. Большие емкости — это высокое реактивное сопротивление для высоких частот.

Поэтому, такие конденсаторы используются в низкочастотных цепях. Например, в блоках питания в качестве фильтров и сглаживания пульсаций.

Когда конденсатор вздувается и взрывается

Так как конденсаторы такого типа являются химическими источниками, то необходимо соблюдать полярность подключения.

Конденсаторы как и аккумуляторы могут вздуваться и взрываться. Иногда это происходит из-за неправильного включения или перегрева.

Если вы подключите минус источника к плюсу конденсатора и плюс источника к минусу конденсатора, то сразу же начнется вскипание электролита. Такой эффект возникает из-за обратной химической реакции. Конденсатор может взорваться.

В старых конденсаторах типа К-50 корпус монолитный, и он взрывался громко и достаточно разрушительно.

В современных электролитах на корпусе есть небольшой надрез, который в случае вскипания электролита позволяет горячему пару выйти наружу.

Иногда они просто вдуваются без нарушения герметизации, а бывают и такие случаи, когда конденсатор полностью теряет герметичность.

Тем не менее, надрез на корпусе значительно уменьшил взрывы, поэтому конденсаторы теперь чаще вздуваются, а не взрываются.

На корпусах современных конденсаторов вертикальной чертой указывается минусовой контакт.

Внимательно устанавливайте и записывайте прежнее положение, ибо многие производители ставят свои обозначения.

Например, среди радиолюбителей обычно минусовые контакты рисуют в виде квадрата.

А производители печатных плат наоборот, рисуют квадратные контактные площадки под плюс конденсатора. И то, так делают не все.

Так как есть такая путаница среди и радиолюбителей и производителей, всегда обращайте на то. где указан плюсовой контакт. И записывайте прежнее положение детали, иначе это чревато взрывом.

Характерные признаки неисправности электролитов

К таким признакам можно отнести:

  • Устройство не включается. Блок питания уходит в защиту или не запускается;
  • Устройство включается, но сразу же выключается. Емкость конденсаторов высохла или потеряла свое прежнее значение, поэтому блок питания уходит в защиту;
  • Перед неисправностью был писк в блоке питания. Обычно это означает, что конденсатор потерял герметичность и электролит начинает вытекать;
  • Нет регулировки яркости в мониторе. Отсутствие нужной емкости приводит к нарушению работы всего устройства. Емкость в данном случае делает функцию настройки;
  • Перед неисправностью был взрыв и неприятный запах. Неприятный запах – это электролит;
  • Устройство включается через раз. Это значит, что есть большая вероятность протечки фильтра питания.

Внешние признаки неисправности электролитических конденсаторов:

  • Вздутие корпуса;
  • Повреждение корпуса:
  • Наличие электролита под корпусом;
  • Вздутие со стороны контактов (внизу корпуса, обычно еле заметно).

Также высокочастотные пульсации вредят электролитам. Поэтому чаще всего они выходят из строя в блоках питания, поскольку именно там много пульсаций.

Правила работы с электролитами

Внимание! Перед тем, как прикоснуться к плате неисправного источника, убедитесь, что емкости разряжены. Даже если неисправен преобразователь, а не электролит, то конденсаторы могут быть заряжены. Им попросту некуда девать свой заряд. Поэтому первым делом аккуратно и не касаясь щупом мультиметра, измерьте емкости с высоким напряжением. Если они заряжены, разрядите их с помощью лампочки.

Как менять старый на новый

Среди электронщиков есть два мнения. Первое это то, что менять нужно неисправный старый конденсатор менять на такой же старый. Это объясняется тем, что вся работы схемы «привыкла» к старому конденсатору.

Но технически правильно и обоснованное мнение – это то, что нужно ставить только новый и только подходящий по параметрам конденсатор. Нет никакого привыкания схемы. Да, многие компоненты устарели и не могут работать как прежде, но у конденсатора по сути нет ничего того, что кардинально влияло бы на ухудшение работоспособности всех схемы. Устройство наоборот, будет работать лучше.

