Что представляет собой солнечная батарея

Устройство солнечной батареи. Виды солнечных панелей

Что представляет собой солнечная батарея

Состав и устройство солнечной батареи, ее элементов определяют эффективность выработки энергии готовым изделием. В настоящее время, для генерации электрической энергии используются солнечные панели на основе кремния (с-Si, mc-Si & кремниевые тонкопленочные батареи), теллурида кадмия CdTe, соединения медь-индий (галлий)-селен Cu(InGa)Se2, а также концентраторные батареи на основе арсенида галлия (GaAs). Ниже будут даны краткие описания каждой из них.

Солнечные батареи основе кремния

Солнечные батареи (СБ) на основе кремния составляют на сегодняшний день порядка 85% всех выпускаемых солнечных панелей. Исторически это обусловлено тем, что при производстве СБ на основе кремния использовался обширный технологический задел и инфраструктура микроэлектронной промышленности, основной «рабочей лошадкой» которой также является кремний.

В результате, многие ключевые технологии микроэлектронной промышленности такие как выращивания кремния, нанесения покрытий, легирования, удалось адаптировать для производства кремниевых батарей с минимальными изменениями и инвестициями. Кроме того, кремний – один из самых распространенных элементов земной коры и составляет по разным данным 27-29% по массе.

Таким образом, нет никаких физических ограничений для производства значительной доли электроэнергии Земли с имеющимися запасами Si.

Различают два основных типа кремниевых СБ – на основе монокристаллического кремния (crystalline-Si, c-Si) и на основе мультикристаллического (multicrystalline-Si, mc-Si) или поликристаллического.

В первом случае используется высококачественный (и, соответственно, более дорогой) кремний выращенный по методу Чохральского, который является стандартным методом для получения кремниевых пластин-заготовок для производства микропроцессоров и микросхем. Эффективность СБ изготовленных из монокристаллического кремния составляет обычно 19-22%.

Не так давно, фирма Panasonic заявила о начале промышленного выпуска СБ с эффективностью 24,5% (что вплотную приближается к максимально возможному теоретически значению ~30%).

Во втором случае для производства СБ используется более дешевый кремний произведенный по методу направленной кристаллизации в тигле (block-cast), специально разработанного для производства СБ. Получаемые в результате кремниевые пластины состоят из множества мелких разнонаправленных кристаллитов (типичные размеры 1-10мм) разделенных границами зерен.

Подобные неидеальности кристаллической структуры (дефекты) приводят к снижению эффективности – типичные значения эффективности СБ из mc-Si составляют 14-18%.

Снижение эффективности данных СБ компенсируется их меньшей ценой, так что цена за один ватт произведенной электроэнергии оказывается примерно одинаковой для солнечных панелей как на основе c-Siтак и mc-Si.

Тонкопленочные солнечные панели

Возникает вопрос – зачем разрабатывать другие типы модулей, если солнечные панели на основе моно- и мультикристаллического кремния уже созданы и показывают неплохие результаты? Очевидный ответ — чтобы добиться еще большего снижения стоимости и улучшения технологичности и эффективности, по сравнению с обычными c-Si и mc-Siсолнечными батареями.

Дело в том, что обычные кремниевые фотоэлектрические модули наряду с преимуществами, перечисленными выше, обладают и рядом недостатков.

Кемний из-за своих особых электрофизических свойств (непрямозонный полупроводник) обладает довольно низким коэффициентом поглощения, особенно в области инфракрасных длин волн.

Таким образом, толщина кремниевой пластины для эффективного поглощения солнечного излучения должна составлять довольно внушительные 100-300 мкм. Более толстые пластины означают больший расход материала, что ведет к удорожанию СБ.

В то же время, прямозонные полупроводники на вроде GaAs, CdTe, Cu(InGa)Se2, и даже некоторые модифицированные формы Si, способны поглощать требуемое количество солнечной энергии при толщине всего в несколько микрон.

Открывается заманчивая перспектива сэкономить на расходных материалах, а также на электроэнергии, которой требуется значительно меньше для изготовления более тонкого слоя полупроводника.

Еще одной положительной чертой СБ на основе вышеназванных полупроводников – в отличие от СБ на основе c-Si и mc-Si– является их способность не снижать эффективность преобразования солнечной энергии в электрическую даже в условиях рассеянного излучения (облачный день или в тени).

Исследования СБ на основе теллурида кадмия (CdTe) начались еще в 1970х годах ввиду их потенциального использования в качестве перспективных для космических аппаратов. А первое широкое применение «на земле» подобные СБ нашли в качестве элементов питания карманных микрокалькуляторов.

Данные элементы представляют собой гетероструктуру из тонких слоев p-CdTe / n-CdS (суммарная толщина 2-8 мкм) напыленных на стеклянную подложку (основу). Эффективность современных фотоэлектрических элементов данного типа равняется 15-17%. Основным (и фактически единственным) производителем СБ на основе теллурида кадмия является американская фирма FirstSolar, которая занимает 4-5% всего рынка.

К сожалению, есть проблемы с обоими элементами входящими в состав соединения CdTe. Кадмий – это экологически вредный тяжелый метал, который требует особых методов обращения и ставит сложный вопросутилизации старых изделий.

В виду этого, законодательство многих стран ограничивает свободную продажу гражданам СБ этого типа (строятся только масштабных солнечных электростанций под гарантии утилизации от фирмы производителя). Второй элемент – теллур, довольно редко встречается в земной коре.

Уже в настоящее время более половины всего добываемого теллура идет на изготовление солнечных панелей, а перспективы нарастить добычу – довольно призрачны.

Солнечные батареи на основе соединения медь-индий (галлий)-селен Cu(InGa)Se2 (иногда обозначаются как CIGS) являются новичками на рынке солнечной энергетики.

Несмотря на то, что начало исследований элементов этого типа было положено еще в середине 70х, в настоящее время коммерческий выпуск в боле-менее солидных масштабах ведет всего лишь фирма SolarFrontierKKиз Японии.

Отчасти это связано с технически сложным и дорогим процессом изготовления, хотя в некоторых (удачных!) случаях их эффективность может достигать 20%.

Несмотря на отсутствие экологически вредных элементов в составе этого соединения, значительному расширению производства данных солнечных модулей в будущем угрожает дефицит индия. Ведутся исследования с целью заменить дорогой In на более дешевые элементы и может быть скоро появятся новые изделия на основе соединения Cu2ZnSn(S,Se)4.

Фотоэлектрические модули на основе аморфного кремния a-Si:H. Тонкопленочные солнечные батареи могут быть построены также и на основе хорошо известного кремния, если удастся каким-либо образом улучшить его способности к поглощению солнечного света. Применяются две основные методики:

— увеличить путь прохождения фотонов посредством многократного внутреннего переотражения;

— использовать аморфный кремний (a-Si), обладающий гораздо большим коэффициентом поглощения чем обычный кристаллический кремний (с-Si).

По первому пути пошла австралийская фирма CSGSolarLtd, разработавшая СБ с эффективностью 10-13% при толщине слоя кремния всего 1,5 мкм.

По второму – швейцарская OerlikonSolar (которую сейчас перекупили японцы), создавшая комбинированные солнечные панели на основе слоев аморфного и кристаллического кремния a-Si / с-Si эффективность которых также составляет 11-13%.

