Люминесцентные лампы. Виды и работа. Применение и маркировка
Свою историю люминесцентные лампы начинают с газоразрядных приборов, изобретенных в XIX веке. По светоотдаче и экономичности они значительно превосходят лампы накаливания. Применяются для освещения жилых помещений, учреждений, больниц, спортивных сооружений, цехов производственных предприятий.
Принцип работы и основные свойства
Чтобы произошел разряд, к колбе с противоположных сторон подсоединены электроды. Напрямую подключать газоразрядные лампы к сети нельзя. Обязательно используется пусковые регулирующие устройства – балласты.
Если число включений не превышает 5 раз в день, то люминесцентный источник гарантированно прослужит 5 лет. Это почти в 20 раз больше, чем для ламп накаливания.
Среди недостатков люминесцентных ламп выделяют:
- Нестабильную работу при низкой температуре.
- Необходимость в правильной утилизации из-за паров ртути.
- Присутствие мерцания, для борьбы с которым требуется усложнять схему.
- Сравнительно большие размеры.
Однако люминесцентные лампы чрезвычайно экономичны, поскольку потребляют мало энергии, дают больше света и дольше работают. Не удивительно, что они заменили обычные лампочки почти во всех учреждениях и на предприятиях.
Разновидности люминесцентных ламп
Лампы бывают низкого и высокого давления. Трубки низкого давления устанавливают в помещениях, высокого давления – на улицах и в мощных осветительных приборах.
Ассортимент люминесцентных осветительных приборов довольно широк. Они отличаются размером и формой трубки, типом цоколя, мощностью, цветовой температурой, светоотдачей и другими характеристиками.
В зависимости от формы трубки люминесцентные лампы бывают:
- Трубчатыми (прямыми), обозначаются буквой Т или t, имеют прямую форму.
- U-образными.
- Кольцевыми.
- Компактными, применяются для светильников.
Прямые, U-образные и кольцевые типы объединят в один вид линейных ламп.
Наиболее часто встречаются осветительные приборы в форме трубок. После буквы T или t стоит число. Оно указывает на диаметр трубки, выраженный в восьмой части дюйма.
Т8 означает, что диаметр составляет 1 дюйм или 25,4 мм, Т4 – 0,5 дюйма или 12,7 мм, Т12 – 1,5 дюйма или 38,1 мм.
Чтобы сделать лампу более компактной, ее колбу изгибают. Для запуска таких ламп используют встроенный электронный дроссель. Цоколь делают либо под стандартные лампы, либо под специальные светильники.
Цоколь люминесцентной лампы может быть типа G (штырьковый с двумя контактами) или типа E (винтовой). Последний тип применяется в компактных моделях. Цифры после буквы G указывают на расстояние между контактами, а после буквы E – диаметр в миллиметрах.
Маркировка
Отечественная и международная маркировка отличается. Российская берет свое начало со времен Советского Союза, в ней используются буквы кириллицы. Значения букв следующие:
- Л лампа;
- Д дневной свет;
- Б белый;
- Т теплый;
- Е естественный;
- Х холодный.
Зная обозначение можно без проблем прочитать маркировку. Например, ЛХБ будет означать лампу с холодным белым светом.
Для компактных моделей впереди ставят букву К. Если в конце маркировки стоит Ц, то применяют люминофор с улучшенной цветопередачей. Две буквы Ц означают, что цветопередача самого высокого качества.
Если лампа дает цветной свет узкого спектра, то после Л стоит соответствующая буква. Например, ЛК означает источник красного свечения, ЛЖ – желтого, и так далее.
Согласно международной маркировке на лампе пишут мощность и через косую черту трехзначное число, которое определяет индекс цветопередачи и цветовую температуру.
Первая цифра числа указывает на цветопередачу, умноженную на 10. Чем больше цифра, тем точнее цветопередача. Последующие две цифры говорят о цветовой температуре, выраженной в кельвинах и деленной на 100. Для дневного света цветовая температура составляет 5-6,5 тысяч K, поэтому лампа с маркировкой 865 будет означать дневной свет с высокой цветопередачей.
Для жилья используют лампы с кодом 827, 830, 930, для внешнего освещения с кодом 880, для музеев с кодом 940. Подробнее о значении маркировки можно узнать в специальных таблицах.
Мощность традиционно обозначается буквой W. В источниках света общего назначения шкала мощности изменяется от 15 до 80 Вт. У ламп специального назначения мощность может быть менее 15 Вт (маломощные) и более 80 Вт (мощные).
Применение
Люминесцентные лампы с всевозможными оттенками белого цвета применяют для освещения помещений и улиц. С их помощью подсвечивают растения в оранжереях и теплицах, аквариумы, музейные экспонаты.
Наиболее распространенные трубки Т8 с цоколем G13 мощностью 18 и 36 Вт. Их применяют в учреждениях и на производстве. Они легко заменяют советские лампы типа ЛБ/ЛД-20 и ЛБ/ЛД-40.
Поскольку люминесцентные источники слабо нагреваются, их можно применять во всех типах светильников. Выбирая соответствующий цоколь, мощность и размер, их устанавливают в бра, подвесные люстры, ночники. Применяют на кухне, ванне, гаражах, рабочих кабинетах.
Выпускают люминесцентные лампы, излучающие ультрафиолетовый свет. Их устанавливают в лабораториях, исследовательских центрах, медицинских учреждениях – везде, где требуется этот тип излучения.
Люминофор может давать цветной свет (желтый, голубой, зеленый, красный и так далее). Такие источники применяют в дизайнерских целях для художественного оформления витрин, подсветки вывесок, фасадов зданий.
Чтобы люминесцентный прибор прослужил максимально долго, надо обеспечить ему стабильное напряжение и редкое включение/выключение. Поскольку в колбе люминесцентного источника света содержится ртуть, ее нельзя выбрасывать вместе с другим бытовым мусором. Люминесцентные лампы необходимо сдавать в специальные пункты приема. Это могут быть спасательные службы, магазины, продающие электротовары, или компании по утилизации опасного мусора.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektroobustrojstvo/osveshhenie/liuminestsentnye-lampy/
Лампы люминесцентные
Компания Электросистемы предлагает к продаже как светильники с КЛЛ, так и сами люминесцентные лампы торговых марок TDM, Световые технологии, LEDEL и др.
Если Вы хотите приобрести люминесцентные лампы в розницу по низкой цене, Вы можете сделать это в магазине Электромаркет г. Хабаровск или в магазинах Электросистемы в Комсомольске-на-Амуре, Благовещенске, Биробиджане. Адреса указаны в разделе сайта КОНТАКТЫ.
Если Вы хотите заключить договор на оптовые поставки по индивидуальным условиям, Вам нужно связаться с менеджерами по телефонам, указанным для Вашего региона в разделе сайта КОНТАКТЫ.
Принцип работы люминесцентной лампы
При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения.
Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет.