Меняйте старые конденсаторы на новые, максимально близкие по параметрам. Например, емкость можно взять чуть больше, если речь идет о блоке питания. А если это цепь настройки, то увеличив или уменьшив емкость, так можно повлиять на весь режим работы схемы. Нужно действовать по ситуации.

Ставить конденсатор с меньшими рабочим напряжением, чем в схеме, категорически нельзя. Он начнет нагреваться и взорвется. Да, многие разработчики считают с запасом, но лучше не рисковать.

Также не стоит забывать о таком параметре, как ESR (эквивалентное последовательное сопротивление).

Источник: https://tyt-sxemi.ru/ehlektroliticheskie-kondensatory/

Конденсаторы. Виды, свойства и применение

Какие есть конденсаторы

История создания первых конденсаторов

Еще в древние времена люди заметили, что в условиях низких температур пища сохраняется намного дольше. Поэтому в течение достаточно длительного периода своей истории человечество было занято поисками способа поддержания низкой температуры в месте хранения продуктов.

В древние времена истории, когда еще не было конденсаторов и другого холодильного оборудования, для охлаждения и заморозки продуктов использовали натуральный источник холода – лед. Однако такой способ требовал больших материальных затрат, а сам процесс добычи и транспортировки естественного льда был весьма трудоемким.

Поэтому параллельно с использованием естественного охлаждения при помощи льда неоднократно предпринимали попытки создания технического устройства для охлаждения и заморозки продуктов.

Первые исследования и эксперименты в истории по созданию холодильных установок были направлены на получение льда искусственным путем.

Такие установки работали на абсорбционном принципе, а снижение температуры достигалось путем растворения в воде нитрата аммония, смеси селитры со льдом и другие химические соединения. Однако такой способ все равно оставался достаточно затратным и позволял добиться снижения температуры на 10 – 15 0С.

Появление первых конденсаторов

Мощный толчок в своем развитии холодильные установки получили с изобретением паровых машин, которые функционировали за счет движущей силы пара. Именно в паровых машинах были применены первые конденсаторы, которые служили для преобразования отработанного пара в жидкость, что давало возможность ее повторного использования. Можно считать, что история создания конденсаторов началась именно с XVII века..

Впервые идею об использовании конденсатора в качестве отдельного блока паровой машины высказал французский ученый Жан Хатефиле в 1678 году. И лишь спустя почти 90 лет, в 1765 году Джеймс Уатт создал паровую машину, на которой был установлен первый конденсатор.

В это же время другие ученые и изобретатели трудились над созданием холодильных агрегатов. Так, в 1748 году профессор медицины Уильям Каллен создал установку, которая охлаждала жидкости за счет испарения эфира.

 В своем изобретении Кален также использовал простейший конденсатор, который представлял собой отдельную емкость, куда поступал отработанный эфир.

Эта установка доказала на практике возможность реализации циклического процесса испарения и конденсации эфира, что приводит к охлаждению воздуха или жидкости в заданном объеме.

Рывок в развитии конденсаторов

После эксперимента Калена многие инженеры создавали установки, работающие по этому принципу. Отличительной особенностью таких машин являлось наличие замкнутого контура, в котором циркулировал эфир, а также внедрение в конструкцию компрессора. В 1834 году Якоб Перкинс впервые запатентовал парокомпрессионный холодильный агрегат, работающий на эфире.

Однако официально история создания первых конденсаторов началась в 1842 году, когда Джон Эриксон сконструировал первый поверхностный конденсатор с водяным охлаждением, оборудованный компрессором. Это дало толчок к дальнейшему развитию холодильной техники. В том числе стало возможным создание больших холодильных установок для складских помещений, корабельных трюмов и т.д. Такие холодильные машины были созданы братьями Карре (1846 год) и Карлом фон Линде (1874 – 1876 годы).