Своеобразной особенностью СБ из аморфного кремния является снижение эффективности их работы при понижении температуры окружающего воздуха (у всех остальных — наоборот). Так, фирма производитель рекомендует устанавливать данные модули в странах с жарким климатом.

Концентраторные солнечные модули

Наиболее совершенные и самые дорогие на сегодняшний день солнечные модули обладают эффективностью фотоэлектрического преобразования до 44%. Они представляют собой многослойные структуры из разных полупроводников последовательно выращенных друг на друге слой за слоем. Наиболее успешной является структура состоящая из трех слоев:  Ge (нижний полупроводник и подложка), GaAsи GaInP.

Благодаря тому, что в подобной комбинации каждый отдельный полупроводниковый слой поглощает наиболее эффективно свой определенный диапазон солнечного спектра (определяемый шириной запрещенной зоны полупроводника), достигается наиболее полное поглощение солнечного света во всем диапазоне длин волн, недостижимое для СБ состоящих из одного типа полупроводника.

К сожалению, процесс изготовления подобных многослойных полупроводниковых слоев очень сложен технически и, как следствие, весьма дорог.  

Если солнечные батареи стоят очень дорого, фокусировка солнечного излучения на меньшей площади СБ может применяться как эффективный способ снижения финансовых затрат.

Например, собрав при помощи линзы солнечный свет с 10 см2 и сфокусировав его на 1 см2 солнечной батареи, можно получить тоже количество электроэнергии, что и от элемента площадью 10 см2 без концентратора, но экономя при этом целых 90% площади! Но при этом, набор подобных ячеек (солнечная батарея + линза) должен быть смонтирован на подвижной механической системе, которая будет ориентировать оптику в направлении солнца в то время как оно движется по небу в течении дня, что увеличивает стоимость системы.

В настоящее время экономически оправдано использовать подобные дорогие концентраторные солнечные модули только в тех странах и регионах земного шара, где круглый год имеется в достатке прямое солнечное излучение (рассеянное излучение не может быть сфокусировано линзой). Так, французская фирма-производитель концентраторных СБ SOITEC устанавливает свои СБ в Калифорнии, ЮАР, на юге Франции (Прованс), в Испании.  

Органические солнечные батареи и модули фотосенсибилизованные красителем

Но есть и новый тип тонкопленочных солнечных батарей, такой как сенсибилизированные красителем солнечные элементы, которые работают на совершенно ином принципе, чем все модули рассмотренные выше, на принципе больше напоминающем фотосинтез у растений. Но их пока нет в коммерческой продаже.

Трушин М.В. Ph.D

Источник: https://www.helios-house.ru/ustrojstvo-sb.html

Выбор солнечной батареи Солнечные.RU

Что представляет собой солнечная батарея

Наверно у большинства людей, впервые столкнувшихся с проблемой выбора солнечной батареи для дома или дачи, первым возникает следующий вопрос. Какая батарея лучше — монокристаллическая или поликристаллическая? Вкратце можно ответить — любая, однако у каждого типа есть свои плюсы и минусы, о которых Вы можете подробно узнать на нашем сайте в сравнении монокристаллических и поликристаллических панелей.

Для того, чтобы понять важность некоторых незаметных частей батареи, рассмотрим ее структуру.

Солнечная батарея состоит из следующих основных частей:

  1. Алюминиевая рамка
  2. Закаленное стекло с антибликовой поверхностью
  3. Передняя ламинирующая пленка (EVA)
  4. Элементы (ячейки), соединенные последовательно плоскими проводниками
  5. Задняя ламинирующая пленка (EVA)
  6. Задняя защитная пленка (PET, TPE, TPT)
  7. Соединительная распаечная коробка с защитными диодами и соединительными кабелями.

Защитные диоды необходимы для предотвращения перегрева и выхода из строя частично затененных элементов солнечной панели. Без них вся панель может выйти из строя из-за выгорания одного из элементов.

Ламинирующие пленки используются для полной герметизации элементов и их плотного прилегания к стеклу (без воздушного зазора) с целью избежать дополнительного преломления света и, как следствие, потери мощности. Кроме того, герметизация защищает элементы от атмосферных воздействий и возможной коррозии.

Как видно из рисунка выше, для того, чтобы свет Солнца достиг элементов, ему необходимо пройти через стекло и ламинирующую пленку EVA. Таким образом, качество этих двух деталей имеет сильное влияние на характеристики панели. И если стекло у большинства производителей не имеет значительных отличий, а также не меняет своих светопропускающих свойств со временем, то ламинирующая пленка бывает разного качества.

Снижение мощности панели со временем ее эксплуатации не связано с самими элементами (их характеристики практически не меняются, если это элементы Grade A), а обусловлено, в основном, качеством применяемой ламинирующей пленки, т.к.

при длительном воздействии ультрафиолетового излучения у нее ухудшается прозрачность. Соответственно меньше света доходит до солнечных элементов и панель выдает меньшую мощность.

К сожалению, пощупать или как-то проверить эту пленку нельзя, поэтому остается только доверять производителю.

Репутация производителя солнечных панелей

Очевидно, что крупное производство с многомиллионными инвестициями не будет экономить на комплектующих, влияющих на срок службы панели, т.к. крупные инвестиции делаются не на один год и даже не на 10 лет. А за этот срок пользователи смогут определить качество продукции и если качество окажется не самым лучшим, то репутация производителя будет испорчена, чего инвесторы не могут допустить.

Поэтому, перед покупкой солнечной панели мы рекомендуем ознакомиться с производителем.

Сколько времени он уже присутствует на рынке, каковы объемы производства, есть ли отзывы о нем в интернете? Также, можно сравнить количество результатов поиска Google по точному названию выбранных Вами моделей.

В большинстве случаев, чем больше упоминаний о какой-то модели, тем она более популярна и известна в мире. Если же в результатах поиска всего несколько строчек, то стоит задуматься, нужно ли покупать солнечную панель, о которой мало что известно.

Качество элементов в модуле

  • Grade A — после ускоренного теста старения (PID test) снижение мощности элементов составляет не более 5%, т.е. элементы продолжают выдавать более 95% от своего номинала.
  • Grade B — после ускоренного теста старения (PID test) снижение мощности элементов составляет не более 30%, т.е. элементы продолжают выдавать более 70% от своего номинала.
  • Grade C — после ускоренного теста старения (PID test) снижение мощности элементов составляет более 30%, т.е. элементы продолжают выдавать менее 70% от своего номинала.

Подробнее о качестве элементов читайте тут, а здесь можно узнать, как определить качество по визуальным признакам.

Количество элементов в модуле

Количество солнечных элементов определяет номинальное напряжение модуля. Каждый элемент, независимо от размера, по сути представляет собой кремниевый фотодиод с напряжением в точке максимальной мощности ~0.5 Вольта. Стандартный модуль с номинальным напряжением 12 Вольт состоит из 36 элементов независимо от мощности (на мощность влияют размеры каждого из 36 элементов: чем больше размеры, тем больше мощность).

36 последовательно соединенных элементов по 0.5 Вольта — это ~18 Вольт в точке максимальной мощности. Именно такое напряжение необходимо для заряда 12-и вольтового аккумулятора, т.к. для полной зарядки напряжение на нем должно достичь 14,1–14,8 В в зависимости от типа аккумулятора, но нужен еще и небольшой запас на потери в проводах, контроллере и при нагреве модуля.