Изменяя состав люминофора можно менять оттенок свечения лампы.
Люминесцентные лампы с термокатодом относятся к типу газоразрядных источников света. Наиболее распространены ртутные люминесцентные лампы, в которых в парах ртути происходит разряд, излучающий в ультрафиолетовом спектре.
Основное преимущество люминесцентных ламп перед лампами накаливания — большая световая отдача и более долгий срок службы (до 20 раз больше). Замена люминесцентными лампами традиционных ламп накаливания дает ощутимую выгоду за счет экономии электроэнергии.
Хотя есть у этих ламп и недостатки. Самые существенные:
- большие размеры,
- неустойчивая работа при низких температурах,
- сложность схемы включения, наличие стробоскопического эффекта,
- необходимость в утилизации установленным способом.
Параметры люминесцентных ламп
Технические характеристики
- Лампы люминесцентные типа лд, лб 18, 20, 36, 40 — относятся к типу ламп низкого давления, они работают в электрических сетях переменного тока напряжением 127 — 220 В, частотой 50 Гц.
- Мощность: — от 18 до 80 Вт.
- Световой поток: — от 880 до 5200 лм.
- Срок службы и кпд люминесцентных ламп во много раз выше, чем у ламп накаливания.
Для правильной утилизации люди иногда ищут в сети информацию о том, сколько весит люминесцентная лампа. По условиям утилизации отработанные лампы не должны попадать в контейнеры с бытовыми отходами. Они хранятся отдельно и вывозятся для уничтожения специальными организациями. Прием ламп у населения осуществляется по весу. Средний вес люминесцентной лампы — около 170 грамм.
На данный момент существует огромный выбор форм, длины и размеров люминесцентных ламп, который удовлетворит любым запросам к комплектации систем освещения самых разных помещений.
Виды и типы люминесцентных ламп
Производители люминесцентных ламп выпускают самые разные формы и виды своей продукции, рассчитанные на использование в различных сферах человеческой жизни. Наиболее распространены следующие:
- Люминесцентные трубчатые лампы (линейные) Они выполнены в форме прямой трубки. На фото люминесцентные лампы узнаются сразу именно за счет трубчатой формы цоколя. Диаметр трубки обозначается так называемым Т-размером. После буквы Т идет значение диаметра в восьмых частях дюйма. Например, существуют люминесцентные лампы т4 (t4 — в иностранной литературе и обозначениях), т5 (t5), т8 (t8) и т. д. Так маркировка T8 обозначает размер в 26мм, а T12 — в 38 мм.
- U-образная люминесцентная лампа — имеет укороченную длину и цоколи с одной стороны.
- Также различают лампы люминесцентные кольцевые, с четырехштырьковым цоколем. Кольцо лампы бывает трех различных диаметров.
- Лампы люминесцентные ультрафиолетовые — альтернатива лампам накаливания, они применяются в различных типах облучателей, использующих фотохимическое и биологическое действие ультрафиолетового света.
- Компактные люминесцентные лампы (для светильников), имеющие меньшие размеры по сравнению с обычной колбчатой лампой. Иногда они обозначаются аббревиатурой ККП. В продаже можно встретить люминесцентные энергосберегающие компактные лампы (ККП), специально предназначенные для установки в стандартный патрон для ламп накаливания. В этом случае они имеют встроенный электронный балласт.
Значительно меньшая температура нагрева позволяет использовать компактные люминесцентные лампы большой мощности даже в бра, светильниках и люстрах, где использование ламп накаливания соответствующей мощности просто невозможно из-за риска оплавления пластмассовых деталей патрона.
Маркировка люминесцентных ламп:
- Л — люминесцентная лампа;
- Б — белого цвета;
- Д — дневного цвета;
- У — универсальная.
- Буква G указывает на тип цоколя.
- Буква W — на напряжение, например, лампа люминесцентная 6w.
Так, например, люминесцентная лампа 8w g5 расшифровывается как лампа на 8 ватт, тип цоколя — G5. Буквой иногда может обозначаться и торговая марка. Например, люминесцентные лампы ge — в данном случае маркировка указывает на производителя GeneralElectrics.
Применение люминесцентных ламп охватывает многие сферы человеческой деятельности: освещение жилых и общественных помещений. Также используют люминесцентные лампы для растений, аквариума, подсветки рекламных конструкций, зданий, аварийное освещение, и т.д.
Источник: https://es-dv.ru/lampy/6-lampy-lyuminescentnye.html
Лампы: в чём их отличия и как выбирать
При выборе типа лампы, используемой в светильнике, надо руководствоваться как техническими характеристиками, так и дизайнерской задачей. С технической точки зрения учитываются несколько факторов.
Чтобы помочь потребителю разобраться в данных вопросах, рассмотрим, как устроены лампы, их достоинства и недостатки.
Энергосберегающая лампа
Компактная люминесцентная лампа состоит из 3 основных компонентов: цоколя, люминесцентной лампы и электронного блока. Цоколь предназначен для подключения лампы к сети. Электронный блок (ЭПРА: электронный пускорегулирующий аппарат) обеспечивает зажигание (пуск) и дальнейшее горение люминесцентной лампы.
ЭПРА преобразует сетевое напряжение 220 В в напряжение, необходимое для работы люминесцентной лампы. Благодаря ЭПРА энергосберегающая лампа зажигается без мерцания и работает без мигания свойственного обычным люминесцентным лампам. Люминесцентная лампа наполнена парами ртути и инертным газом (аргоном), а её внутренние стенки покрыты люминофорным покрытием.
Под действием высокого напряжения в лампе происходит движение электронов. Столкновение электронов с атомами ртути образует невидимое ультрафиолетовое излучение, которое, проходя через люминофор, преобразуется в видимый свет.
Благодаря механизму действия энергосберегающих ламп удаётся добиться снижения потребления электроэнергии на 80% по сравнению с лампами накаливания при аналогичном световом потоке. Помимо пониженного потребления световой энергии энергосберегающие лампы выделяют меньше тепла, чем лампы накаливания.
Незначительное тепловыделение позволяет использовать компактные люминесцентные лампы большой мощности в хрупких бра, светильниках и люстрах, в которых от ламп накаливания с высокой температурой нагрева может оплавляться пластмассовая часть патрона, либо сам провод. Из-за более равномерного распределение света энергосберегающие лампы снижают утомляемость человеческого глаза.
Люминесцентные лампы
Люминесцентная лампа – это газоразрядная лампа низкого давления. Ультрафиолетовое излучение, возникающее в результате газового разряда невидимо для человеческого глаза. Оно преобразуется люминофорным покрытием в видимый для нас свет. Принцип работы люминесцентной лампы похож на компактные энергосберегающие лампы (см. выше).