Дальнейшая история развития конденсаторов была тесно связана с развитием холодильной техники. В период с 1895 года по 1923 год были изобретено и запатентовано большое количество различных конструкций конденсаторов, многие из которых используются до сих пор.

На сегодняшний день конденсаторы прошли длинный путь развития, и являются одной из основных частей любого холодильного оборудования. Также все чаще многие виды конденсаторов используются как самостоятельные холодильные установки, которые применяются для охлаждения воздуха в производственных и складских помещениях.

Зачем нужен конденсатор

Холодильные машины представляют собой сложные агрегаты, состоящие из большого количества различных узлов. Одной из важнейших деталей является теплообменный блок, в котором происходит охлаждение и конденсация хладагента — конденсатор. При этом конденсатор может быть включен в конструкцию холодильного агрегата производителем или добавлен по желанию заказчика в виде отдельного блока.

Очень часто при подборе климатического оборудования возникает вопрос: зачем нужен конденсатор? Какой конденсатор лучше – встроенный или выносной?

Для того, чтобы ответить на эти вопросы, следует сначала разобраться, как устроен конденсатор и какие у него есть конструктивные особенности.

Устройство и назначение конденсатора

Конденсатор – это теплообменный блок, в котором происходит переход хладагента из газообразного состояния в жидкое. При этом тепло от сжатых паров хладагента отдается охлаждающей среде. Таким образом происходит снижение температуры хладагента и его конденсация. Чаще всего в качестве охлаждающей среды применяют воздух или воду.

Следовательно, конденсатор предназначен для охлаждения парообразного хладагента и сжижения при высоком давлении. Для различных марок хладагентов температура конденсации составляет от 70 0С до 30 0С. Так как конденсатор обладает достаточно небольшими габаритными размерами и устроен достаточно компактно, то весь процесс охлаждения и конденсации паров хладагента должен происходить быстро.

Этого добиваются специальной конструкцией теплообменника. Обычно он представляет собой змеевик, выполненный из медных, алюминиевых или стальных трубок. Для улучшения теплообмена также используются трубчатые или пластинчатые конденсаторы с оребрением алюминиевыми пластинами.

Благодаря тому, как устроен конденсатор, он выполняет две немаловажные функции. Во-первых, он обеспечивает постепенное охлаждение сжатых паров и их равномерную конденсацию. Во-вторых, после перехода хладагента в жидкое состояние происходит его охлаждение с одновременным снижением давления в системе.

Как уже отмечалось выше, конденсаторы могут иметь воздушное или водное охлаждение. Они отличаются не только конструктивными особенностями, но и типом монтажа, а также условиями эксплуатации. Конденсаторы с воздушным охлаждением могут работать практически с любым типом холодильных установок и отличаются сравнительно небольшими размерами.

Конденсаторы с водным охлаждением применяются в промышленных и коммерческих холодильных агрегатах средней мощности. Их основным недостатком является повышенная склонность к коррозии металлических патрубков. Также для работы таких агрегатов требуется дополнительное оборудование, которое будет обеспечивать непрерывную циркуляцию охлаждающей жидкости внутри конденсатора.

Применение

Конденсаторы являются неотъемлемой частью любого холодильного оборудования, начиная от бытовых приборов (холодильники, кондиционеры и т.д.) и заканчивая промышленными установками. Обычно конденсаторы объединяются в единый блок с компрессором или испарителем и располагаются внутри холодильного агрегата.

Однако для мощных промышленных и коммерческих установок используются и выносные конденсаторы, выполненные в виде отдельного моноблока, присоединяемого к основному прибору системой трубок. Такое климатическое оборудование применяется для поддержания требуемой температуры воздуха в производственных и складских помещениях, камерах заморозки, а также охлаждения производственного оборудования.