Если в модуле 72 элемента, то, скорее всего, он рассчитан на номинальное напряжение 24 В. Но, также существуют модули из 72 элементов с номинальным напряжением 12 В (с последовательно-параллельным соединением). Такие модули имеют более низкую цену, так как они сделаны из отходов солнечных элементов (не из целых квадратных элементов, а из их частей) и имеют более низкую надежность из-за в два раза большего количества соединений и возможных микротрещин в элементах.

Если же в модуле не 36 и не 72 элемента, то это нестандартный модуль и чтобы использовать его на полную мощность, в большинстве случаев нужен только MPPT-контроллер, т.к. при использовании PWM-контроллера потери могут достигать 30-40% он номинала.

Таким образом, выбирая солнечный модуль, нужно отталкиваться от напряжения системы (12, 24 или 48 Вольт) и при планируемом использовании PWM-контроллера число элементов должно быть кратно 36.

Эффективность солнечных элементов батареи

Серийно выпускаемые в настоящее время монокристаллические и поликристаллические элементы имеют эффективность 12 — 19 %. Для конечного пользователя эта цифра означает только физический размер солнечной панели. То есть, панель мощностью 100 Вт с эффективностью элементов 12% будет иметь большую площадь, чем панель с такой же мощностью, но эффективностью 19%.

Однако есть небольшой нюанс, связанный с эффективностью — это напряжение в точке максимальной мощности.

Чем ниже это напряжение, тем более эффективным будет использование такой батареи с PWM контроллером, поскольку в случае использования PWM контроллера, мощность солнечной батареи используется не полностью и чем ближе напряжение в точке максимальной мощности к номинальному напряжению системы, тем большую мощность отдаст панель. Например, для 12-и вольтовых панелей, напряжение в точке максимальной мощности варьируется в пределах 17.0 — 18,0 В. И, хотя выигрыш по мощности составит единицы процентов, он никогда не будет лишним.

Если же Вы планируете использовать MPPT контроллер, то на эффективность можно не обращать внимания.

Стоит также отметить выбор номинального напряжения солнечной батареи. При использовании PWM контроллера, оно должно быть равно входному напряжению инвертора и соответственно напряжению аккумуляторов. При необходимости увеличить мощность, можно параллельно соединить несколько панелей с одинаковым номинальным напряжением. Для быстрого соединения можно использовать специальные переходники. О выборе мощности читайте в разделе «готовые решения».

При выборе также стоит обратить внимание на наличие соединительных кабелей и специальных герметичных разъемов. Панели малой мощности (до 50 Вт) обычно ими не комплектуются. А вот панели мощностью 70 Вт и более бывают как с соединительными кабелями и разъемами, так и без них. Наличие разъемов упрощает монтаж и избавляет от дополнительных расходов на их покупку.

ЭТО ИНТЕРЕСНО:  Как проверить фазу индикаторной отверткой

Итак, подведем итог.

Основные моменты, на которые необходимо обратить внимание при выборе солнечной батареи для дома:

  • репутация производителя
  • качество элементов (Grade A)
  • количество элементов (36 или 72)
  • напряжение в точке максимальной мощности
  • наличие защитных диодов
  • наличие соединительных кабелей и разъемов

Надеемся, приведенные выше советы помогут Вам сделать выбор!

Источник: https://www.solnechnye.ru/batareya/vybor-solnechnoy-batarey.htm

IT News

Что представляет собой солнечная батарея
Дата Категория: Физика

Солнечный свет не только делает возможной жизнь на Земле, он может со временем также стать и поставщиком большого количества электроэнергии, без которой немыслима современная цивилизация. Использование солнечного света может быть не прямым, а в виде подвода энергии к турбинам.

В этом случае комплект зеркал фокусирует солнечную энергию на теплообменник, который испаряет воду или любую другую жидкость, вырабатывая пар для привода обычной турбины, соединенной с генератором. Однако возможно и прямое преобразование солнечного света в электроэнергию, например, при помощи кремниевых солнечных элементов.

Типичный солнечный элемент состоит из шести слоев. Основание (база) одновременно выполняет роль отрицательного полюса элемента; отражающий слой удерживает свет внутри рабочей части элемента, увеличивая его электрическую эффективность; два слоя обогащенного кремния (N-типа и Р-типа) образуют ядро солнечного элемента.

Кремний N-типа имеет свободные отрицательные заряды, а кремний Р-типа — несвязанные положительные заряды. При отсутствии освещения эти заряды скапливаются в зоне контакта слоев; когда на элемент падает солнечный свет, заряды расходятся в стороны. Такое перемещение зарядов создает постоянный ток, если солнечный элемент является частью замкнутой цепи.

Сверху кремний защищен прозрачной пленкой, на которой размещен металлический контакт положительного полюса.

Как работает солнечный элемент

Солнечный свет, падающий на элемент солнечной батареи, разделяет положительные и отрицательные заряды, которые аккумулируются в зоне контакта между пластинками кремния Р-типа и N-типа. Это разделение создает напряжение, под действием которого при включении элемента в замкнутую цепь в ней начинает течь электрический ток

Секционные солнечные батареи

Солнечные батареи (рисунок над текстом) вырабатывают постоянный ток, который может быть преобразован на электростанции в переменный. Избыточная электроэнергия, выработанная солнечными элементами, может быть запасена в аккумуляторных батареях для последующего использования.

Солнечные батареи в космосе

Для большинства космических спутников солнечные батареи являются основным источником энергии. Эти батареи (рисунок справа) отличаются от тех, что используются на Земле (рисунок слева). Если батареи, установленные вблизи земной поверхности, нуждаются в защите от дождя и пыли, то те, что функционируют в космосе, должны быть защищены от жесткого космического излучения.

Солнечная теплоэлектростанция

Солнечный свет может снабжать теплотой паротурбинную установку, приводящую во вращение генератор. Комплект зеркал фокусирует солнечный свет на башню-концентратор. Результирующий световой пучок настолько интенсивен, что может превращать натрий в пар. Пары натрия используются для превращения воды в пар, который затем приводит во вращение турбину.

Источник: http://information-technology.ru/sci-pop-articles/23-physics/251-kak-rabotaet-solnechnaya-batareya

Солнечные батареи: как это работает

Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

Солнечная термальная электростанция в испанском городе Севилья

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Михаил Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Михаил Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.

Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей

Принцип работы

Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.

Схема работы фотоэлемента

Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.

Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов

Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.

Мобильный телефон Samsung E1107 оснащен солнечной батареей

Существующие разновидности

Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.

Наручные часы Citizen Eco-Drive с солнечной батареей вместо циферблата

Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.

Монтаж солнечных панелей на крыше жилого дома

В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.

Гоночный электромобиль Honda Dream на солнечных батареях появился еще в 1996 г.

Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).

Портативная солнечная панель Solarland мощностью 130 Вт и стоимостью $860

Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).

Беспилотный самолет, разработанный NASA Ames Research Center, способен на солнечной энергии пролететь от восточного побережья США до западного

На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.

Солнечную батарею Voltaic можно носить у себя за спиной

А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.

«Солнечное дерево – культурный и одновременно научный символ австрийского городка Глайсдорф

Крупнейшие производители

Источник: https://itc.ua/articles/solnechnyie-batarei-kak-eto-rabotaet/

Солнечная батарея (панель)

Солнечная батарея  или солнечная панель – это самый доступный способ получать энергию от солнца.

