ПРОЕКТИРОВАНИЕ СПОРТИВНЫХ СООРУЖЕНИЙ И ТЕХНИЧЕСКОЕ ЗАДАНИЕ Шаг №2: Выбор типа здания. Помимо разработки концепции, мастер-планов, составления технического задания на этапе проектирования, мы поможем сделать правильный выбор типа здания в зависимости от главного профильного назначения центра. Выбор строения осуществляется не только из архитектурных требований, построечных условий, но и видения задач и финансовых возможностей инвестора.

Как работает трансформатор на холостом ходу

Какой ток выдает сварочный трансформатор. Каким должно быть напряжение холостого хода сварочного инвертора? Трансформаторы и режимы их работы

Можно провести испытание сварочного инвертора на что он способен. Берем самый доступный сварочный инвертор TIG. Приведу пример аппарата на фото там IN 256T/ IN 316T.

Если посмотреть таблицу там указано где находится холостой ход в виде индикации. На таких аппаратах холостой ход запрограммирован компьютером. Когда вы выбираете нужный режим автоматически выставляется холостой ток. Его можно проверить обычным вольтметром именно на концах силовых проводов в включенном состоянии. То есть на держаке и крокодиле. Падение напряжения не должно отклонятся, при зажигании дуги и сварки, более чем на пять вольт.

К примеру ели китайский бюджетник там вы вообще не найдете информации о холостом ходе. Плюс еще Амперы завышены по показателям. На самом деле некоторые даже электроды уони 13/55 не потянут. А все почему? Этим электродом нужен холостой ток 70 вольт при 80 амперах. А такие сварочные аппараты устроены таким образом что при увеличении силы тока возрастает и напряжение.

Другими словами при самом большом токе выдадут они вам 90 вольт. Напряжением еще до вторичной обмотки управляет блок, который преобразует высокое напряжение в первичной обмотки. Потом под воздействием электромагнитной силы передается на вторичную обмотку. Напряжение снятое с нее переходит дальше. Если на входе первичной обмотки мало напряжение то и на выходе будет низкое.

Рассмотрим примитивный ВД-306М У3. На малых токах 70-190 А напряжение 95 вольт плюс минус 3 вольта. На больших токах 135-325 А холостой ток 65 вольт плюс минус 3 вольта. При этом он стабилен во всех диапазонах силы тока. Как рукоятку не крути и меняй амперы сколько душе угодно холостой холостой ход не убавится.

Я к чему это веду если сварочный инвертор плохо варит на малых токах у вас причина в блоке управления описанная выше. Как некоторые говорят ставьте дополнительный дроссель или на выходе балластник. Силу тока выкручиваем на полную и регулируем уже на балласте. Лишние амперы возьмет на себя а холостой ход останется не измененным.

Сами ради интереса проверьте свой сварочный аппарат. Киньте щупы от вольтметра на силовые кабеля и попробуйте варить. Увидите как падает напряжение. Сам лично варил в домашней сети инвертором интерскол 250А электродами 3мм УОНИ 13/45 с обратной полярностью. Как только не крутил амперы так толком и не смог их разжечь, зато МР-3 горят будь здоров от первого прикосновения.

Читайте в паспорте при покупке оборудования сколько холостого тока выдает аппарат и на каких токах. Если это не профессиональное оборудование холостой ход вы ни как не отрегулируете. Если не метод описанный выше. На самом корпусе агрегата вы навряд ли найдете такую информацию. Производители обычно ее скрывают громкими названиями и силой тока.

Что такое напряжение холостого хода сварочного инвертора и что от него зависит?

Ответ:

Среди характеристик сварочных инверторов есть несколько важных показателей. Это напряжение питающей электросети (220 или 380 Вольт), диапазон выдаваемого тока (от 10 до 600 Ампер), имеющиеся функции, вес и габариты аппарата, а также напряжение холостого хода.

Эта характеристика показывает нам, с каким напряжением ток выходит на электрод после того, как пройдет все стадии преобразования после электросети.

Напомним, что из электросети по питающему кабелю ток поступает на первый преобразователь, оттуда он выходит уже постоянным и идет на фильтр, а затем на второй преобразователь. В итоге мы снова получаем переменный ток с частотой не 50 Гц, а 20-50 кГц.

Затем следует понижение входного напряжения с одновременным повышением силы тока. В итоге мы получаем выходное напряжение 55-90 Вольт и силу, которую можно регулировать в заданном для каждой конкретной модели диапазоне.

Вот это выходное напряжение и является напряжением холостого хода. От него зависит два момента:. Безопасность инструмента для владельца;

. Легкость поджигания сварочной дуги.

Чем выше будет напряжение холостого хода, тем легче будет зажечь сварочную дугу инвертора. Казалось бы, стоит тогда покупать инверторные аппараты с высоким показателем напряжения холостого хода. Но высокое напряжение достаточно опасно для человека в случае соприкосновения, поэтому его далеко не всегда делают высоким.

Если же вы все-таки хотите, чтобы зажигать дугу было легко, то стоит выбрать сварочный инвертор с высоким напряжением, но с дополнительно установленной функцией защиты, которая автоматически снижает напряжение до безопасного для человека уровня в том случае, если существует риск для пользователя, а затем возвращает уровень назад.