Лампы накаливания
Лампы накаливания традиционно используются на протяжении многих лет и по-прежнему являются наиболее широко применяемым источником света. Они дают приятный свет со спектром, сдвинутым в инфракрасную область. Цветные лампы прекрасно подходят для создания декоративных специальных эффектов, а зеркальные лампы, излучающие направленный свет, позволяют создать необходимый световой акцент.
Несмотря на многообразие типоразмеров ламп накаливания, отличающихся номинальным напряжением, мощностью и родом тока, все они объединены единым физическим принципом получения видимого излучения (нагрев электрическим током вольфрамовой нити до температуры 2200-2800°С) и сходством применяемых во всех конструкциях основных составляющих элементов: стеклянная колба; вольфрамовая нить; электроды.
Зеркальная лампа
Верхняя часть колбы зеркальной лампы покрыта отражающим свет слоем. Зеркальное покрытие защищает конструкцию лампы от перегрева, и в то же время позволяет самой лампе светить ярче. При этом другая часть колбы остается матовой, а свет от нее равномерный, рассеянный. Срок службы такой лампы 600-1000 часов.
Галогенные лампы
Галогенные лампы излучают приятный белый свет с отличной цветопередачей. Основаны на том же принципе, что и лампы накаливания, но с применением «галогенного цикла». Вольфрамовая нить накаливания окружена инертным газом, содержащим галогениды.
Благодаря специально созданным условиям вылетающие частички нити возвращаются обратно, что значительно продлевает срок службы лампочки и предотвращает почернение колбы. Если к галогенной лампе холодного света добавить отражатель, то освещаемые такой лампой объекты не будут нагреваться. Кроме того, галогенная лампа дает больше света, чем лампа накаливания при одинаковой мощности.
При использовании галогенных ламп обратите внимание на одну особенность – эти лампы очень чувствительны к перепадам напряжения.
Параметры | люминисцентные лампы | компактные энергосберегающие лампы | металлогалогенные лампы | зеркальная лампа | галогенные лампы |
Срок службы, час* | 3000-6000 | 6000-15000 | 1000 | до 1000 | |
Световой поток, Лм** | 110-7500 | 100-10000 | 1000-30000 | 70-18000 | 30-11000 |
Световая отдача лм/Вт*** | 25-104 | 25-80 | 50-95 | 7-18 | до 30 |
Цветовая температура указывается в градусах Кельвина**** | 2700-6500 | 3000-6000 | 2500-2900 | 2700-4000 | |
Недостатки | большие габариты, наличие ртути, необходимость специальной аппаратуры включения | наличие ртути, необходимость специальной аппаратуры включения, пульсации светового потока | низкая светоотдача, малый срок службы | ||
Достоинства | высокая световая отдача, большой срок службы | компактность, хорошая цветопередача | идеальная цветопередача, простота включения, дешевизна | ||
Основные области применения лампы | внутреннее освещение административных помещений, магазинов и т.д. | архитектурное, художественное освещение, акцентир. освещение | освещение жилых помещений | архитектурное, художественное освещение, акцентир. освещение |
* Зависит от стабильности напряжения в сети, также повысить срок службы можно используя схемы для плавного включения ламп. ** Световым потоком называется вся мощность излучения источника света, оцениваемая по световому ощущению глаза человека и измеряется в люменах. *** Световая отдача показывает с какой экономичностью потребляемая электрическая мощность преобразуется в свет.
Теоретически достигаемая максимальная величина при полном преобразовании энергии в видимый свет составляет 683 лм/Вт. Реально достижимые значения, разумеется, значительно ниже и находятся между 10 лм/Вт и 150 лм/Вт.
**** Цветовая температура любого источника электромагнитных волн, в том числе световых, определяется путем сопоставления спектральных характеристик источника и абсолютно черного тела.
Абсолютно черное тело (излучатель Планка) – тело, которое поглощает все падающие на него излучения, независимо от длины волны и направления излучения. Цветовая температура указывается в градусах Кельвина (обозначение К), отсчитываемых от абсолютного нуля. Шкала Кельвина отличается от шкалы Цельсия только положением нуля: положение нуля на шкале Кельвина на 273 градуса ниже нуля по Цельсию.
Она, таким образом, выше на 273 градуса, чем та же температура, выраженная в градусах Цельсия.
Источник: http://www.dizar.ru/company/news/lampy_v_chyem_ikh_otlichiya_i_kak_vybirat/
Устройство люминесцентной лампы – Люминесцентная лампа — Википедия
Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.
Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.
При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.
Устройство люминесцентной лампы
Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.
Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.
Устройство лампочки
Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.
На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.
Схема
Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.
Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.
Схема подключения люминесцентных ламп без дросселя и стартера
В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:
- подключение с применением электромагнитного балласта и стартера;
- подключение с электронным пускорегулирующим аппаратом.
Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.
Схема подключения лампы с дросселем и стартером
Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.
Как загорается люминесцентная лампа?
Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:
- на электроды, расположенные на цокольных штырях, подаётся напряжение;
- высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
- ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
- после остывания стартерных контактов происходит их полное размыкание;
- самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
- проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.
Лампы спецназначения
Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.
Блок 1
Для чего нужен дроссель в люминесцентной лампе
Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.
В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:
- 9 Вт — для стандартной энергосберегающей лампы;
- 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
- 18 w — для настольных осветительных приборов;
- 36 Вт — для люминесцентного светильника с малыми показателями мощности;
- 58 Вт — для потолочных светильников;
- 65 Вт — для многоламповых приборов потолочного типа;
- 80 Вт — для мощных осветительных приборов.
При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.
Принцип работы стартера люминесцентной лампы
Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.
Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.
Схема работы стартера
Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.
Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.
Устройство и принцип работы люминесцентного светильника
Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.
Источник: https://i-flashdrive.ru/raznoe/ustrojstvo-lyuminescentnoj-lampy-lyuminescentnaya-lampa-vikipediya.html
Лампа 20W ЛД 20-2 G13 L=600mm D=32mm Lisma | СветЭлектроСнаб
Люминесцентные лампы T8 с цоколем G13 Артикул: 00000033
- Производитель: Lisma
- Мощность: 20 Вт
- Цветность:
ЛАМПЫ ЛЮМИНЕСЦЕНТНЫЕ ДВУХЦОКОЛЬНЫЕ
Лампы люминесцентные серии ЛБ, ЛД — лампы люминесцентные низкого давления.
Предназначены для освещения закрытых помещений, а также для наружной установки, работают в электрических сетях переменного тока напряжением 127 — 220 В, частотой 50 Гц и включаются в сеть вместе с соответствующей пускорегулирующей аппаратурой, в схемах стартерного зажигания. Тип цоколя люминесцентной лампы G13. Все люминесцентные лампы отличаются повышенной световой отдачей, небольшим потреблением энергии и очень длительным сроком службы.