Типы солнечных ячеек

В основном в солнечной промышленной энергетике выделяют два типа ячеек – это поликристаллические ячейки, а также монокристаллические ячейки.

Про плюсы и минусы моно- и поликристаллических панелей можете прочитать в этой статье. Одно скажу точно, солнечная батарея из монокристалла лучше по всем характеристикам, хотя и дороже по цене.

Что такое солнечная батарея

Солнечная батарея представляет из себя множество солнечных ячеек, которые соединены в определенной последовательности. Они могут быть соединены последовательно, параллельно, или даже последовательно-параллельно.

Вот так выглядит солнечная панель на 100 Вт

солнечная батарея

Вид панели с обратной стороны

Сзади на этикетке параметры этой панели:

Основные параметры солнечной батареи

Максимальная мощность (Maximum power)

Этот параметр солнечной панели показывает, какую максимальную мощность может выдать такая панель в солнечный день, при условии, что солнце будет в зените и панель будет полностью освещаться солнечными лучами.

Максимальное напряжение при нагрузке (Maximum power voltage)

Максимальное значение напряжение при условии, что панель выдает в нагрузку максимальную мощность. То есть этот параметр также учитывает, что панель должна быть под солнцем в зените в яркий солнечный день.

Максимальный ток, который может выдать солнечная панель в нагрузку (Maximum Power Current)

Этот параметр показывает, какой максимальную силу тока может выдать панель в нагрузку.

Напряжение в холостом режиме (Open Circuit Voltage)

Это напряжение на клеммах солнечной панели в яркий солнечный день, при условии, что к клеммах не подсоединяется никакая нагрузка.

Ток короткого замыкания ( Short Circuit Current)

Это сила тока, которая будет течь в цепи солнечной панели, если ее клеммы соединить между собой, при условии, что панель находится под солнцем.

Ну а далее различные массо-габаритные характеристики. Также в сопроводительном листе были указаны такие параметры, как КПД солнечного модуля = 15,2%, закаленное матовое стекло толщиной в 3,2 мм, а также рабочий диапазон температур от -40 и до +80 градусов по Цельсию. По заявлению производителя, такая панель выдерживает град размером в горох и срок ее службы составляет 15-20 лет. Ну что же, поживем увидим.

Солнечная батарея в ясный день

Итак, в нашей статье мы будем ставить опыты с солнечной панелью на 100 Вт  и посмотрим, целесообразно ли ее было покупать. Так как я живу в Удмуртии, это получается 57 градусов северной широты. Лето теплое солнечное, зима умеренно-холодная.

Приятный солнечный денек 10 июня. На небе ни тучки, солнце в зените.

Направляю панель на солнышко и смотрю напряжение на клеммах в холостом режиме.

23,1 Вольта халявы)

А теперь смотрим ток короткого замыкания. Для этого ставим мультиметр в режим измерения силы тока и соединяем выводы солнечной панели.

Все прям почти как по описанию).

Берем галогенную автомобильную лампу и цепляем к панели

Горит так, что даже глаза слепит.

Давайте замеряем напряжение на клеммах панели с нагрузкой-лампочкой.

Смотрим силу тока, которую кушает наша автомобильная лампочка:

Давайте посчитаем, какую мощность кушает лампочка от панельки. Вспоминаем, что мощность – это произведение силы тока на напряжение. То есть получаем P=IU=5,45 x 16,2 = 88,3 Ватта. Как видите, панелька в легкую питает нагрузку, которая кушает 88,3 Ватта при напряжении в 16,2 Вольта. Честно говоря, более чем 14,4 Вольт подавать на лампочку не стоило бы, так как она автомобильная. Но вроде осталась жива.

Солнечная батарея в пасмурный день

Все бы хорошо, но сказка рано или поздно заканчивается. На следующий день солнышко зашло и на  небе стали появляться грозовые тучки:

Замеряем напряжение на клеммах без нагрузки:

Напряжение вроде бы есть.

Замеряем силу тока короткого замыкания:

Даже меньше Ампера. На то она и солнечная батарея).

Что внутри солнечной батареи

Распределительная коробка имеет уровень защиты IP67, что говорит о том, что она пыленепроницаемая и водонепроницаемая:

Внутри стоят два мощных диода, скорее всего диоды Шоттки

Они нужны для того, чтобы электрический ток шел только от солнечной панели к нагрузке.

Как сделать мини-электростанцию на солнечных батареях

Сейчас с Али мне идет солнечный контроллер

Будем делать миниэлектростанцию для своей лаборатории по классической схеме:

Синяя коробочка – это и есть контроллер. Черная коробочка под ним – это инвертор, который преобразует 12 Вольт постоянного тока от аккумулятора в 220 Вольт переменного тока (в напряжение в вашей домашней розетке). Остальные части схемы вам уже известны. Эта схема полностью автономная и требует минимального обслуживания.

Стоит ли брать солнечные батареи?

Давайте посчитаем вместе. Сама 100 Ваттная панель стоит 5000 руб. Хотя, на Алибабе (отец Алиэкпресса) оптом можно затариться дешевле, хотя и по доставке еще надо будет решать вопрос:

Моя панель выдает 0,1 Киловатт. Допустим у нас солнце светит в среднем в год по 8 часов в день. Получается,  за день панель может производить энергию в количестве 0,1 х 8 = 0,8 Киловатт х часов. У нас в селе Киловатт в час стоит 2,5 рублей. Стоит ли игра свеч? Я думаю, что нет. По крайней мере у меня в Удмуртии. В южных странах, где солнце “поливает” по 12 часов в день – это будет лучшим решением.

Но теперь давайте рассмотрим другой случай.

Ваш маленький домик находится в глуши. Хватит ли одной такой панели, чтобы поддерживать маломальский комфорт, типа освещения, питания ноутбука, телефона и ловли интернета? Вполне. Думаю, будет даже выгоднее, чем дизель-генератор. Поэтому, в данном случае солнечные батареи будут наилучшим решением.

Как соединять солнечные батареи?

Солнечная панель – это простой источник питания, как аккумулятор или батарейка. Поэтому, для них действуют все те же законы, что и для источников питания. Солнечные панели можно соединять с друг другом последовательно, параллельно или даже последовательно-параллельно. Более подробно про виды соединений источников питания читайте в этой статье.

Последовательное соединение

Вот так выглядит параллельное соединение солнечный панелей. В этом случае суммируется выдаваемая сила тока, а напряжение остается таким же

параллельное соединение солнечных панелей

Параллельное соединение

Если же вы хотите увеличить напряжение, то следует соединять панели последовательно. В этом случае у вас напряжения, получаемые с каждой солнечной панели будут суммироваться.

последовательное соединение солнечных панелей

Последовательно-параллельное соединение

Если вы хотите увеличить и напряжение и выдаваемую силу тока, то в этом случае соединяют панели последовательно-параллельно

последовательно-параллельное соединение солнечных панелей

Заключение

Использование альтернативной энергии бывает иногда очень полезно в некоторых случаях, особенно для питания автономных устройств, типа уличного освещения, радиопередатчиков, питания различных GSM-сигнализаций в садоогороде и тд.

Ну а если кто-то сомневается в будущем солнечной энергетики, просто взгляните на эти солнечные батареи, которые вырабатывают Мегаватты энергии за день!

солнечные батареи

Так что, друзья, будущее не за горами.