Если Вы ещё не выбрали сварочный инвертор, то среди бытовых моделей обратите внимание на и , из полупрофессиональных моделей можно порекомендовать и

Внешняя характеристика источников питания сварочной дуги

Внешняя характеристика источников питания (сварочного трансформатора, выпрямителя и генератора) — это зависимость напряжения на выходных зажимах от величины тока нагрузки. Зависимость между напряжением и током дуги в установившемся (статическом) режиме называется вольт-амперной характеристикой дуги.

Внешние характеристики сварочных генераторов, показанные на рис. 1 (кривые 1 и 2), являются падающими. Длина дуги связана с ее напряжением: чем длиннее сварочная дуга, тем выше напряжение.

При одинаковом падении напряжения (изменении длины дуги) изменение сварочного тока неодинаково при неодинаковых внешних характеристиках источника. Чем круче характеристика, тем меньше влияет длина сварочной дуги на сварочный ток.

При изменении напряжения на величину δ при крутопадающей характеристике изменение тока равно а1, при пологопадающей — а2.

Для обеспечения стабильного горения дуги необходимо, чтобы характеристика сварочной дуги пересекалась с характеристикой источника питания (рис. 2).

В момент зажигания дуги (рис. 2, а) напряжение падает по кривой от точки 1 до точки 2 — до пересечения с характеристикой генератора, т. е. до положения, когда электрод отводится от поверхности основного металла.

При удлинении дуги до 3 — 5 мм напряжение возрастает по кривой 2-3 (в точке 3 осуществляется устойчивое горение дуги). Обычно ток короткого замыкания превышает рабочий ток, но не более чем в 1,5 раза.

Время восстановления напряжения после короткого замыкания до напряжения дуги не должно превышать 0,05 с, этой величиной оцениваются динамические свойства источника.

На рис. 2,6 показаны падающие характеристики 1 и 2 источника питания при жесткой характеристике дуги 3, наиболее приемлемой при ручной дуговой сварке.

Напряжение холостого хода (без нагрузки в сварочной цепи) при падающих внешних характеристиках всегда больше рабочего напряжения дуги, что способствует значительному облегчению первоначального и повторного зажигания дуги.

Напряжение холостого хода не должно превышать 75 В при номинальном рабочем напряжении 30 В (повышение напряжения облегчает зажигание дуги, но одновременно увеличивается опасность поражения сварщика током). Для постоянного тока напряжение зажигания должно быть не менее 30 — 35 В, а для переменного тока 50 — 55 В.

Согласно ГОСТ 7012 -77Е для трансформаторов, рассчитанных на сварочный ток 2000 А, напряжение холостого хода не должно превышать 80 В.

Повышение напряжения холостого хода источника переменного тока приводит к снижению косинуса «фи». Иначе говоря, увеличение напряжения холостого хода снижает коэффициент полезного действия источника питания.

Источник: https://apple-hit.ru/kompyuternoe-zhelezo/kakoi-tok-vydaet-svarochnyi-transformator-kakim-dolzhno-byt/

Определение холостого хода трансформатора

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря  электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

К = Е1/Е2 = W1/W2

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым  классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Cos φ = P1/U1*L0

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.

ЭТО ИНТЕРЕСНО:  Какие бывают виды электродов для сварки

Источник: https://protransformatory.ru/raschety/holostoj-hod-transformatora

Трансформаторы, их виды и назначение

Что такое трансформатор
Принцип работы трансформатора
Виды трансформаторов
Режимы работы трансформатора
Уравнения идеального трансформатора
Магнитопровод трансформатора
Обмотка трансформатора
Применение трансформаторов
Схема трансформатора

Что такое трансформатор

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник.

Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными.

Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть.

Сердечник броневого трансформатора скрывает в себе практически всю обмотку.

Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.

Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

В начало

Принцип работы трансформатора

В трансформаторе принято выделять первичную и вторичную обмотку. К первичной обмотке напряжение подводится, а от вторичной отводится. Действие трансформатора основано на законе Фарадея (законе электромагнитной индукции): изменяющийся во времени магнитной поток через площадку, ограниченную контуром, создает электродвижущую силу. Справедливо также обратное утверждение: изменяющийся электрический ток индуцирует изменяющееся магнитное поле.

В трансформаторе есть две обмотки: первичная и вторичная. Первичная обмотка получает запитку от внешнего источника, а с вторичной обмотки напряжение снимается. Переменный ток первичной обмотки создает в магнитопроводе переменное магнитное поле, которое, в свою очередь, создает ток во вторичной обмотке.

В начало

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены. Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора. Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны, поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения.

Для трансформатора в режиме активной нагрузки справедливо равенство:
U_2/U_1 =N_2/N_1 , где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке. Если U2 > U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

В начало

Виды трансформаторов

В зависимости от своего применения и характеристик трансформаторы бывают нескольких видов. К примеру, в электрических сетях населенных пунктов, промышленных предприятий применяют трансформаторы силовые, основной задачей которых является понижение напряжения в сети до общепринятого – 220 В.

Если трансформатор предназначен для регулировки тока, он называется трансформатор тока, а если устройство регулирует напряжение – то это трансформатор напряжения. В обычных сетях применяются однофазные трансформаторы, в сетях на три провода (фаза, ноль, заземление) нужен трехфазный трансформатор.