Маркировка люминесцентных ламп: Л — люминесцентная лампа; Б — белого цвета; Д — дневного цвета; У — универсальная. Исполнение: 1 — прямой стержень; 2 — U-образный стержень Срок службы-12 000 час
Технические характеристики лампы ЛД-20 -2
Модель | Мощность ламп, Вт | Цоколь | Световой поток, лм | L, мм | D, мм |
ЛД 20-2 | 20 | T8 G13 | 1060 | 604 | 32 |
Рекомендации по эксплуатации.
Лампы должны эксплуатироваться при температуре окружающего воздуха от 10 до 35°С. Положение ламп при эксплуатации произвольное. Лампы мощностью 20 Вт должны эксплуатироваться при напряжении сети 220 В со стартерными ПРА по ГОСТ Р МЭК 921 и стартерами по ГОСТ Р МЭК 60155 . Допускается включение ламп в электрическую сеть с использованием электронных ПРА соответствующей мощности.
Внимание!
Лампы, отслужившие свой срок службы, подлежат обязательной утилизации как приборы, содержащие ртуть.
Ссылки
Источник: https://svetelectrosnab.ru/items_1493.htm
Лампы газоразрядные
Газоразрядная лампа – устройство, в котором создается свечение при помощи электрического разряда. Состоит источник света из колбы, цоколя, а также горелки. В центральной части располагается основной электрод, а под ним находится специальный токоограничительный резистор. Непосредственно электрические разряды происходят в трубке. В разрядных лампах могут использоваться разные газы: пары металлов (ртути или натрия), инертные газы (неон, ксенон и другие), а также их смеси.
По источнику света, выходящего наружу и используемого человеком,
газоразрядные лампы делятся на:
- люминисцентные лампы (ЛБ, ЛД), в которых в основном наружу выходит свет от покрывающего лампу слоя люминофора, возбуждаемого излучением газового разряда;
- газосветные лампы, в которых наружу выходит сам свет от газового разряда;
- электродосветные лампы, в которых используется свечение электродов, возбуждённых газовым разрядом.
По величине давления разрядные лампы делятся на:
- Лампы газоразрядные высокого давления— лампа ДРЛ, ДНАТ(Наибольшей эффективностью, на сегодняшний день, обладают натриевые лампы (ДНаТ), они работают в парах натрия и имеют эффективность 150 лм/Вт. Подавляющее большинство разрядных ламп— это ртутные лампы, они работают в парах ртути. Среди ртутных ламп можно упомянуть дуговые ртутные люминисцентные лампы (ДРЛ).
Кроме этого, широко распространены металлогалогенные лампы (МГЛ или ДРИ)— в них используется смесь паров ртути, инертных газов и галогенидов металлов. Меньше распространены безртутные разрядные лампы, содержащие инертные газы: ксеноновые лампы (ДКсТ), неоновые лампы и другие).
- лампы газоразрядные низкого давления— люминисцентная лампа(Люминесцентная газоразрядная лампа может выпускаться с различной конфигурацией.
Наиболее распространенными считаются кольцевые и панельные типы. Средняя мощность люминесцентных ламп составляет 100 Вт. При этом самые компактные модели выпускаются на 5 Вт. В свою очередь, максимум показатель мощности может доходить до 80 Ватт. Минимальная длина цоколя равняется 8 см, а большие кольцевые люминесцентные лампы производятся с размером 15 см.
Существуют различные цоколи со следующими маркировками: H23, G24, 2G7 и 2G13. В свою очередь, патроны выпускаются классов Е14 и Е27. Как правило, все модели имеют встроенный электронный пускорегулирующий аппарат. По спектрам свечения люминесцентные лампы делятся на модели с желтым, белым, синим и зелеными цветами).
Фото | Наименование и Описание | Цена, руб./шт. |
Ртутная лампа ДРЛ 125Вт Е27 (21 шт) Лисма | 78.00 | |
Ртутная лампа ДРЛ 250Вт М Е40 (21 шт.) Лисма | 143.00 | |
Ртутная лампа ДРЛ 400Вт М Е40 (24 шт.) Лисма | 189.00 | |
Лампа ртутно-вольфрамовая ДРВ 160Вт Е27 | 40.00 | |
Ртутно-вольфрамовая лампа Световые решения ДРВ 160Вт Е27 | 143.00 | |
Ртутно-вольфрамовая лампа Световые решения ДРВ 250Вт Е40 | 228.00 | |
Ртутно-вольфрамовая лампа Световые решения ДРВ 500Вт Е40 | 344.00 | |
Натриевая лампа Световые решения ДНАТ 70Вт Е27 | 290.00 | |
Натриевая лампа Световые решения ДНАТ 100Вт Е40 | 298.00 | |
Натриевая лампа ДНАТ 150Вт Е40 | 299.00 | |
Натриевая лампа Световые решения ДНАТ 250Вт Е40 | 315.00 | |
Металлогалогенная лампа IEK ДРИ 150Вт 4200К RX7s MHN-TD | 395.00 | |
Металлогалогенная лампа Световые Решения ДРИ 250 Е40 St СР | 363.00 |
Источник: https://www.ekc-nn.ru/2017-06-19-11-52-12.html
Состав ртутьсодержащих ламп
Расчёт количества отработанных люминесцентных ламп трубчатых и ртутных ламп для наружного освещения проводится по формуле:
N = Sni x ti/ki, шт./год
M = Sni ×mi ×ti ×10-6/ki, т/год
где: ni — количество установленных лампi-той марки, шт.;
ti — фактическое количество часов работы лампi-той марки, час/год;
ki — эксплуатационный срок службы лампi-той марки, час;
mi — вес одной лампы, г.
Усредненный состав ртутьсодержащих ламп:
- стекло — 92 %;
- ртуть — 0.02 %
- другие металлы — 2 %
- прочее — 5.98 %
Исходные данные для расчета.