Источник: https://www.ruselectronic.com/solnechnye-paneli/

Увеличение мощности солнечной батареи

Солнечная батарея состоит из нескольких солнечных панелей. Можно ли в одной солнечной батарее использовать разные солнечные панели? можно ли коммутировать разные солнечные модули вместе в последовательные или параллельные цепочки? Можно ли сочетать солнечные модули разных типов или все модули в солнечной батарее должны быть одинаковыми?

ЭТО ИНТЕРЕСНО:  Как правильно подключить электрический теплый пол

Если у вас уже есть солнечные батареи, то вы уже наверняка уменьшили ваши счета за электричество, или вообще не провели электрические сети до своего дома.

Наступает момент, когда вы хотите добавить еще мощности в вашу солнечную энергосистему — может быть для того, чтобы экономить еще больше, а может быть у вас появился электромобиль и теперь нужно больше солнечных батарей, чтобы заряжать его бесплатной электроэнергией.

А может быть вы просто изначально хотели попробовать, как работают солнечные батареи и есть ли от них польза в России, и теперь, увидев их эффективность, хотите закрепить успех и увеличить мощность солнечных батарей.

Наращивание мощности солнечных батарей на крыше

Теоретически, при выполнении определенных условий, разные панели можно соединять в одну солнечную батарею. Про особенности такого соединения мы уже писали в разделе «Вопросы и ответы — Солнечные батареи«. На практике, мы не рекомендуем так делать.

Есть несколько причин, по которым разные солнечные панелей не нужно смешивать в одной солнечной батарее:

  • Выходная мощность солнечных панелей изменяется с течением времени. Если у вас в солнечной батарее есть панели, которые уже проработали несколько лет, то их выходная мощность уже наверняка немного деградировала и они не выдают те параметры, которые заявлены в их спецификациях. Поэтому на практике невозможно подобрать одинаковые панели по информации на их шильдике или спецификациям, даже если по документам основные параметры (токи и напряжения в точке максимальной мощности, напряжения холостого хода и токи короткого замыкания) практически совпадают. Новые панели не будут точно совпадать со старыми, уже частично деградировавшими, панелями;
  • Напряжение солнечных панелей складывается при последовательном соединении. Чтобы общее напряжение цепочки не изменилось, к каждой цепочке из «старых» солнечных панелей нужно последовательно добавить одинаковое количество «новых» солнечных панелей. Недостатком такого варианта является то, что разные панели в цепочке будут производить разный ток, и общий ток будет равен току панели с наименьшим током. Поэтому, если вы добавите в цепочку панели, которые могут производить ток больше, чем уже имеющиеся в цепочке модули, то вы потеряете разницу в мощности между новыми и худшим из старых модулей. 
  • Ток солнечный панелей складывается при параллельном соединении. Допустим, вы добавляете к существующим цепочкам солнечных панелей еще одну, полностью состоящую из новых солнечных панелей. В то время как каждая из цепочек будет производить максимально возможный ток, разница в напряжениях разных цепочек становится проблемой. Если цепочка с новыми солнечными панелями имеет в точке максимальной мощности напряжение больше, чем цепочка из старых панелей, то 2 параллельных цепочки будут работать при каком-то одном, неоптимальном для обеих цепочек, напряжении. Рабочая точка может сместиться как в сторону большего, так и меньшего напряжения от точки максимальной мощности цепочки. Вы и в этом случае переплатите за мощность солнечных панелей, которую вы никогда не получите. 
  • Если вы используете MPPT контроллер, использование различных солнечных панелей будет иметь отрицательные последствия на всю систему. Разные модули не позволяют контроллеру точно определить положение точки максимальной мощности, т.к. она разная для разных цепочек солнечных панелей.

Так что же делать, когда нужно добавить новые солнечные панели к существующей солнечной батарее?

Разные солнечные панели заряжают одну аккумуляторную батарею через отдельные контроллеры

Ответ на самом деле очень простой. В любой солнечной энергосистеме с аккумуляторами одна из известных констант — это напряжение на аккумуляторной батарее. Лучшим методом скомбинировать старые и новые солнечные панели — это соединить их на стороне аккумуляторной батареи. Единственный способ этого добиться — соединить новые солнечные панели с аккумулятором через отдельный солнечный контроллер.

С отдельным солнечным контроллером цепочка из новых солнечных панелей становиться отдельной частью общей солнечной батареи, на которую старые панели не могут повлиять.

  Каждый солнечный контроллер будет обеспечивать работу своей части солнечной батареи («старой» и «новой») в оптимальной точке с максимальной мощностью.

При таком подходе вы можете комбинировать 2 или больше источников энергии с разными параметрами — главное, чтобы контроллеры все были рассчитаны на одинаковое напряжение на аккумуляторе. Ток заряда при этом будет складываться. 

При этом необходимо следить за тем, чтобы суммарный максимальный ток заряда от нескольких контроллеров не превысил допустимого зарядного тока для аккумуляторной батареи.

Поэтому обычно увеличение мощности солнечной батареи производится одновременно с увеличением емкости аккумуляторной батареи. Но в этому случае возникает еще бОльшая проблема — соединять параллельно или последовательно аккумуляторы разной емкости, напряжения и с разным износом нельзя.

Тем более нельзя соединять в одну аккумуляторную батарею аккумуляторы разных типов.  См. «Вопросы и ответы» по аккумуляторам. 

Такой метод подходит, если у вас есть в системе аккумуляторная батарея. А что делать, если у вас сетевой фотоэлектрический инвертор и нет аккумуляторов?

Добавление солнечных панелей в сетевую фотоэлектрическую систему

Принцип для добавления мощности солнечной батареи аналогичен.  Единственное отличие — соединение будет на стороне переменного напряжения основной сети, а не постоянного на аккумуляторной батарее. 

При выполнении определенных условий, можно добавить солнечные панели к существующему сетевому солнечному инвертору. Если он незагружен полностью (а часто люди покупают инверторы «с запасом» с учетом последующего увеличения мощности солнечной батареи), то можно добавить еще одну цепочку солнечных панелей к существующей.

Обычно, сетевые солнечные инверторы допускают подключать солнечные батареи мощностью больше, чем номинальная мощность инвертора — типичное превышение 20-25%, некоторые модели (например, инверторы Samil Power) допускают превышение до 43%. Идеальным вариантом будет инвертор с несколькими MPPT трекерами — в этом случае можно сначала установить солнечные панели на 1 трекер, а потом добавить панели на второй трекер.

У нас в ассортименте есть модели сетевых фотоэлектрических инверторов с 2 и большее MPPT трекерами (см. наш интернет-магазин) 

Что, если у вашего сетевого инвертора только 1 MPPT трекер? К сожалению, лучшим выходом в этой ситуации будет покупка дополнительного сетевого солнечного инвертора, который нужно будет соединить параллельно старому на стороне переменного тока. В этом случае вы снова получаете систему с 2 или более источниками, которые соединены параллельно на стороне с одинаковым напряжением.

Можно, конечно, просто заменить ваш солнечный сетевой инвертор на другой, более мощный. Старый — продать как б/у знакомым или через доски объявлений или форумы.

Многие сейчас интересуются солнечной энергетикой и ищут как с наименьшими затратами приобрести солнечную электростанцию. Покупка б/у солнечных панелей и б/у инвертора — хороший способ влиться в ряды «солнечных энергетиков».