ЭТО ИНТЕРЕСНО:  Можно ли заливать в аккумулятор электролит

Какие виды конденсаторов лучше и почему

Конденсатор представляет собой один из важнейших блоков холодильного оборудования, где происходит переход хладагента из газообразного состояния в жидкое. Конденсаторы входят в состав теплообменного блока и позволяют значительно увеличить производительность холодильных установок.

Классификация

Конденсаторы представлены большим разнообразием моделей, которые отличаются по многим параметрам, начиная от конструкции и заканчивая способом установки. Далее разберемся более подробно, какие бывают конденсаторы, и рассмотрим их основные характеристики.

Все конденсаторы делят на две большие группы: агрегаты с воздушным охлаждением и агрегаты с водным охлаждением.

В зависимости от того, как происходит циркуляция воздуха в конденсаторе, выделяют:

  • Устройства с естественной циркуляцией;
  • Устройства с принудительной циркуляцией.

По типу хладагента все теплообменники делят на аммиачные и фреоновые. По характеру движения хладагента конденсаторы бывают:

  • С последовательным соединением секций;
  • С параллельным соединением секций;
  • С комбинированным (последовательно-параллельным) соединением секций.

В зависимости от типа поверхности теплообменника выделяют следующие виды конденсаторов:

  • С гладкой поверхностью;
  • С оребрением.

По типу монтажа конденсаторы могут быть:

  • Встроенные – располагаются в одном корпусе вместе с остальными узлами холодильной машины;
  • Выносные – устанавливаются отдельным блоком.

В зависимости от конструктивного исполнения бывают следующие виды конденсаторов:

  • Кожухотрубные;
  • «Труба в трубе» (двухтрубные);
  • Кожухозмеевиковые.

Какие конденсаторы самые популярные?

Наибольшее распространение в холодильных машинах получили воздушные конденсаторы. Такие устройства обычно производятся в виде змеевика с оребрением алюминиевыми пластинами, что позволяет значительно увеличить площадь теплообмена. В воздушных конденсаторах теплообмен происходит за счет обдувания охлажденного змеевика воздухом при помощи вентиляторов. В качестве хладагента в таких агрегатах используется фреон. Применяются воздушные конденсаторы в агрегатах мощностью до 350 кВт.

Водяные конденсаторы применяются реже, так как такие агрегаты отличаются повышенной склонностью к коррозионному износу металлических деталей. Эти установки используют аммиачный хладагент. Водяные конденсаторы чаще всего имеют конструкцию «труба в трубе» или кожухотрубное исполнение. Кожухотрубные конденсаторы представляют собой цилиндры, в которых установлены стальные решетки, а с обоих концов к цилиндру подводятся патрубки с водным охлаждением.

Конструкция «труба в трубе» представляет собой две спиральные трубки, вложенные друг в друга. По одной из них циркулирует хладагент, а по другой – вода.

Конденсаторы с водным охлаждением в основном используются в автономных установках малой и средней мощности.

Маркировка

Тип конденсатора и его основные технические характеристики можно определить по маркировке, которая наносится производителей на агрегат, а также указывается в паспорте изделия. Маркировка конденсатора отечественного производства состоит из буквенной и цифровой части.

Буквенная часть указывает тип конденсатора, наличие кожуха и климатическое исполнение агрегата:

  • Первая буква обозначает тип агрегата: К – проточный конденсатор, В – воздушный конденсатор;
  • Вторая буква обозначает тип циркуляции хладагента: на сегодняшний день чаще всего используются проточные конденсаторы (маркируются буквой Т);
  • Последняя буква указывает климатическое исполнение: У – общеклиматическое , Т – тропическое.

Также в маркировке может быть указан тип поверхности теплообменника и ее размеры:

  • Г – гладкотрубные конденсаторы;
  • Без обозначения – ребристотрубные конденсаторы;

Наличие деталей для крепления изоляции также может дополнительно указываться в названии (в конце ставится буква И). Цифровая часть указывает давление в трубах, в кожухе, длину труб, а также другие дополнительные параметры.