Тип лампы | Эксплуатационный срок службы ламп, час | Вес лампы, г | Примечание |
ki | mi | ||
ЛБ 4 | 6000 | 25 | Лампы разрядные низкого давления люминесцентные |
ЛБ 4-2 | 6000 | 24 | |
ЛБ 6 | 7500 | 32 | |
ЛБ 6-2 | 6000 | 32 | |
ЛБ 8 | 7500 | 40 | |
ЛБ 4 | 6000 | 25 | |
ЛБ 4-2 | 6000 | 24 | |
ЛБ 6 | 7500 | 32 | |
ЛБ 6-2 | 6000 | 32 | |
ЛБ 8 | 7500 | 40 |
ЛБ 8-5 | 6000 | 38 | |
ЛБ 13 | 7500 | 75 | |
ЛБ 13-2 | 6000 | 68 | |
ЛБ 15-1 | 15000 | 118 | |
ЛБ 15-Э | 15000 | 118 | |
ЛБ 18-1 | 12000 | 110 | |
ЛБ 18-Э | 12000 | 110 | |
ЛБ 20-1 | 15000 | 170 | |
ЛБ 20-2 | 15000 | 170 | |
ЛБ 20-Э | 15000 | 170 | |
ЛБ30-1 | 15000 | 190 | |
ЛБ 30-Э | 15000 | 190 | |
ЛБ 36 | 12000 | 210 | |
ЛБ 36-Э | 12000 | 210 | Лампы разрядные |
ЛБ 36-1Э | 12000 | 210 | низкого давления |
ЛБ 40 | 12000 | 210 | люминесцентные |
ЛБ 40-1 | 15000 | 320 | |
ЛБ 40-1Ж | 4000 | 320 | |
ЛБ 40-Э | 15000 | 320 | |
ЛБ 40-1Э | 15000 | 320 | |
ЛБ 58 | 12000 | 290 | |
ЛБ 65 | 12000 | 290 | |
ЛБ 65-1 | 15000 | 450 | |
ЛБ 80 | 12000 | 450 | |
ЛБ 80-1 | 12000 | 450 | |
ЛБА 40-1 | 13000 | 320 | |
ЛБЕ 10 | 6000 | 70 | |
ЛБЕ 15 | 6000 | 100 | |
ЛБК 22 | 7500 | 205 | |
ЛБК 32 | 7500 | 300 | |
ЛБК 40 | 7500 | 405 | |
ЛБР 3 | 1000 | 20 | |
ЛБР 4 | 1000 | 25 | |
ЛБР 4-2 | 1000 | 25 | |
ЛБР 20 | 7500 | 175 | |
ЛБР 40 | 11000 | 330 | |
ЛБР 65 | 11000 | 390 | |
ЛБР 80 | 11000 | 390 | |
ЛВС 20 | 12000 | 175 | |
ЛБС 40 | 12000 | 340 | |
ЛБУФ 36 | 10000 | 240 | |
ЛБЦТ 36 | 15000 | 210 | |
ЛБЦТ 40 | 13000 | 320 | |
ЛБ и8Б3 | 7500 | 50 | |
ЛБ U30 | 15000 | 300 | |
ЛГ 20 | 7500 | 170 | |
ЛГ 40 | 10000 | 320 | |
ЛД 16 | 15000 | 118 | |
ЛД 20 | 13000 | 170 | |
ЛД 30 | 15000 | 190 | |
ЛД 40 | 15000 | 320 | |
ЛД 40-1 | 15000 | 320 | |
ЛД 65 | 13000 | 450 | |
ЛД 80 | 12000 | 450 | |
ЛД 80-1 | 12000 | 450 | |
ЛДС 20 | 12000 | 175 | |
ЛДС 40 | 12000 | 340 | |
ЛДЦ 15-1 | 15000 | 118 | |
ЛДЧ 15-Э | 15000 | 118 | |
ЛДЦ 18 | 12000 | 110 | Лампы разрядные низкого давления люминесцентные |
ЛДЦ 18-Э | 12000 | 110 | |
ЛДЦ 20 | 13000 | 170 | |
ЛДЦ 20-Э | 13000 | 170 | |
ЛДЦ 30-1 | 15000 | 190 | |
ЛДЦ 30-Э | 15000 | 190 | |
ЛДЦ 36 | 15000 | 210 | |
ЛДЦ 36-Э | 12000 | 210 | |
ЛДЦ 30-1Э | 12000 | 210 | |
ЛДЦ 40-1 | 15000 | 320 | |
ЛДЦ 40-Э | 15000 | 323 | |
ЛДЦ 40-1Э | 15000 | 320 | |
ЛДЦ 65 | 13000 | 450 | |
ЛДЦ 80 | 12000 | 450 | |
ЛДЦА 40-1 | 13000 | 320 | |
ЛДЦС 20 | 12000 | 175 | |
ЛДЦС 40 | 12000 | 340 | |
ЛДЦУФ 40 | 13000 | 400 | |
ЛЕЦ 8 | 7500 | 40 | |
ЛЕЦ 13 | 7500 | 70 | |
ЛЕЦ 16 | 7500 | 150 | |
ЛЕЦ 18 | 12000 | 110 | |
ЛЕЦ 18-Э | 12000 | 110 | |
ЛЕЦ 20 | 13000 | 130 | |
ЛЕЦ 20-1 | 13000 | 170 | |
ЛЕЦ 36 | 12000 | 210 | |
ЛЕЦ 36-Э | 12000 | 210 | |
ЛЕЦ 40-1 | 13000 | 320 | |
ЛЕЦ 40И | 7500 | 170 | |
ЛЕЦ 58 | 12000 | 290 | |
ЛЕЦ 60И | 10000 | 320 | |
ЛЕЦ 65 | 13000 | 450 | |
ЛЕЦ U22 | 7500 | 180 | |
ЛЕЦ U30 | 15000 | 300 | |
ЛЕЦК 22 | 75000 | 205 | |
ЛЖ 40 | 10000 | 320 | |
ЛЗ 40 | 10000 | 320 | |
ЛК 40 | 10000 | 320 | |
ЛР 40 | 10000 | 320 | |
ЛР 40-1 | 15000 | 320 | |
ЛС 15 | 15000 | 120 | |
ЛС 30 | 15000 | 200 | |
ЛТБ 15 | 15000 | 118 | |
ЛТБ 20 | 13000 | 170 | |
ЛТБ 30 | 15000 | 190 | |
ЛТБ 40-1 | 15000 | 320 | |
ЛТБ 65 | 13000 | 450 | |
ЛТБ 80 | 12000 | 450 | Лампы разрядные низкого давления люминесцентные |
ЛТБ 40Б3 | 7000 | 325 | |
ЛТБ 40Б3-1 | 7000 | 325 | |
ЛТБС 20 | 12000 | 175 | |
ЛТБС 40 | 12000 | 340 | |
ЛТБЦЦ 8 | 7500 | 40 | |
ЛТБЦЦ 13 | 7500 | 70 | |
ЛТБЦ 20 | 13000 | 130 | |
ЛТБЦЦ 20-1 | 13000 | 170 | |
ЛТБЦЦ 40 | 13000 | 320 | |
ЛТБЦЦ 40И | 7500 | 170 | |
ЛТБЦЦ 60И | 10000 | 320 | |
ЛТБЦЦК 22 | 7500 | 205 | |
ЛТБЦЦК 32 | 7500 | 300 | |
ЛТБЦЦК 40 | 7500 | 405 | |
ЛТБЦЦК 80 | 8000 | 405 | |
ЛУФК 22 | 5000 | 205 | |
ЛУФК 32 | 5000 | 300 | |
ЛХБ 15 | 15000 | 118 | |
ЛХБ 20 | 13000 | 170 | |
ЛХБ 30 | 15000 | 190 | |
ЛХБ 40-1 | 15000 | 320 | |
ЛХБ 86 | 13000 | 450 | |
ЛХБ 80-1 | 13000 | 450 | |
ЛХБС 20 | 12000 | 175 | |
ЛХЕ 40 | 5200 | 400 | |
КЛ7/ТБЦ | 5000 | 40 | |
КЛ9/ТБЦ | 5000 | 45 | |
КЛ11/ТБЦ | 5000 | 55 | |
КЛС9/ТБЦ | 5000 | 470 | |
КЛС13/ТБЦ | 5000 | 470 | |
КЛС18/ТБЦ | 5000 | 520 | |
КЛС25/ТБЦ | 5000 | 600 | |
ДБ 15 | 3000 | 75 | |
ДБ 30-1 | 5000 | 150 | |
ДБ 24 | 7500 | 750 | |
ДБ 60 | 3000 | 150 | |
ДРБ 8 | 5000 | 65 | Лампы разрядные высокого давления |
ДРБ 8-1 | 5000 | 34 | |
ДРЛ 250(6)-4 | 12000 | 400 | |
ДРЛ 250(10)-4 | 12000 | 400 | |
ДРЛ 250(14)-4 | 12000 | 400 | |
ДРЛ 400(6)-4 | 15000 | 400 | |
ДРЛ 400(10)-4 | 15000 | 400 | |
ДРЛ 400(12)-4 | 15000 | 400 | |
ДРЛ 700(6)-3 | 20000 | 400 | |
ДРЛ 700(10)-3 | 20000 | 400 | |
ДРЛ 700(12)-3 | 20000 | 400 | |
ДРЛ 1000(6)-3 | 18000 | 400 | |
ДРЛ 1000(10)-3 | 18000 | 400 | |
ДРЛ 1000(12)-3 | 18000 | 400 | |
ЛУФ 15 | 4000 | 118 | |
ЛУФ 80 | 4000 | 37 | |
ЛУФ 80-1 | 4000 | 7 | |
ЛУФ 80-2 | 7500 | 7 | |
ЛЭ 15 | 5000 | 75 | Лампы разрядные низкого давления эритемные (ультрафиолетовое излучение) |
ЛЭ 30 | 5000 | 120 | |
ЛЭР 40 | 3000 | 300 |
Литература
- Каталог«Лампы разрядные низкого давления люминесцентные», Информэлектро, 1986 г.