Конечно, покупать дешевый китайский б/у инвертор не нужно, а вот инвертор Samil Power, Sofar Solar или SMA вполне можно брать и бывшие в употреблении.   

Потребности в энергии

Есть свободное место на крыше под солнечные батареи? Время увеличить мощность!

Сколько дополнительных солнечных панелей вам нужно? Это один из первых вопросов, на который нужно получить ответ при принятии решения о расширении вашей солнечной электростанции. Посмотрите на ваши счета за электроэнергию, а также информацию по выработке энергии вашей существующей солнечной батареей (логи в сетевом инверторе, или солнечном контроллере дадут вам цифры о выработке энергии солнечными батареями за день, месяц, год). 

Определив требуемое количество энергии, вы можете посчитать, сколько солнечный панелей вам нужно добавить. Если вы испытываете затруднения при таких расчетах — просто позвоните нам, или напишите через форму обратной связи — и наши инженеры помогут вам подобрать необходимое оборудование, совершенно бесплатно!

Доступное место для новых панелей

Если у вас есть еще место на крыше, которое можно использовать для установки солнечных панелей — это будет самым оптимальным и недорогим вариантом. Если же на вашей крыше нет достаточного места, или она ориентирована так, что нельзя установить солнечные батареи — не опускайте руки. Можно установить дополнительные солнечные панели на отдельно стоящей конструкции, на навесе, беседке, веранде и т.п. Любое хорошо освещенное и незатеняемое место подходит для установки солнечных батарей.

Совместимость солнечных панелей

Ваши существующие солнечные панели наверняка еще не выработали свой ресурс — типичные солнечные батареи работают по 25 и более лет. Поэтому обычно их не заменяют, а добавляют новые солнечные панели к существующим.

Как правильно добавить солнечные панели к существующей солнечной электростанции — написано выше.

Но попросите установщика дополнительно посчитать, что нужно докупить из монтажных конструкций, проводов и креплений — это мелочи, но для неискушенных потребителей они обычно представляют трудность. Мы поможем вам подобрать это дополнительное оборудование.

Найдите хорошего установщика

Установка солнечных батарей на крыше

Вполне возможно, вы имели не очень хороший опыт с вашим первым установщиком, поэтому не хотите к нему обращаться при расширении вашей системы. Может быть фирма, которая вам делала установку, уже не существует.

Нет проблем — ситуация на рынке сейчас такая, что найти нового установщика не составляет труда. Однако будьте внимательны — подавляющее большинство из них не имеет достаточных знаний и опыта.

Поэтому мы, конечно же, рекомендуем обратиться к нам — пы поможем вам правильно и за минимальные деньги расширить вашу систему солнечного электроснабжения.

Если потребуется решать вопросы с действующей гарантией на ваше «старое» оборудование — мы тоже поможем вам разобраться в этих вопросах так, что вы не потеряете гарантию на уже установленное у вас оборудование. Хотя бывают случаи, когда имеющееся оборудование установлено настолько плохо или неправильно, что даже мы не сможем взять его на обслуживание. В этом случае всегда есть вариант установить отдельную систему, которая не будет конфликтовать с вашим существующим оборудованием.

Как это сделать — вам объяснит наш инженер-консультант после обследования (очного или заочного) вашего объекта. Просто позвоните нам, или закажите обратный звонок, или напишите нам в онлайн-чате, или напишите через форму заявки.

Эта статья прочитана 14241 раз(а)!

Продолжить чтение

  • Солнечные батареи для дома
  • Выгодны ли инвестиции в солнечные батареи?
  • Выбор солнечных панелей: Моно или поли?
  • 12 преимуществ Double-Glass солнечных модулей

Источник: https://www.solarhome.ru/basics/solar/pv/uvelichenie-moschnosti-solnechnoj-batarei.htm

Что такое солнечная батарея

Обычно под термином «солнечная батарея» подразумевается панель генерирующая электрический ток под воздействием солнечного света. Солнечную батарею еще называют фотоэлектрическим преобразователем. Так же встречаются такие термины как: солнечная панель, солнечный модуль, фотомодуль и т.д.

Структура фотоэлектрической установки

Солнечная батарея и фотоэффект

Для получения электроэнергии от солнечной батареи необходимо осуществить фотоэффект. Этот процесс связан с физическим явлением p-n перехода, который происходит в фотоэлементе. Конструктивно фотоэлемент состоит из двух пластин полупроводникового материала. Одна из используемых пластин содержит атомы бора, а вторая атомы мышьяка.

При этом верхний слой характеризуется переизбытком электронов (область электронов), а нижняя – их нехваткой (так называемая дырочная область). В данном случае на границе этих пластин поддерживается электронно-дырочный переход, так называемый p-n переход.

В результате попадания на фотоэлемент солнечных лучей (фотонов) происходит освещение пластин и оба слоя взаимодействуют как электроды обыкновенной батареи – возникает электродвижущая сила (ЭДС)..Солнечный луч возбуждает электроны, которые начинают перемещаться из одной пластины в другую. Для снятия электрической энергии на обе поверхности напаивают тонкие слои проводника и подключают к нагрузке.

Выработка этой энергии не связана с химическими реакциями, поэтому такая солнечная батарея может прослужить довольно долгий срок.

Кремний для производства солнечных батарей может быть монокристаллическим или поликристаллическим. Внешне монокристаллический кремний можно отличить по равномерному чёрно-серому цвету поверхности фотоэлемента.

Этот вид материала выращивают в промышленных условиях, после чего специальной нитью разрезают на тонкие пластины. Второй тип представляет собой новое поколение элементов,сделанных из более доступного поликристаллического кремния.  Изготовление проходит методом литья. Выглядит материал как, поверхность с неравномерным синим переливом. Кроме того,  в кремний добавляют в определенном количестве мышьяк и бор.

Учёные вплотную изучают вопросы, которые могли бы улучшить выработку электроэнергии в солнечных электростанция при помощи повышения КПД солнечной батареи.

Для этого в тонкослойных ячейках может содержаться не только кремний, но и галлий, арсенид, кадмий, медь, селен и многие другие материалы.

Так же большой проблемой на пути улучшения эффективности солнечных батарей, является избыточное тепло, которое возникает при нагреве пластин солнечных элементов. Разрабатывается много путей для отвода данного тепла от солнечной батареи. Ведь КПД панелей в редких случаях превышает 25 %.

Типы солнечных батарей

В настоящее время на рынке можно найти пять основных типов солнечных батарей. Наибольшую популярность получили солнечные батареи из поликристаллических фотоэлементов. Эффективность таких панелей в среднем  составляет 12-14 %. Панели из монокристаллических фотоэлементов характеризуются более высоким КПД (14-16 %). Такие панели немного дороже чем панели из поликристаллического кремния. Так же ячейки имеют форму многоугольника и из-за этого не полностью заполняют пространство солнечной батареи, что приводит к более низкой эффективности всей батареи по отношению к одной ячейки. Солнечные батареи из аморфного кремния имеют наименьшую эффективность ( 6-8 %), но в то же время имеют наиболее низкую себестоимость производимой энергии. Солнечные батареи на основе Теллурид Кадмия (CdTe) представляют собой тонкопленочную технологию производства солнечных проебразователей. Полупроводниковые слои наносят на панель толщиной всего в несколько сотен микрон. Производство является менее вредным для окружающей среды. Эффективность солнечных батарей на основе Теллурид Кадмия составляет порядка 11-12 %. Солнечные батареи на основе смеси Индия, Галлия, Меди, Селена (CIGS) так же является тонкопленочной технологией производства фотоэлементов.  Эффективность варьируется от 10 до 15 %. Эта технология еще мало распространена на рынке, однако очень быстро развивается. Немного видеоматериала о том как именно происходит процесс производства солнечной батареи

Источник: http://solarsoul.net/solnechnaja-batareya

Установка солнечных батарей. Что нужно учесть при монтаже?