Бытовой трансформатор, 220В предназначается для защиты бытовой техники от перепадов напряжения.

Сварочный трансформатор предназначен для разделения сварочной и силовой сети, для понижения напряжения в сети до нужной для сварки величины.

Масляный трансформатор предназначается для использования в сетях с напряжением выше 6 000 Вольт. Конструкция трансформатора включает в себя: магнитопровод, обмотки, бак, а также крышки с вводами. Магнитопровод состоит из 2 листов электротехнической стали, которые изолированы друг от друга, обмотки, как правило, делают из алюминиевого или медного провода. Регулировка напряжения производится с помощью ответвления, которое соединяется с переключателем.

Существует два вида переключения ответвлений: переключение под нагрузкой — РПН (регулирование под нагрузкой), а также без нагрузки, после того, как трансформатор отключен от внешней сети (ПБВ, или переключение без возбуждения). Большее распространение получил второй способ регулировки напряжения.

Говоря о видах трансформаторов, нельзя не рассказать об электронном трансформаторе. Электронный трансформатор представляет собой специализированный источник питания, который служит для преобразования напряжения 220В в 12 (24)В, при большой мощности. Электронный трансформатор намного меньше обычного, при тех же самых параметрах нагрузки.

В начало

Уравнения идеального трансформатора

Для того чтобы рассчитать основные характеристики трансформаторов, принято пользоваться простыми уравнениями, которые знает каждый современный школьник. Для этого используют понятие идеального трансформатора.

Идеальным трансформатором называется такой трансформатор, в котором нет потерь энергии на нагрев обмоток и вихревые токи. В идеальном трансформаторе энергия первичной цепи превращается полностью в энергию магнитного поля, а затем – в энергию вторичной обмотки.

Именно поэтому мы можем написать:
P1= I1*U1 = P2 = I2*U2,
где P1, P2 – мощности электрического тока в первичной и вторичной обмотке соответственно.

В начало

Магнитопровод трансформатора

Магнитопровод представляет собой пластины из электротехнической стали, которые концентрируют в себе магнитное поле трансформатора. Полностью собранная система с деталями, скрепляющими трансформатор в единое целое – это остов трансформатора. Та часть магнитопровода, на которой крепятся обмотки, называется стержнем трансформатора. Часть магнитопровода, которая не несет на себе обмотку и замыкает магнитную цепь, называется ярмом.

В трансформаторе стержни могут располагаться по-разному, поэтому выделяют такие четыре типа магнитопроводов (магнитных систем): плоская магнитная система, пространственная магнитная система, симметричная магнитная система, несимметричная магнитная система.

В начало

Обмотка трансформатора

Теперь поговорим об обмотке трансформатора. Основная часть обмотки – виток, который однократно обхватывает магнитопровод и в котором индуцируется магнитное поле. Под обмоткой понимают сумму витков, ЭДС всей обмотки равна сумме ЭДС в каждом витке.

В силовых трансформаторах обмотка обычно состоит из проводников, имеющих квадратное сечение. Такой проводник по-другому еще называется жилой. Проводник квадратного сечения используется для того, чтобы более эффективно использовать пространство внутри сердечника. В качестве изоляции каждой жилы может использоваться либо бумага, либо эмалевый лак. Две жилы могут быть соединены между собой, и иметь одну изоляцию – такая конструкция называется кабелем.

Обмотки бывают следующих типов: основные, регулирующие и вспомогательные. Основной называется обмотка, к которой подводится или от которой отводится ток (первичная и вторичная обмотка). Обмотка с выводами для регулирования коэффициента трансформации напряжения называется регулирующей.

В начало

Применение трансформаторов

Из курса школьной физики известно, что потери мощности в проводах прямо пропорциональны квадрату силы тока. Поэтому для передачи тока на большие расстояния напряжение повышают, а перед подачей потребителю наоборот, понижают. В первом случае нужны повышающие трансформаторы, а во втором – понижающие. Это основное применение трансформаторов.

Трансформаторы применяются также в схемах питания бытовых приборов. Например, в телевизорах применяют трансформаторы, имеющие несколько обмоток (для питания схем, транзисторов, кинескопа, и т.д.).

В начало

Схема трансформатора

  1. Изоляция трансформатора на основе безматричной вакуумной пропитки и работает в среде с высокой влажностью воздуха и в химически агрессивной атмосфере.
  2. Минимальное выделение энергии горения (например, 43 кг для трансформатора 1600 кВА соответствуют 1,1% веса). Другие изоляционные материалы являются практически негорючими, самозатухающими и не содержат каких-либо токсичных добавок.
  3. Устойчивость трансформатора к загрязнениям благодаря конвекционным самоочищающимся дискам обмотки.
  4. Большая длина утечки по поверхности дисков обмотки, которые создают эффект изоляционных барьеров.
  5. Устойчивость трансформатора к температурной ударной нагрузке даже при крайне низких температурах (-50°С).
  6. Керамические блоки прокладки (без возможности возгорания) между дисками обмотки.
  7. Изоляция проводников стекло-шелк.
  8. Безопасность эксплуатации трансформатора благодаря специальной структуре обмотки Воздействие напряжения на изоляцию никогда не превышает напряжение изоляции (не более 10 В). Частичные разряды в изоляции физически невозможны.
  9. Охлаждение трансформатора обеспечивается вертикальными и горизонтальным каналам охлаждения, а минимальная толщина изоляции обеспечивают возможность работы трансформатора при больших кратковременных перегрузках в защитном корпусе IP 45 без принудительного охлаждения.
  10. Изоляционный цилиндр сделан и практически негорючего и самозатухающего материала, армированного стекловолокном.
  11. Обмотка низкого напряжения из стандартного провода или фольги; в качестве материала обмотки используется медь.
  12. Динамическая устойчивость трансформатора к коротким замыканиям обеспечивается керамическими изоляторами.