- Каталог«Лампы разрядные высокого давления», Информэлектро, 1986 г.
- Каталог«Лампы разрядные низкого давления люминесцентные типов ЛБ40-1Э, ЛБЦ 40-1Э», Информэлектро, 1988 г.
- Каталог«Лампы разрядные низкого давления эритемные», Информэлектро, 1986 г.
- Каталог«Лампы разрядные низкого давления ультрафиолетового излучения», 1986 г.
- Лампы разрядные низкого давления09.50.01-90. М., Информэлектро, 1990.
- В.В. Федоров. Люминесцентные лампы. М., Энергоатомиздат, 1992.
- В.Ф. Ефимкина, Н.Н. Софронов. Светильники с газоразрядными лампами высокого давления. М. Энергоатомиздат, 1984.
- Временные методические рекомендации по расчёту нормативов образования отходов производства и потребления. СПб., 1998.
Источник: http://xn--b1ad5abcg.xn--p1ai/facts/metodika-rascheta-rtutnykh-lamp
Люминесцентная лампа: устройство, принцип работы, виды, маркировка
Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания.
С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих.
Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.
Устройство и принцип работы
Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.
Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.
Рис. 1. Устройство и принцип действия люминесцентной лампы
Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:
- На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
- При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
- Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит активация и последующей свечение люминофора.
Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.
Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.
Разновидности
Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.
По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:
- Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
- Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.
По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.
Рис. 2. Разновидности колбы
По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с цоколем типа W и F, но они используются довольно редко.
Рис. 3. Разновидности цоколей
По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.
Рис. 4. Цветовая температура
Маркировка
Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.
Отечественная
Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.
Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:
- Д – дневного спектра;
- ХБ – холодное белое свечение;
- Б – белого цвета;
- ТБ – белый теплых оттенков;
- ЕБ – белый естественного спектра;
- УФ – ультрафиолетового спектра;
- Г – голубого цвета;
- С – синего оттенка;
- К – красный спектр излучения;
- Ж – желтого оттенка
- З – зеленого цвета.
Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.
В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:
- А – амальгамного типа;
- Б – с быстрым пуском;
- К – кольцевого вида;
- Р – рефлекторные лампы
- У – U образные.
Зарубежная
Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.
Тип свечения определяется цифровым кодом с буквенным пояснением на английском:
- 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
- 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
- 765 – голубого оттенка с посредственным уровнем передачи цветов;
- 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
- 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
- 840 – белого оттенка с хорошим уровнем передачи цветов;
- 865 – дневного спектра с хорошей цветопередачей;
- 880 – дневной спектр с отличной степенью передачи света;
- 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
- 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
- 954/965 – люминесцентные устройства с непрерывным спектром.
Технические характеристики
Важными техническими характеристиками для люминесцентных ламп являются:
- Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
- Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
- Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
- Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
- Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
- Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и G13 штырькового образца и другие.
Особенности подключения к сети
В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.
Электромагнитный балласт
Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.
Рис. 5. Схема подключения с электромагнитным балластом
Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.
Электронный балласт
Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.
Рис. 6. Использование электронного балласта
Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.
Причины выхода из строя
Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.
Наиболее частыми причинами выхода люминесцентных ламп со строя являются:
- перегорание нити накала – характеризуется полным отсутствием свечения;
- нарушение целостности контактов – также не дает лампе загореться;
- разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
- перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
- обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
- замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.
Плюсы и минусы
В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.
К преимуществам люминесцентных устройств следует отнести:
- Достаточно высокая эффективность, в сравнении с теми же лампами накаливаниявыдают на порядок больший световой поток на каждый ватт потребленнойэлектроэнергии;
- Имеет несколько вариантов цветового спектра, что делает обоснованным ихприменение для различных целей;
- Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот жепоказатель у ламп накаливания и галогенок;
- Достаточно большое разнообразиеконструкций – компактные, большие, удлиненные и т.д.
Однако и недостатков у люминесцентных ламп существует немало:
- Гораздо более высокая стоимость;
- Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
- Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
- Стабильность работы во многом зависит от температуры и влажности окружающей среды;
- Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
- В сравнении со светодиодными светильниками, бояться механических повреждений;
- Не поддаются классическим методам управления яркостью.
Область применения
Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.
В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.
Источник: https://www.asutpp.ru/lyuminestsentnaya-lampa.html
Энергосберегающая лампа, люминесцентная, КЛЛ, ЛБУ, ЛЛ
Люминесцентные лампы являются газоразрядными лампами низкого давления. Независимо от исполнения (т.е. внешнего вида колбы) принцип их действия неизменен.
Стеклянная трубка заполняется парами ртути под низким давлением. Внутренняя стенка колбы покрывается люминофором, который начинает светиться под воздействием ультрафиолета. На концах стеклянной трубки находятся электроды.
Если на них подать напряжение, то пары ртути начинают испускать ультрафиолетовое излучение. Само это излучение не видимо, но оно воздействует на люминофор, который и превращает ультрафиолетовое излучение в видимое.