Например, 160КТГ-0,6-2,0-У-И – конденсатор с кожухом диаметра 160 мм, с условным давлением в трубах 0,6 МПа, в кожухе 2,0 МПа, трубы теплообменные гладкие, общеклиматическое исполнение, в комплектацию входят крепления для теплоизоляции.

Источник: http://phk-holod.ru/kakie-vidi-kondensatorov-luchshe-i-pochemu

Конденсаторы для «чайников»

Какие есть конденсаторы

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий.

Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений. Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость.

Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов.

И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами.

Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт.

Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Паразитные индуктивность и сопротивление реального конденсатора С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины.

Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом. На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке.

Рабочее напряжение зависит от глубины анодированного слоя. У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ.

Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические

Танталовый конденсатор поверхностного размещения Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца.

Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником.

Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ.

У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения. Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности.

Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения. Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа.

В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях. Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры. В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются.

В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа. Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства.

Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность. C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия. X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях.

Обычно это развязывание и различные универсальные приложения. Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях. Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект.

Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься.

Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

Источник: https://habr.com/ru/post/369421/

Виды конденсаторов и их применение

Конденсатор — это электрический (электронный) компонент, состоящий из двух проводников (обкладок), разделенных между собой слоем диэлектрика. Существует много видов конденсаторов. В основном они делятся по материалу из которого изготовлены обкладки и по типу используемого диэлектрика между ними.

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

ЭТО ИНТЕРЕСНО:  Для чего используются трансформаторы тока

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3),

Свойства:

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в котором металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

Свойства:

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

Источник: http://www.joyta.ru/7933-vidy-kondensatorov-i-ix-primenenie/

Виды и параметры конденсаторов — Онлайн-журнал

Конденсатор – устройство, способное накапливать электрический заряд. В зависимости от назначения и конструкции конденсаторы делятся на ряд видов.В статье рассмотрим основные электрические параметры конденсаторов.

Ассортимент конденсаторов

Электрические параметры конденсаторов

Основные характеристики и единицы их измерения приведены в таблице

Номинальная емкость С Фарада
Допустимое отклонение емкости ∆С %
Номинальное напряжение U Вольт
Температурная стабильность емкости ТКЕ %

Фарада – физическая величина, названная в честь английского физика Майкла Фарадея. Она слишком велика для использования в электротехнике. На практике емкость измеряют в микрофарадах (1мкФ = 10-6 Ф), нанофарадах (1нФ = 10-9 Ф) или пикофарадах (1пФ=10-12Ф)

При нанесении величины емкости на корпус конденсатора для обозначения «нФ» дополнительно используют символы «nF», «пФ» — «рФ», а микрофараду обозначают сокращением «мкФ» или «μФ».

Примеры обозначения емкости конденсаторов

Емкость конденсаторов не может принимать произвольные значения. Они унифицированы и выбираются из стандартных рядов емкостей.

Допустимое отклонение емкости указывает, с какой точностью изготовлен конденсатор. Она указывает, в каком допустимом диапазоне может находиться величина емкости в процентах от номинала. Для измерительных устройств этот параметр выбирается как можно меньшим.

Номинальное напряжение – это напряжение, которое выдерживают обкладки конденсатора длительное время. При превышении этого параметра конденсатор выйдет из строя. Для переменного тока руководствуются не действующим, а амплитудным значением напряжения. Например, при выборе конденсатора для пуска электродвигателя на номинальное напряжение 380 В нужно использовать конденсатор на рабочее напряжение U>380∙√2=537, то есть, на 600 В.

Конденсатор емкостью 33 мкФ на напряжение 100 В.

Температурная стабильность характеризует диапазон, в котором изменяется емкость при изменении температуры окружающей среды. Для устройств, сохраняющих работоспособность в широком диапазоне температур, значение этого параметра выбирается более низким.