В начало

Источник: https://etcenter.ru/transformatory.html

Трансформатор морозостойкий ТСЛ 40

Трансформатор морозостойкий ТСЛ 40

Трансформатор ТСЛ 40 с литой изоляцией в морозостойком климатическом исполнении УХЛЗ. Степень защиты от влаги и пыли IP00 без кожуха.

Трансформаторы ТСЛ 40 можно эксплуатировать при температурах от -60 до +40 °С, устанавливать снаружи зданий. Не допускается работа оборудования в среде с высокими концентрациями взрывоопасной пыли и на высоте более 1000 м над уровнем моря.

Характеристики модели полностью соответствуют требованиям надзорных инстанций и эксплуатирующих организаций.

Тип трансформатораМощность трансформатора,кВАНоминальное высшеенапряжение, кВНоминальное низшеенапряжение, кВСхема и группасоединенияUk,%Ixx, %Потериx.x., ВтПотерик.з., кВт*Масса, кг
ТСЛ 40 40 10 0,4 Д/Ун-11У/Ун-0 4 3 230 780 350

Магнитопровод трансформатора ТСЛ 40 изготовлен из холоднокатаной анизотропной листовой стали. Резка и сборка выполнена по современным технологиям для снижения уровня шума и уменьшения потерь на холостом ходу.

Обмотки НН трансформатора ТСЛ 40 изготовлены из алюминиевого/медного проводника, пропитаны смолой и подвергнуты высокотемпературной обработке. При нагревании пропитка полимеризуется, образуя прочное, герметичное покрытие. Узлы защищены от атмосферных воздействий, воды пыли.

Обмотки ВН состоят из нескольких секций, соединенных последовательно. Каждая секционная ячейка трансформатора ТСЛ 40 состоит из изолированного провода. Внешняя и внутренняя поверхности обмоток покрыты стекловолоконной сеткой. Оболочка необходима для армирования эпоксидной смолы. Огнестойкость, способность к самозатуханию, морозостойкость, упругость и другие качества изоляции придают наполнители.

Преимущества морозостойких трансформаторов ТСЛ 40

  • Экологическая чистота. Трансформатор ТСЛ 40 не имеет маслонаполненных узлов – отсутствует необходимость утилизации отработанной смазки. Во время пожара оборудование не создает токсичного дыма.
  • Экономичность. Снижены эксплуатационные затраты на масло и силикагель, уменьшены электрические потери в сети.
  • Надежность. Трансформатор ТСЛ 40 защищен от пыли, влаги, перегрева, перегруза, коротких замыканий. Оборудование работает безотказно и безопасно.
  • Пониженный уровень шума и вибраций. Вместо колес установка монтируется на виброгасящие опоры. Обеспечен комфорт при эксплуатации вблизи потребителей, снижена вибрационная нагрузка на строительные конструкции.
  • Установка на встроенных подстанциях. Сокращение затрат на строительство отдельного объекта, закупку силовых кабелей и шин.

Схема трансформатора морозостойкого ТСЛ 40

  • Складпродукции
  • Готовыерешения
  • Каталогипродукции
  • Гдекупить?
  • Оформитьзаказ

2020 Все права защищены.
Политика конфиденциальности
Информация, размещенная на сайте не является офертой.

Источник: https://transformator.ru/production/transformatory-tsl/uztsl-40/

Трансформатор

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

а с другой катушки два красных провода

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

формула трансформатора выглядит так.

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

ЭТО ИНТЕРЕСНО:  Сколько берет электроэнергии плазменный телевизор

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке.

Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР.

У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить на короткое замыкание обмоток

Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

Таким же образом проверяем и вторичную обмотку.

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Источник: https://ruselectronic.com/ustrojstvo-transformatora/

Что такое сварочный трансформатор — Электропривод

Сварочный трансформатор – трансформатор, получивший широкое применение в производственной сфере и в быту для электродуговой сварки. Рассмотрим особенности конструкции сварочных трансформаторов, принцип их работы и разновидности данного оборудования.

Особенности конструкции сварочного трансформатора

Данный агрегат комплектуется следующими элементами и узлами:

  • магнитопровода (сердечника);Виды магнитопроводов
  • первичной обмоткой, выполненной стационарно с использованием изолированных проводов;
  • подвижной катушки вторичной обмотки, иногда выполненной из оголённых проводов, чтобы увеличить интенсивность отвода тепла;
  • регулировочным винтом с резьбой ленточного типа, расположенным вертикально;
  • гайкой для передвижения винта, закреплённой к выходной катушке;
  • рукояткой, управляющей винтом;
  • зажимными устройствами, предназначенными для крепления контактов;
  • кожухом с зазорами для обеспечения отвода тепла.