Цвет света от люминесцентной лампы может быть различных оттенков (тёплым или холодным), в зависимости от вида используемого люминофора.
Преимущества перед лампами накаливания:
— высокая экономичность. Cветоотдаче более чем в семь раз эффективнее!
— cрок службы. Она в 10 и более раз эффективнее, чем обычная лампа накаливания.
Недостатки:
— для работы лампа требует запускающее устройство (ПРА);
— световой поток зависит от температуры окружающей среды;
— у ламп самых простых модификаций коэффициент цветопередачи не высок – Ra около 60-70;
— в лампах содержится ртуть – очень ядовитый металл, что делает их экологически опасными;
— относительно большие габариты ламп.
Интегрированная компактная люминесцентная лампа (энергосберегающая лампа) (КЛЛ)
Интегрированные лампы (КЛЛ) пригодны к использованию везде, где применяются лампы накаливания, так как не требуют для работы никаких дополнительных устройств (ПРА уже встроен в цоколь лампы). Область применения безгранична – домашнее освещение, освещение офисов, магазинов, складских помещений.
Основные преимущества по сравнению с лампами накаливания:
— снижение потребления электроэнергии на 80 % при одинаковом количестве излучаемого света;
— увеличенный в 3-15 раз срок службы (в зависимости от модели ламп и производителя);
— возможность выбора оттенков цветов (холодные или тёплые).
Интегрированные компактные люминесцентные лампы можно классифицировать следующим образом:
А) По форме колбы КЛЛ бывают
- С дугообразной колбой (двух-, трёх- или четырёхдуговые)
- С колбой витой формы (спираль)
- С колбой, имитирующей вид колбы наиболее распространённых ламп накаливания (обычной лампы накаливания, свечеобразной лампы, колбу лампы Globa)
Б) По сроку службы: в зависимости от качества используемого люминофора и ПРА лампы могут иметь различный срок службы – от 3-х лет до 15 лет. На упаковке срок службы указан, как правило, в часах горения – от 3000 до 15000. Считается, что в среднем источник света работает 1000 часов в год.
В) По видам цоколей: в подавляющем большинстве применяются цоколя Е14 и Е27 (простота установки).
Г) По цветности: выпускаются лампы и холодного, и тёплого свечения.
Неинтегрированная компактная люминесцентная лампа (КЛЛ)
Данные лампы также экономичны, как и стандартные люминесцентные лампы, но более компактны. Они требуют дополнительной комплектации ПРА, кронштейнами.
Неинтегрированные компактные люминесцентные лампы могут быть классифицированы следующим образом:
А) по типу ПРА, с которыми может работать лампа:
— могут работать только с электромагнитными аппаратами и имеют встроенный стартер (это
лампы с двухштырьковым цоколем);
— могут работать как с электронными, так и с обычными ПРА и стартерами, т.к. не имеют встроенного стартера (это лампы с четырёхштырьковым цоколем).
Б) по типам цоколя:
Лампы с двухштырьковыми цоколями:
— чаще используются в бытовых светильниках;
Лампы с четырёхштырьковыми цоколями:
— используются, в основном, в светильниках типа Downlights, аварийных и т.д.; — при работе с ЭПРА имеют функцию регулировки яркости.
В) лампы со специальными свойствами:
— для светильников Downlights. В процессе работы внутри этих светильников (нагрев лампы, работа ПРА) температура значительно повышается. Лампы для таких светильников разработаны таким образом, чтобы максимальный световой поток излучался при температуре от 10 до 70 градусов Цельсия.
— для наружного освещения. У данных ламп максимум светового потока достигается при 5 градусах Цельсия.
Линейная люминесцентная лампа (ЛЛ)
Линейные люминесцентные лампы в быту применяются редко, они нашли широкое распространение для освещения производственных и складских помещений, залов, офисов, магазинов, общественных мест. Так как срок их службы на порядок больше, чем срок службы ламп накаливания, то существенно снижаются затраты на обслуживание.
Кольцевая люминесцентная лампа (ЛЛ)
Благодаря кольцевой форме, у этих ламп очень хорошее светораспределение. Идеальны для
круглых и квадратных светильников. Кольцевые люминесцентные лампы в форме круга устанавливаются в специализированные светильники, как правило, в офисах и торговых залах.
U-образные люминесцентные лампы (ЛБУ, SLU)
Л — люминесцентная лампа, Б — белого цвета, У-U-образная форма: используется для освещения помещений закрытого типа, для наружной установки. За счет своих небольших габаритов, ЛБУ применяется в медицинскихи декоративных светильниках, для подсветки аквариумов.
Источник: https://www.evraton.ru/luminescentnaya
Принцип работы люминесцентной лампы и устройство прибора
Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.
Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.
При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.
Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.
Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.
Устройство лампочки
Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.
На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.
Как устроена люминесцентная лампа?
Люминесцентные лампы (ЛЛ) находят свое применение в самых разных областях деятельности человека. Изобретение этого источника света и организация массового производства позволили значительно улучшить качественные характеристики искусственного освещения и повысить энергетическую эффективность (коэффициент полезного действия) светильников, укомплектованных ЛЛ.
Последовательная замена неэффективных ламп накаливания на люминесцентные ускорилась с началом производства компактных ЛЛ.
Самые современные на сегодня светодиодные источники света, несмотря на постоянное улучшение своих характеристик, пока не достигли некоторых параметров ЛЛ, например, по такому важному показателю, как цена.
Исследования физических процессов, возникающих в газах при пропускании через них электрического тока, позволили физикам и инженерам разработать источник света, в корне отличающийся от ламп накаливания, доминировавших долгое время.
Трубчатая люминесцентная лампа
Историческая справка
История создания люминесцентной лампы интересна и поучительна сама по себе. В процессе ее разработки появились дополнительно полезные и для других областей технологии: вакуумная откачка, получение разных по составу люминофоров и другие.
Сначала была изобретена вакуумная стеклянная трубка. В 1856 году немецкий изобретатель Генрих Гайслер изобрел вакуумный насос, позволивший удалять (откачивать) воздушную среду из стеклянной колбы. Впоследствии колба в виде прямолинейной трубки стала именоваться трубкой Гайслера.
На концы трубки припаивались металлические электроды для проведения экспериментов по пропусканию электрического тока либо через вакуум (остаточный газ в трубке), либо через различные газы, которые напускались после откачки воздуха.
При достижении напряжения пробоя от одного электрода к другому начинал течь ток и возникало свечение слабой интенсивности, цвет которого менялся в зависимости от того, какой именно газ напускался взамен удаленного воздуха: двуокись углерода (для белого свечения) или азот (для розового).
Экспериментальная лампа Гайслера
Далее французский физик Михаил Беккерель в 1859 году предложил наносить на внутреннюю поверхность стеклянной трубки тонкий слой люминесцирующего слоя (люминофора), который начинал светиться в видимой области спектра при возбуждении атомов ультрафиолетовым (УФ) излучением.