Конструктивные исполнения конденсаторов

Конденсаторы, емкость которых не может изменяться, называются конденсаторами постоянной емкости.

Но в некоторых цепях для обеспечения возможности регулировки работы схемы и установки точных параметров ее работы применяются подстроечные конденсаторы. Емкость их изменяется при помощи отвертки.

Подстроечные конденсаторы

В отличие от них конденсаторы переменной емкости применяются для выполнения пользовательских регулировок, например, для настройки радиоприемника на нужную волну.

Конденсатор переменной емкости

Существуют конденсаторы специального назначения. Например, конденсаторы для защиты от радиопомех и сглаживающих фильтров, располагающихся парами в одном корпусе.

Два конденсатора в одном корпусе

Отдельно выделяются конденсаторы для поверхностного монтажа или SMD-конденсаторы

Источник: http://electric-tolk.ru/vidy-i-parametry-kondensatorov/

Виды конденсаторов и их характеристики

Конденсаторы очень широко применяются в электронных, радиотехнических устройствах и приборах. Они по количеству и ёмкости в электронных схемах может различаться, но они есть практически везде. Столь широкое использование приборов объясняется тем, что в схемах такие устройства могут выполнять различные функции и задачи.

В первую очередь, конденсаторы используются в фильтрах различных стабилизаторов и выпрямителей напряжения, кроме того, с их помощью осуществляется передача сигнала между каскадами, работают высокочастотные и низкочастотные фильтры, подбирается частота колебаний и интервалы выдержки времени на разных генераторах. Чтобы лучше разобраться в особенностях и применении таких устройств, следует подробно разобрать существующие типы и характеристики конденсаторов.

Характеристики и параметры

Исчерпывающую информацию о типе и технических характеристиках конденсатора любой пользователь может получить на корпусе устройства, где также иногда указывается производитель прибора и дата его изготовления.

Важнейшим параметром любого конденсатора является его номинальная ёмкость. Правила обозначения номиналов ёмкости описываются в действующих нормативах ГОСТа.

Согласно положениям ГОСТа, номинальная ёмкость конденсаторов до 9999 пФ обозначается на схемах без указания единицы измерения. Ёмкость устройств номиналом более 9999 пФ и до 9999 мкФ обозначается на схемах с указанием единицы измерения.

Следующая характеристика, указываемая на корпусе устройства – допустимое отклонение от номинальных значений.

Второй по важности величиной конденсатора является его номинальное напряжение. Они могут быть предназначены для работы в сетях с разным напряжением: от 5 до 1000 В и более. Специалисты рекомендуют выбирать устройства с запасом по номинальному напряжению. Использование устройств низкого номинала может приводить к возникновению пробоев диэлектрика и выходу из строя приборов.

Остальные параметры считаются дополнительными и не всегда важными, потому на корпусах некоторых устройств описание может ограничиваться ёмкостью и номинальным напряжением. Если дополнительные технические характеристики указаны, то на корпусе можно найти также рабочую температуру устройства, рабочий номинальный ток и другие данные.

Следует учитывать также, что представленные сегодня на рынке конденсаторы могут быть трехфазными и однофазными, предназначенными для внешней или внутренней установки.

Какие типы конденсаторов бывают?

Существуют различные варианты классификации конденсаторов, используемых в электронных схемах. Чаще всего такие устройства разделяют на типы по виду используемого в них диэлектрика. По особенностям диэлектрика можно выделить следующие типы:

  • с жидкими диэлектриками.
  • вакуумные, в которых отсутствует диэлектрик.
  • с твердым органическим диэлектриком.
  • с газовым диэлектриком.
  • электролитические или оксид-полупроводниковые с электрлитом или оксидным металлическим слоем.
  • с твердым неорганическим диэлектриком.