Сварочный трансформатор

Параметры силы электротока не зависят от конструкции сердечника. Но данный узел необходим для возбуждения магнитного потока и комплектуется из пакета пластин, изготовленных из трансформаторной стали.

Изготовление сердечника в виде цельного элемента нецелесообразно по причине большого количества потерь в величине магнитного поля за счёт образования вихревых токов, снижающих индукцию.

Чтобы агрегат работал тихо, важно плотно стянуть пакет пластин, исключив вибрацию между ними в процессе эксплуатации трансформатора.

Различные аппараты могут конструктивно различаться, исходя из предназначения и рабочих характеристик, на которые рассчитан трансформатор.

На чём основан принцип работы

Функционирование агрегата происходит следующим образом:

  • на катушку входа подаётся электроток, создаётся магнитное поле и электродвижущая сила, замыкаемая на сердечнике;
  • в результате на вторичной обмотке наводится свой магнитный поток и электрический ток;
  • различие в количестве витков обмоток изменяет параметры тока, позволяя достигнуть характеристик, обеспечивающих расплавление металла.

Для сварочных работ применяется трансформатор понижающего типа, у которого на входной катушке(первичной обмотке) количество витков превышает выходную(вторичную обмотку).

Принцип работы трансформатора

Сила выходного электротока может регулироваться за счёт подвижной конструкции устройства – путём увеличения или уменьшения зазора между катушками входа и выхода. При раздвижении катушки ток снижается, приближение вызывает увеличение указанной характеристики. Регулирование выполняется вращением рукоятки.

Величина тока подбирается, исходя из толщины и марки свариваемого металла, расположения сварочного шва. Чем толще свариваемые листы металла, тем больше потребуется создать величину тока на выходной катушке аппарата.

Соотношение величины тока с диаметром электрода и толщиной свариваемого металла

Холостой режим

Агрегат может функционировать в двух режимах:

  • нагрузочном;
  • холостого хода.

В процессе сварки создаётся сварочная дуга, соединяющая посредством электрода обмотку на выходе со свариваемым металлом. Мощный сварочный электроток расплавляет свариваемый металл и создаёт неразъёмное соединение. После окончания сварки происходит вторичная цепь размыкается, и трансформатор переходит на холостой ход.

Во входной катушке возникают электродвижущие силы двойного происхождения:

  • благодаря созданию магнитного поля при работе устройства;
  • посредством рассеивания – часть из них отделяется от ЭДС на сердечнике и образуют электроток холостого хода.

Конструкция агрегата выполняется таким образом, чтобы величина напряжения на холостом ходу не представляла опасности для здоровья человека, выполняющего работы с помощью трансформатора.

Значение напряжения на холостом ходу ограничивается 48 В, в некоторых случаях допускается величина до 70 В. В целях безопасности устанавливается ограничивающее устройство, снижающее величину напряжения при превышении указанного значения, работающее в автоматическом режиме.

Дополнительная защита обеспечивается за счёт выполнения заземления аппарата.

Особенности схемы и модификации аппарата

Кроме стандартных устройств, в сварочном трансформаторе могут применяться дополнительные элементы, совершенствующие конструкцию агрегата. Схема может выполняться с использованием:

  • нескольких катушек на выходе;
  • конденсаторов;
  • импульсных стабилизаторов;
  • тиристорных преобразователей.

Схема может дополняться резисторами, регулирующими силу тока, если изменение расстояния между катушками не позволяет добиться необходимых характеристик. Эти элементы могут потребоваться, если предполагается сварка тонкого металла, или мощность оборудования чрезмерно велика.

Особенности расчёта трансформаторов для сварки

Понижение характеристик тока обеспечивается расчётом количества витков на первичной и вторичной обмотках. Параметры напряжения на выходе понижаются относительно входного на величину от 10 до 100 раз.

Чтобы обеспечить необходимые характеристики, число витков на обмотках должно быть тщательным образом рассчитано. Величина погрешности допускается в пределах 3 %.

Каждый аппарат характеризуется собственной величиной коэффициента трансформации, определяемом как частное величины силы тока на входе и выходе. Учитывая расчётные данные, создаётся оборудование с характеристиками, в зависимости от предполагаемых режимов работы и параметров сварочных соединений.

Расчёт выполняется с учётом следующих характеристик и нюансов:

  • эксплуатационных показателей – типа подключённой электросети, регулировочного диапазона, фактической мощности, продолжительности непрерывной работы;
  • диаметра электрода, на который рассчитан аппарат;
  • условий эксплуатации;
  • коэффициента полезного действия агрегата.

Отдельные характеристики из указанных взаимосвязаны между собой.

Разновидности сварочных трансформаторов

Данное оборудование выпускается различных типов, исходя из условий эксплуатации и назначения. Аппараты могут различаться следующими характеристиками:

  • массой и габаритными размерами – от компактных моделей, переносимых на наплечном ремне, до промышленных агрегатов, перемещаемых на колёсах или грузоподъёмными механизмами;
  • величиной напряжения на холостом ходу – в диапазоне от 48 до 70 В;
  • силой тока в пределах от 50 до 400 А. На масштабных производствах могут использоваться модели с величиной данной характеристики до 1000 А;
  • количества фаз электрической сети – модели с одной и тремя фазами;
  • подачей электротока – непрерывно или импульсно;
  • диаметром электродов, на использование которых рассчитан аппарат – от 2 до 6 мм.