Май 2018

   Солнечная генерация может обеспечить резервное энергоснабжение, полную автономность объекта или снизить общее энергопотребление. Но только при условии правильной установки солнечных панелей.По конструктиву солнечная батарея представляет собой прямоугольный модуль, собранный из отдельных ячеек. По способу работы — это огромный транзистор или фотоэлектронный преобразователь, который превращает условные фотоны в условные электроны с поправкой на КПД.Коэффициент полезного действия батареи определяется материалом ячеек: батареи из монокристаллического кремния имеют КПД около 20%, поликристаллический эффективен чуть менее, аморфный преобразовывает в электроэнергию 10% солнечного света.
Куда же деваются оставшиеся 80−90% энергии солнца? Преобразуются в тепло и нагревают солнечный модуль до довольно высоких температур. Если батарея установлена неправильно, то пожарить яичницу получится только на ней самой, поскольку мощности на включение электроприборов не хватит. Поэтому нужно соблюдать определенные правила установки.

Общие правила установки солнечных панелей

При монтаже солнечных панелей необходимо обязательно учитывать 5 факторов, сочетанием которых, в конечном итоге определяется место и способ установки:

  1. Отвод тепла
  2. Тень
  3. Ориентация
  4. Наклон
  5. Доступность для обслуживания

Как было сказано выше, отвод тепла играет важную роль в поддержании работоспособности батарей. Между панелью и плоскостью установки обязательно нужно оставлять вентиляционный зазор, и чем он больше — тем лучше. Обычно при монтаже рамы или каркаса для крепления модулей между панелью и плоскостью оставляют 5−10 сантиметров. Максимальная вентиляция обеспечивается при установке на отдельной раме или штанге.Любая тень, падающая на батарею от деревьев или строений, «отключает» затененную ячейку, что ускоряет деградацию дорогих монокристаллических модулей и полностью прекращает выработку энергии в поликристаллических. Производители предлагают различные способы минимизации риска возникновения «горячей точки» из-за прерывания электроцепи, что нужно учитывать при покупке. Но лучше устанавливать батарею таким образом, чтобы «жесткая» тень не могла попасть на нее никоим образом. «Мягкая» тень из-за тумана, облаков или смога не наносит вреда батарее, просто снижает выработку энергии.

Ориентировать батарею нужно на юг — так инсоляция будет максимальной. Все прочие способы установки являются компромиссными, и лучше их не рассматривать. Потратить десятки тысяч рублей на покупку модулей, но сориентировать батарею не по солнцу было бы неразумно. Карты инсоляции для различных регионов РФ опубликованы в интернете и общедоступны. Средняя полоса России преимущественно находится во 2-й зоне инсоляции, где с 1 кв. метра правильно установленного идеального солнечного модуля можно получать до 3 кВтч/сутки.Наклон солнечной батареи принимают равным широте нахождения объекта или параллели. Например, для Москвы это будет 55 градусов к горизонтали, для Санкт-Петербурга — 60 градусов, а для Сочи — 43 градуса. При этом весной угол наклона батареи лучше уменьшать на 12−15 градусов от оптимального, а зимой — на столько же увеличивать для захвата максимального потока солнечного света.
Доступность батареи для быстрой очистки поверхности позволяет выполнять эту несложную операцию без привлечения специалистов. Зимой поверхность нужно освобождать от снега, летом — от пыли и грязи, нанесенных ветром и дождем. Если поблизости находится строящийся объект, то очищать поверхность модулей придется ежедневно. Проще всего это делать струей воды из шланга или любой щеткой для мойки окон.
Наилучшим местом для установки считается крыша здания, поскольку она максимально возвышается над объектами и деревьями, бывает меньше всего затенена и избавляет от необходимости оборудовать на участке отдельную площадку для монтажа.Даже если угол наклона кровли и ее ориентация не совпадают с оптимальными, закрепить и правильно ориентировать модули можно при помощи рамных конструкций. Поскольку у батарей большая парусность, жесткость каркаса должна быть рассчитана с учетом ветровой нагрузки.Оптимальным материалом для сборки каркаса считаются металлические уголки или специальные профили для монтажа солнечных панелей. Конструкция из деревянного бруса быстро потеряет прочность и форму под воздействием ветра и осадков.Если установка на кровлю невозможна, то модули устанавливают на земле, где нет тени и есть возможность жестко закрепить основание каркаса или несущей штанги. Такой способ монтажа хорош тем, что обеспечивает панелям максимальное воздушное охлаждение.Для установки небольших по площади массивов солнечных батарей можно использовать южную стену дома или надворной постройки. При этом поверхность, прилегающую к обратной стороне модуля, лучше покрасить в белый цвет, чтобы обеспечить минимальный нагрев и максимальный рассев света. У полупрозрачной безрамочной солнечной батареи активными являются и наружная, и обратная стороны, поэтому отраженный свет тоже будет преобразован в энергию. Если зимой установить солнечный модуль в заснеженном поле, то мощность выработки электроэнергии может увеличиться в 1,5 раза за счет высокой отражающей способности белого снежного покрова.

Как правильно выбрать местоположение

  Исходя из всего сказанного выше, место для установки солнечных батарей должно отвечать следующим критериям:
  • отсутствие тени;
  • легкая доступность;
  • удаленность от источников пыли, например, автомобильной дороги;
  • ориентация на юг;
  • хорошая обдуваемость ветром, но с учетом высокой парусности модулей.

Если вам кажется, что на вашем объекте отсутствуют площадки, отвечающие этим требованиям, — не отчаивайтесь и не спешите отказываться от бесконечного источника бесплатной солнечной энергии.

Специалисты компании «Энергетический центр» имеют огромный опыт комплектования и установки солнечных электростанций любой мощности. На сайте «Со светом» можно получить бесплатную консультацию в любом объеме — позвоните, закажите обратный звонок или используйте онлайн-чат.За последние 10 лет цены на оборудование для солнечной генерации снизились многократно, сделав этот способ получения энергии общедоступным и выгодным. Обращайтесь к специалистам и будьте со светом!

« назад

Источник: https://www.sosvetom.ru/articles/ustanovka-solnechnykh-batarey-chto-nuzhno-uchest-pri-montazhe/

Солнечная батарея на балконе, опыт использования

Привет Geektimes. Данная статья является продолжением предыдущей части, про туристическое зарядное устройство «Anker Solar 21Вт».

Идея использования солнечной батареи для зарядки разных гаджетов мне показалась весьма перспективной, но конечно, 21Вт в качестве универсальной зарядки мало — хочется иметь возможность заряда не только в солнечную погоду, а для этого нужен запас по мощности.

Поэтому были куплены полноценные солнечные панели и начаты эксперименты с ними. Что из этого получилось, подробности под катом.

Железо

1. Солнечная панель Тут есть разные варианты, но на балконе основным ограничением является наличие свободного места. Для понимания порядка цен, батарея на 50Вт стоит примерно 5000руб и выглядит так: Размеры панели в мм — 540x620x30, вес 4кг.