Второй вариант классификации – по вероятности колебания величины ёмкости. По этой характеристике можно выделить следующие устройства:

  • Переменные – которые могут менять ёмкость из-за воздействия напряжения или температурных условий.
  • Постоянные – величина ёмкости не изменяется на протяжении срока службы.
  • Подстроечные – с изменяемой ёмкостью, используемые для периодической или разовой подстройки схем.

По сфере эксплуатации все конденсаторы разделяются на следующие типы:

  • Низковольтные, используемые в сетях с малым напряжением.
  • Высоковольтные, применяемые в сетях высокого напряжения.
  • Импульсные – способные выделять краткосрочный импульс.
  • Пусковые – для стартового запуска электрического мотора.
  • Помехоподавляющие.

Существуют и другие классы по сферам применения, но на практике они встречаются крайне редко.

В таблице ниже представлены наиболее распространенные конденсаторы и их обозначения на схемах.

Источник: http://podvi.ru/elektrotexnika/tipy-i-xarakteristiki-kondensatorov.html

Типы конденсаторов

Конденсатор — один из самых распространенных электронных компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

В основном типы конденсаторов разделяют:

  • По характеру изменения емкости — постоянной емкости, переменной емкости и подстроечные.
  • По материалу диэлектрика — воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
  • По способу монтажа — для печатного или навесного монтажа.

Керамические конденсаторы

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром).

Карамические конденсаторы

Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере. Диапазон емкости этого типа конденсаторов — от нескольких пикоФарад (пФ или pF) до нескольких микроФарад (мФ или uF). Однако их номинальное напряжение, как правило, невысокое.

Маркировка керамических конденсаторов обычно представляет собой трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить.

Например, маркировка 103 на керамическом конденсаторе означает 10 000 пикоФарад или 10 наноФарад. Соответственно, маркировка 104 будет означать 100 000 пикоФарад или 100 наноФарад и.т.д. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%.

Переменные конденсаторы

Переменные конденсаторы широко используются в устройствах, где часто требуется настройка во время работы — приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала (форму, частоту, амплитуду и т.д.).

Емкость может менятся механическим способом, электрическим напряжением (вариконды), и с помощью температуры (термоконденсаторы). В последнее время во многих областях вариконды вытесняются варикапами (диодами с переменной емкостью).

Под названием «переменные конденсаторы» обычно имеют ввиду компоненты с механическим изменением емкости. Управление емкостю здесь достигается путем изменения площади обкладок. Обкладки в переменных конденсаторах состоят из множества пластин с воздушным пространством между ними в качестве диэлектрика.

Часть пластин фиксированная, часть подвижная. Положение подвижных пластин по отношению к фиксированным определяет общую емкость конденсатора. Чем больше общая площадь пластин тем больше емкость.

Переменные конденсаторы

Подстроечные конденсаторы

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени».

Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора.

Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Способ монтажа конденсаторов

Конденсаторы разделяют по способу монтажа на компоненты для навесного монтажа и для печатного монтажа (SMD или чип-конденсаторы). У компонентов для навесного монтажа есть выводы в виде «ножек». У конденсаторов для печатного монтажа выводами служит часть их поверхности.

Источник: http://hightolow.ru/capacitor2.php

Виды конденсаторов. Устройство и особенности. Параметры и работа

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению:

  • Общего назначения. Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные. Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.

Изменению емкости:

  • Постоянной емкости. Не имеют возможности изменения емкости.
  • Переменной емкости. Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся: — Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости. — Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами, от температуры – термоконденсаторами.

Способу защиты:

  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.

Виду монтажа:

  • Навесные делятся на несколько видов с; — ленточными выводами; — опорным винтом; — круглыми электродами;— радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки, имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.

По материалу диэлектрика:

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные содержат пленки из фторопласта и полистирола.
  • Импульсные высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжения в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные работают при напряжении до 1,6 кВ.
  • Высоковольтные функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой тока и напряжения.
ЭТО ИНТЕРЕСНО:  Как определить емкость конденсатора по маркировке

Форме пластин:

  • Сферические.
  • Плоские.
  • Цилиндрические.