Современная промышленность выпускает множество разновидностей сварочных трансформаторов. Бытовой потребитель может подобрать изделие, исходя из особенностей предполагаемой эксплуатации и учитывая ценовую политику производителя.

Цены на бытовые модели сварочных трансформаторов колеблются в пределах от 4 до 20 тысяч рублей, в зависимости от характеристик и изготовителя. Выбор потребителя зависит от его финансовых возможностей и назначения устройства.

Сварочные трансформаторы – оборудование, незаменимое в быту и промышленной сфере. С помощью данных агрегатов можно получать надёжное и неразъёмное соединение, без особенных усилий и сложностей. Ценовая доступность позволяет бытовому пользователю приобрести аппарат для использования в домашних условиях, а в устройстве и принципе работы разобраться не составит особенного труда.

Как выбрать сварочный трансформатор

При выборе оборудования, необходимо учитывать поставленные задачи и, исходя из этого, приобретать модель. Производятся приборы следующих классов:

  • бытовые – для незначительных по объему работ в домашних условиях. Предполагает эксплуатацию в течение до 10 мин., после чего требуется перерыв. Величина сварочного тока не превышает 200 А;
  • профессиональные – применяется при выполнении ремонтов конструкций и рассчитан на продолжительную работу. Показатели сварочного тока – от 200 до 300 А;
  • промышленные – используются на производстве. Предполагают возможность непрерывной эксплуатации в течение суток с незначительными паузами. Производятся со сварочным током от 250 до 500 А.

Кроме класса и величины тока при выборе аппарата следует учитывать номинальное напряжение, на которое он рассчитан. Бытовые сети предполагают величину напряжения 220 В, с возможностью отклонения в ту или иную сторону до 15 процентов.

Еще один важный фактор – стоимость. Каждый должен выбирать, исходя из цены, зависящей от перечисленных ранее критериев и политики изготовителя.

Сварочные трансформаторы – оборудование, незаменимое в быту и промышленной сфере. С помощью данных агрегатов можно получать надежное и неразъемное соединение, без особенных усилий и сложностей. Ценовая доступность позволяет бытовому пользователю приобрести аппарат для использования в домашних условиях, а в устройстве и принципе работы разобраться не составит особенного труда.

Как сделать сварочный трансформатор своими руками

Источник: https://lipetskmash.ru/svarochnye/chto-takoe-svarochnyj-transformator.html

Ток холостого хода трансформатора

Ни один трансформатор не может работать без потерь мощности. Мощность, поступающая на первичную обмотку из сети, не вся доходит до потребителя. Часть ее расходуется на бесполезный нагрев деталей агрегата: обмоток, магнитопровода. Для того, чтобы оценить потери мощности, оценивают ток холостого хода трансформатора (ХХ) и напряжение в режиме короткого замыкания.

Для измерения этих величин проводят опыт холостого хода и короткого замыкания для трансформатора. Рассмотрим подробнее, как это делается.

Методика и теоретические основы проведения опыта

Режим холостого хода трансформатора достигается сравнительно просто. Для этого достаточно отключить нагрузку от всех его обмоток, оставив их разомкнутыми, а затем – включить его в сеть. Для точности эксперимента желательно, чтобы напряжение в сети было равно номинальному для данного агрегата.

Через первичную обмотку протекает ток Io, называемый током ХХ. Его величина не превышает 3-10 % от номинального. Напомним, никакой нагрузки на вторичной обмотке нет, поэтому стоит пояснить процессы, проходящие внутри, чтобы понять: откуда берется этот ток.

Ток ХХ создает магнитный поток Фо в магнитопроводе, пересекающий витки первичной и вторичной обмоток. За счет него на первичной обмотке возникает эдс самоиндукции Е1, во вторичной появляется эдс взаимоиндукции Е2.

Эдс самоиндукции Е1 на первичное напряжение U1 влияет незначительно. Если подключить к ней вольтметр, то он измерит величину U1. А эдс Е2 можно практически считать напряжением U2, поскольку ток ее нагрузки отсутствует. К примеру, напряжение холостого хода сварочного трансформатора порядка 60В, это – эдс Е2. При возникновении дуги Е2 резко снижается до десятка вольт – это величина под нагрузкой U2.

Потери полезной мощности в трансформаторе при его эксплуатации делятся на две составляющие: потери в меди и потери в стали. Под потерями в меди подразумевают мощность, рассеиваемую в качестве тепла в обмотках. При проведении опыта ХХ ток через первичную обмотку достаточно мал, и потерями в меди можно пренебречь.

Работа трансформатора в режиме холостого хода сопровождается расходом мощности на создание замкнутого магнитного потока в его магнитопроводе. Ее и называют мощностью потерь в стали. Она уходит на нагревание пластин магнитопровода. Он собран из отдельных тонких листов специального сплава, изолированных друг от друга лаком. При сборке не используется сварка, только болтовые соединения. Это сделано для минимизации вихревых токов, возникающих из-за того, что магнитный поток переменный.