В 1901 году американец Питер-Купер Хьюитт предложил добавлять ртуть, что существенно повысило яркость нового светового источника. ЛЛ была экономичней лампочек накаливания в 8 раз, но ее излучение имело сине-зеленый оттенок, придававший человеческим лицам жутковатый трупный цвет.
На основании этих результатов знаменитый американский изобретатель Томас Эдисон в 1907 году впервые запатентовал люминесцентную лампу с люминофором из вольфрамата кальция.
За год до Эдисона аналогичную лампу смог воспроизвести Даниэль Фарлан Мур, экспериментировавший с двуокисью углерода (СО2) и азотом (N2).
Ближе всего к современному варианту ЛЛ подошли в 1927 году немецкие изобретатели Эдмунд Джермер, Фридрих Мейер и Ганс Шпаннер. Первоначальной целью их исследований было получение источника УФ-излучения. После нанесения люминофора определенного состава лампа стала давать равномерный белый свет, что привело Э. Джермера к мысли о создании нового источника дневного света, комфортного для глаз человека.
Кроме этого инженеры значительно улучшили параметры ЛЛ, увеличив давление паров ртути. Получение соответствующего патента закрепило за Э. Джермером авторские права на базовые принципы устройства ЛЛ.
Люминесцентные лампы начали массово производиться и продаваться только в 1938 году, когда лампы четырех типоразмеров были обнародованы американской фирмой «General Electric», которая выкупила патенты и надолго получила почти монопольные права на освоение этого перспективного рынка.
Как устроена современная ЛЛ
Основной принцип действия современной люминесцентной лампы заключается в получении УФ-излучения с помощью пробоя газового промежутка между электродами и последующего преобразования этого излучения в видимый свет с помощью эффекта люминесценции в специальных фосфорсодержащих покрытиях, так называемых люминофорах. Варьируя состав люминофора, получают разные цвета видимого участка спектра, от синего до красного. На рисунке ниже схематично представлен разрез типичной ЛЛ.
Кроме указанных компонентов каждая лампа наполняется инертным газом (обычно это Ar) для увеличения ресурса вольфрамовых электродов.
Наличие ртути (Hg) в небольшом количестве резко увеличивает светоотдачу из-за роста плотности тока, вызванного повышением концентрации электронов, появляющихся в результате ионизации атомом этого металла.
Существуют версии ламп, в которых ртуть отсутствует, а УФ-излучение появляется только от ионизации атомов инертного газа. Световой поток таких светильников существенно меньше, но зато они безопасны при эксплуатации.
Принципиальная схема люминесцентной лампы
Специфика подключения ЛЛ
Для получения тока через лампу требуется произвести пробой промежутка газа, для чего подается напряжение порядка 1 000 вольт.
Ток растет лавинообразно, сопротивление резко падает (отрицательное дифференциальное сопротивление), что может привести к разрушению (перегоранию) лампы.
Чтобы предотвратить этот процесс, применяется устройство, называемое балластом (или балластником), с помощью которого ограничивают рост тока при достижении определенного уровня. Применяются два вида балластников:
- электромагнитное пускорегулирующее устройство (ЭмПРА) – состоит из дросселя (активной нагрузки), последовательно подключенного в цепь лампы, и стартера, подключенного между нитями накала. Стартер представляет собой небольшую неоновую лампочку;
- электронное пускорегулирующее устройство (ЭПРА) – это по сути плата с электронными деталями (диодами, транзисторами, динисторами, микросхемами).
В электронном варианте балластника отдельный стартер не нужен – его функции реализованы на общей плате. ЭПРА работает на высокой частоте (десятки кГц), что полностью устраняет эффект мерцания, присущий ЭмПРА.
Электромагнитный балласт
ЭПРА имеют ряд неоспоримых преимуществ:
- небольшие геометрические размеры и вес;
- отсутствие мерцания и шума от вибраций, поскольку устройства работают на высоких частотах;
- быстрое включение ламп;
- снижение тепловых потерь по сравнению с ЭмПРА;
- значения коэффициента мощности – до 0,95 ;
- наличие в устройствах нескольких вариантов защиты от короткого замыкания, что продлевает ресурс изделий и повышает безопасность.
Электронное пускорегулирующее устройство
Типы ЛЛ
- Высокого давления – для использования в осветительных установках большой мощности и для применения вне помещений, для повышения устойчивости к низким внешним температурам, правда, колба лампы может нагреваться до 300 °С.
Для уличного освещения эти лампы имеют общее название ДРЛ (дуговая ртутная лампа). Они имеют большую мощность , но плохую цветопередачу. Поэтому сфера их применения ограничена.
Основное отличие ДРЛ от трубчатой ЛЛ состоит в способе получения дугового разряда, требующего больших затрат электроэнергии.
ДРИ – это тоже дуговые ртутные лампы с добавками солей металлов (металлогалогеновые), имеют более высокую светоотдачу и могут давать цветовые оттенки. Этот тип светильников используется в архитектурной и рекламной подсветках.
Лампа ДРЛ
- Низкого давления – для применения в быту и для освещения крупных общественных и производственных помещений. Значения давления инертного газа в диапазоне 300–400 Па. В маркировке этих люминесцентных ламп первые буквы означают следующее:
- ЛБ – белый свет;
- ЛД – дневной свет;
- ЛХБ – холодный белый свет;
- ЛТБ – теплый белый свет;
- ЛДЦ – дневной свет с улучшенной цветопередачей.
Преимущества и недостатки
Преимущества:
- небольшая цена;
- возможность получения различных оттенков белого цвета;
- экономичное, по сравнению с лампами накаливания, энергопотребление;
- незначительный нагрев поверхности лампы – не более 50 °С;
- срок службы – до 8 000 часов. Лампы накаливания работают не более 2 000 часов;
- световой поток – до 3 000 лм;
- рассеянное, равномерное излучение по всей поверхности источника;
- высокая световая отдача – до 85 лм/Вт;
- большой выбор цветовых оттенков, не требующий применения дополнительных светофильтров.
Недостатки:
- большие габариты (особенно для линейных ЛЛ);
- наличие ртути (до 5 мг на одну лампу), что требует обеспечения дополнительных мер безопасности при эксплуатации;
- проведение дополнительных работ по утилизации по окончании срока службы;
- неравномерный спектр у дешевых ламп;
- медленное включение, вызванное требованием постепенного разогрева электродов;
- повышенная чувствительность к влажности;
- мерцание с удвоенной частотой питающего напряжения при использовании электромагнитных балластников;
- медленный запуск (или его отсутствие) при пониженных температурах внешней среды. При повышенных температурах ( более 50 °С) также высока вероятность отказов.
Линейные ЛЛ
Источник: https://lampagid.ru/vidy/lyuminestsentnye/printsip-dejstviya