Полярности:

  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.

Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких конденсаторах в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов:

  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.

Полимерные

Имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры:

  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.

Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/vidy-kondensatorov/

Что такое конденсатор

Конденсатор или как в народе говорят – “кондер”, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”. Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.

Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.

Из чего состоит конденсатор

Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.

намажем его сгущенкой

 и сверху положим точно такой же блин

Должно выполняться условие: эти два блина не должны прикасаться  друг  с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед вами типичный “блинный конденсатор” :-).

Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки различный диэлектрик. В качестве диэлектрика может быть воздух, бумага, электролит, слюда, керамика, и так далее.

К каждой металлической пластине подсоединены проводки – это выводы конденсатора.

Схематически все это выглядит примерно вот так.

Как вы могли заметить, из-за диэлектрика конденсатор не может проводить ток. Но это относиться только к постоянному току. Переменный ток конденсатор пропускает через себя без проблем с небольшим сопротивлением, номинал которого зависит от частоты тока и емкости самого конденсатора.

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Плоский конденсатор и его емкость

Плоским конденсатором называют конденсатор, который состоит из двух одинаковых пластин, которые параллельны друг другу. Пластины могут быть разной формы. На практике чаще всего можно встретить квадратные, прямоугольные и круглые пластины. Давайте рассмотрим простой плоский квадратный конденсатор.

плоский конденсатор

где

d – расстояние между пластинами конденсатора, м

Источник: https://www.ruselectronic.com/kondjensatory/

Конденсатор

Радиоэлектроника для начинающих

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

  • Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии.

    Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия.

    В технике существует электронный компонент, который обладает ёмкостью более 1 Фарады – это ионистор.

    В основном, в электронике и радиотехнике используются конденсаторы с ёмкостью равной миллионной доле фарады – микрофарада (1мкФ = 0,000001 Ф). Также находят применение конденсаторы с ёмкостями исчисляемыми десятками – сотнями нанофарад (1нФ = 0,000000001 Ф) и пикофарад (1пФ = 0,000000000001 Ф). Номинальную ёмкость указывают на корпусе конденсатора.

    Чтобы не запутаться в сокращениях (мкФ, нФ, пФ), и научиться переводить микрофарады в пикофарады, а нанофарады в микрофарады необходимо знать о сокращённой записи численных величин.

  • Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. При превышении допустимого значения конденсатор будет пробит, то есть, превратится в обычный проводник. Диапазон допустимых значений рабочих напряжений конденсаторов лежит в пределах от нескольких вольт до единиц киловольт (1 киловольт – 1 000 вольт). Номинальное напряжение маркируют на корпусе конденсатора.

  • Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе. Допуск обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Три указанных параметра являются основными. Знание этих параметров достаточно, чтобы самостоятельно подбирать конденсаторы для изготовления самоделок и ремонта электроники.

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Кроме обычных существуют ещё и электролитические конденсаторы. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность.

Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения.

У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Обозначение электролитического конденсатора на схемах.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Обозначается так.

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Свойства конденсатора

  • Конденсатор не пропускает постоянный ток и является для него изолятором.

  • Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной

Вот так выглядят конденсаторы постоянной ёмкости.

Электролитический конденсатор. Длинный вывод – плюсовой, короткий – минусовой.

Планарный электролитический конденсатор. На корпусе указана номинальная ёмкость – 22 мкФ (22), номинальное напряжение – 16 Вольт (16V). Видно, что емкость обозначена только цифрами. Ёмкость электролитических конденсаторов указывается в микрофарадах.

Со стороны отрицательного вывода конденсатора на верхней части корпуса чёрный полукруг.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/condensator.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
В каком режиме работает трансформатор тока

Закрыть