Если изоляция между пластинами нарушается, то возникающие между ними вихревые токи нагревают магнитопровод. Это приводит к дальнейшему разрушению лакового слоя. Мощность потерь в стали при этом увеличивается, что увеличит потери холостого хода трансформатора.

ЭТО ИНТЕРЕСНО:  Чем генератор отличается от трансформатора

Измерение тока холостого хода

Для проверки тока холостого хода применяются амперметры прямого включения, присоединяемые последовательно с первичной обмоткой. Такое измерение тока производят при напряжении обмотки, равном номинальному.

У эксплуатируемых или вводимых в эксплуатацию трехфазных силовых трансформаторов замеры производятся для трех фаз одновременно или поочередно. Испытанию подлежат агрегаты, мощность которых 1000 кВА и выше.

Измерение мощности потерь в стали

Измерение потерь в магнитопроводе производят также только у мощных агрегатов. Для этого измеряют мощность, которая потребляется первичной обмоткой на холостом ходу. Можно использовать пониженное напряжение, подключаемое к обмотке через ваттметр. Это прибор, способный напрямую измерять мощность.

Использование амперметра и вольтметра (косвенный метод измерения) подразумевает затем вычисление мощности путем умножения их показаний друг на друга. Рассчитанный результат получается искаженным, так как не учитывается коэффициент мощности – косинус угла между током и напряжением.

Холостой ход трансформатора приводит к появлению угла порядка 90 градусов, что весьма существенно.

Ваттметр производит измерение уже с учетом коэффициента мощности, поэтому дорабатывать его показания нет необходимости. Измерение параметров напрямую всегда точнее, чем использование косвенного метода измерений. При наличии амперметра, вольтметра и ваттметра можно рассчитать по их показаниям коэффициент мощности трансформатора:

Cos ϕ = P1/U1∙Io

Производится вычисление из косинуса угла между напряжением и током. Теперь может быть построена векторная диаграмма. Расчет потерь производится по каждой фазе отдельно, для чего используется таблица.

Для измерений обязательно использование именно той схемы, которая применялась на заводе изготовителе (если о ней что-нибудь известно). Полученные значения не нормируются, но обязательно сравниваются с данными предыдущей проверки.

Эта характеристика важна: если потери год за годом повышаются, это означает, что качество изоляции стальных пластин магнитопровода трансформатора ухудшается. Процесс этот необратим, повреждение будет развиваться в процессе эксплуатации, и скоро потребуется ремонт.

Лучше выполнить его в плановом порядке.

Источник: https://voltland.ru/other/tok-kholostogo-khoda-transformatora.html

Реактивное сопротивление трансформатора: формулы расчета

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

Рис. 1. Схема, иллюстрирующая рассеивание магнитных потоков

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

Рис. 2. Устройство трансформатора

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает  магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL =  ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа.

Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали.

С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Рис. 3. Схема режима холостого хода

Формула, применяемая для  расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном  / 100* Uв ном2  Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Отсюда находим:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк р ≈ Uк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

Источник: https://asutpp.ru/reaktivnoe-soprotivlenie-ili-impedans-transformatora.html

Принцип действия понижающего трансформатора

Многие бытовые электроприборы и оборудование функционируют от сети со стандартными 220 В. Однако для низковольтных устройств требуется понизить напряжение.

В качестве примера таких потребителей можно назвать различные конструкции светодиодных лент, разновидности галогенных светильников и другие приборы с аналогичными свойствами. Данную проблему успешно разрешает понижающий трансформатор, приобретенный на рынке электротоваров или изготовленный самостоятельно.

Существует множество моделей с разнообразными характеристиками, существенно облегчающими выбор устройства для конкретных условий эксплуатации.

Конструкция и принцип работы

Какой трансформатор называется понижающим? Основа трансформаторного устройства понижения состоит из ферромагнитного сердечника с расположенными на нем двумя обмотками. Они наматываются медным проводом и разделяются между собой, как первичная и вторичная. Первичная обмотка подключается к сетевому напряжению, а к выходам вторичной подключаются потребители, рассчитанные на низкий ток.

Связь между обмотками осуществляется посредством переменного магнитного потока, наведенного в сердечнике, поскольку прямая электрическая связь отсутствует. В первичной обмотке количество витков гораздо больше, чем во вторичной, что и обеспечивает необходимое снижение напряжения. У большинства моделей все компоненты размещаются в общем корпусе, но существуют и конструкции открытого типа с ограниченной областью применения.

В классическом варианте понижающий трансформатор использует электромагнитную индукцию. Напряжение, подаваемое к первичной обмотке, дает толчок образованию магнитного поля, пересекающего витки во вторичной обмотке.

Это приводит к образованию ЭДС, под влиянием которой и возникает пониженное напряжение. Разница между входным и выходным напряжением определяется количеством витков в каждой из обмоток.

Во время работы теряется некоторое количество электроэнергии, в пределах 3% от общей мощности. Таков в целом принцип работы подобной аппаратуры.

Точные параметры устройства определяются расчетными данными его конструктивных элементов. Возникновение электродвижущей силы возможно лишь под влиянием переменного тока, поэтому и многие бытовые устройства рассчитаны именно на такой ток. Понижающий трансформатор очень часто функционирует совместно с блоками питания, стабилизаторами и другими аналогичными устройствами.

Современные модели оборудуются несколькими выводами от вторичной обмотки, предназначенными для различных видов соединений. В результате, каждый такой прибор приобретает многофункциональность, универсальность и называется понижающим. При изменении схемы подключения, он становится повышающим.

Классификация трансформаторов

Все известные типы трансформаторных устройств бывают различного исполнения и выпускаются в соответствии с их конструкцией и принципами работы.

Среди трансформаторов наиболее известными являются:

  • Тороидальная конструкция (рис. а). Отличается сердечником, изготовленным в форме тора, используется для устройств с небольшими мощностями. В отличие от других моделей, данный трансформатор напряжения имеет малые габариты и массу. Хорошо зарекомендовали себя в радио-электронных схемах. Качественное охлаждение обмотки на протяжении всего сердечника дает возможность получить высокую плотность тока, а показатели токов намагничивания – наиболее низкие.
  • Стержневая конструкция, которая эффективно понижает напряжение (рис. б). Здесь сердечники магнитопровода полностью охвачены обмотками. Эти устройства рассчитаны на среднюю и большую мощность подключаемых приборов. Простота устройства облегчает изоляцию и ремонт обмоток, а при изменении подключения позволяет повысить напряжение. Существенным плюсом считается качественное охлаждение, что позволяет снизить количество проводников в обмотках.
  • Броневая конструкция (рис. в). В ней броней является сам магнитопровод, охватывающий обмотки. Все остальные показатели аналогичны предыдущему стержневому варианту, за исключением их малой мощности. Они проще и дешевле, отличаются меньшим количеством катушек.

Кроме основных конструкций, существуют и другие устройства, например, разные типы многообмоточных трансформаторов. Эти устройства могут выдавать разное выходное напряжение за счет нескольких вторичных обмоток, установленных на сердечнике. Они отличаются количеством витков, которые и регулируют величину напряжения в конкретной обмотке. Наибольшей популярностью пользуются 1-фазные приборы с двумя обмотками понижающего типа.

Каждый понижающий трансформатор отличается количеством фаз, с которыми им приходится работать. Для трехфазных сетей, чаще всего, используются три однофазных устройства, помещенные на общий сердечник. Сумма магнитных потоков всех трех фаз равняется нулю. Соединение приборов осуществляется по схеме звезды или треугольника. Таким образом, получается силовой трансформатор. Для одной фазы предусмотрен простейший однофазный прибор, где фаза и ноль от сети замыкаются на первичной обмотке.

Преимущества и особенности электронных трансформаторов

Традиционные электромагнитные устройства постепенно заменяются электронными понижающими трансформаторами. В их конструкции отсутствуют привычные сердечники и катушки, замененные точными микросхемами, резисторами, конденсаторами и другими компонентами. Эти приборы практически сразу же завоевали широкую популярность среди пользователей электрооборудования, бытовой техники и радиоэлектроники.

Одна из причин такой популярности заключается в компактных размерах электронных трансформаторов, которым уже не требуется слишком много свободного места. Новое оборудование отличается повышенной мобильностью и незначительным весом, что существенно облегчает его установку и дальнейшую эксплуатацию.

Другое преимущество состоит в высоком КПД устройства, не снижающегося из-за его малых размеров. Электронный понижающий трансформатор работает бесшумно, без привычного гула.

Он отличается высокой работоспособностью, отсутствием сбоев и проблем во время наладки, обслуживания и ремонта. При работе с повышенной интенсивностью устройство почти не нагревается, температура корпуса находится в пределах нормы и не опасна для окружающих.

Среди электротехников очень популярны понижающие устройства на 36В, позволяющие эффективно регулировать выходное напряжение.

Каждый понижающий трансформатор, функционирующий на электронной схеме, участвует в обеспечении безопасной эксплуатации электрических сетей. Как правило, это сложные магистрали, с большим количеством сигналов, подаваемых на все участки. Чтобы не допустить сбоев в работе, схема устройства дополняется встроенной системой, защищающей от коротких замыканий.

Подключение и проверка мультиметром

Подключение понижающего трансформатора совсем не сложно (рис. 1). На корпус устройства нанесена маркировка, указывающая клеммы, куда подключается ток сетевых проводов и нагрузки. Провод фазы подключается к выходу, обозначенному L или 220, провод нуля подключается к клемме N или 0, после чего задача, как подключить понижающий трансформатор 220, считается решенной. У разных производителей эта маркировка может отличаться.

Проверить понижающие трансформаторы на исправность и работоспособность возможно с помощью мультиметра, предназначенного для замеров электрических параметров (рис. 2). При отсутствии маркировки, необходимо установить расположение концов каждой из обмоток.

С этой целью мультиметр переводится в режим замера сопротивления, а щупы поочередно прикладываются к выходам устройства. После того как обмотки определены, необходимо установить среди них первичную и вторичную.

В первичной обмотке сопротивление будет выше, а во вторичной – ниже.

Источник: https://crast.ru/instrumenty/princip-dejstvija-ponizhajushhego-transformatora

Понравилась статья? Поделиться с друзьями:
Электро Дело
Какой провод фаза

Закрыть
Для любых предложений по сайту: [email protected]