Балконы по размеру бывают разные, исходя из габаритов панелей, вполне без проблем можно поместить 2 или 4 штуки, больше уже не влезет. Для теста было куплено 2 панели по 50Вт.

Такая батарея дает около 18В под нагрузкой или 24В без нее, значит при использовании 2х батарей нужно рассчитывать на суммарное напряжение до 50В (к примеру многие dc-dc преобразователи штатно работают до 30В). Можно соединить батареи и параллельно, но тогда потери из-за длины проводов будут чуть выше.

2. Контроллер

Здесь есть 2 варианта:

— Солнечные панели + контроллер + аккумулятор

Это классическая конструкция: контроллер заряжает аккумулятор когда есть солнце, пользователь когда ему надо, эту энергию использует. Преимуществ у данной системы несколько: — энергией можно пользоваться когда угодно, а не только когда светло, — возможность подключения инвертора и получения на выходе 220В, — как бонус, резервный источник в доме на случай отключения электричества.

Недостаток один: использование аккумулятора большой емкости в корне убивает экологичность идеи данного мероприятия. Число циклов заряда/разряда аккумуляторов ограничено, они не любят переразряд, к тому же и аккумуляторы и контроллеры довольно-таки дорогие.

Цена контроллера составляет от 1000р за самую дешевую ШИМ-версию, до 10000-20000р за более дорогую (и эффективную) версию с поддержкой MPPT (что такое MPPT можно почитать здесь).

Цена аккумулятора составляет от 5000р за обычный гелевый аккумулятор на 40-50А*ч, некоторые используют батареи LiFePo4, они разумеется дороже.

— Grid-tie инвертер

Эта технология наиболее перспективна на данный момент. Суть в том, что конвертор преобразует и отдает энергию сразу в домашнюю электросеть. При этом потребляемая от общей сети энергия уменьшается, домовой электросчетчик фиксирует меньшие показания. В идеале, если солнечные панели дают достаточно энергии для всех потребителей, значение на электросчетчике вообще не будет расти. А если потребление квартиры/дома меньше, чем выработка солнечных панелей, то счетчик будет фиксировать «экспорт» энергии, что должно учитываться компанией-поставщиком электричества. В России правда такая схема пока не работает — более того, большинство старых электросчетчиков считают энергию «по модулю», т.е. за отдаваемую энергию еще и придется платить. Вроде в 2017 году вопросы микрогенерации на законном уровне обещали начать решать. Но впрочем для панелей на балконе все это имеет лишь теоретический интерес — их выработка слишком мала. Цена grid-tie инвертора составляет от 100$, в зависимости от мощности. Отдельно стоит отметить микроинветоры — они ставятся прямо на батарею, и отдают сразу сетевое напряжение, однако рекомендуемая мощность панелей составляет не менее 200Вт. Инвертор крепится прямо на задней стенке солнечной панели, это позволяет соединять их так: Но для балкона это разумеется, неактуально.

Тестирование

Первым делом было интересно выяснить, какую реальную мощность можно получить с солнечных панелей. Для этого за 15$ была куплена плата АЦП ADS1115 для Raspberry Pi:
Использовать ее просто, входное напряжение делится делителем и подается на аналоговый вход, на выходе имеем цифровые значения. Исходники для работы с АЦП можно взять здесь.

Также был куплен датчик тока ACS712, датчик напряжения был сделан из кучки резисторов (дома нашлись только одного номинала). В качестве нагрузки была установлена обычная лампочка на 100Вт. Разумеется, от 48 вольт она не горела (лампочка расчитана на 220В), а лишь еле-еле светилась.

Сопротивление спирали составляет 42 Ома, что по напряжению позволяет примерно оценить мощность (хотя у лампы накаливания сопротивление нелинейно, но для грубой прикидки сойдет).

Первая тестовая версия выглядела так: Технофетишистам не смотреть!
Исходник был допилен, чтобы данные и текущее время сохранялись в CSV, также на Raspberry Pi был запущен web-сервер, чтобы скачивать файлы по локальной сети.

Результаты за обычный вполне ясный день с переменной облачностью выглядят так: Видно что пик напряжения приходится на раннее утро, что есть следствие неправильной установки панелей — в идеале они не должны стоять вертикально.

А вот так выглядит «провал» в день, когда набежали тучи, и пошел дождь: Учитывая напряжение в 44В и сопротивление нити накала лампы в 42Ома, можно грубо прикинуть (нелинейность сопротивления лампы игнорируем), что в лучшем случае получаемая мощность P = U*U/R = 46Вт. Увы, КПД 100-ваттной панели при вертикальной установке не очень хорош — солнечные лучи падают на панель не под прямым углом. В худшем случае (пасмурно, дождь) мощность падает даже до 10Вт. Зимой и летом суммарная получаемая энергия также будет отличаться.

Опыт с отдачей энергии напрямую в сеть оказался неудачным: 500-ваттный инвертер от 45 ватт просто не заработал. В принципе это было ожидаемо, так что инвертор оставлен на будущее до переезда на место с балконом побольше.

В итоге, учитывая решение отказаться от буферных аккумуляторов, единственным рабочим вариантом оказалось использование dc-dc конверторов напрямую: к примеру вот такой конвертер может заряжать любые USB-девайсы, на его выходе уже есть и USB-разъем: Есть модели чуть подороже, они имеют больший максимальный ток и большее число USB-разъемов: Есть мысль также найти dc-dc-конвертер для зарядки ноутбука, их выбор на eBay весьма велик.

Что такое солнечные батареи

О том, чтоб использовать солнечную энергию, люди задумывались достаточно давно. Однако ни технологические возможности, ни, тем более, представления о солнечной системе вообще, не позволяли это сделать.

Можно сказать, что до XIX века сама мысль о преобразовании солнечной энергии в электрическую была даже не мечтой, а чем-то фантастическим и необъяснимым.

Отправной точкой в этом направлении считается открытие фотогальванического эффекта, которое осуществил в 1839 году ученый А.Э. Беккерель. Но и это на тот момент было лишь начальным шагом.

Всерьез же о применении солнечной энергии заговорили только много лет спустя, в 1883 году, когда Чарльз Фриттс изобрел первый в мире модуль, работающий на данном источнике энергии. Ученый использовал селен, на который тончайшим слоем было нанесено золото.

Сочетание именно этих материалов, и в такой пропорции, по мнению Фриттса, должно было обеспечить преобразование энергию Солнца в электричество. Первые прототипы солнечных батарей были построены во Франции, в частности, на всемирной выставке, проходящей в Париже, ученый О.

Мушо продемонстрировал посетителям прибор, фокусирующий при помощи зеркал солнечные лучи на паровом котле. Прибор получил название инсолятор.  

Однако и это еще не та солнечная батарея, известная нам сегодня. Несколько десятилетий понадобилось ученым, чтобы создать аппараты, способные преобразовывать солнечную энергию в электрическую. Начальные приборы были громоздкими и дорогостоящими, а их КПД на протяжении многих лет едва-едва увеличивалось с 1% до 6%. Только в 70-е годы прошлого столетия удалось добиться приемлемого КПД, равнявшемуся 10%.

Это уже позволило серьезно рассматривать солнечные батареи как источник энергии. Но и то, не на Земле, так как полученное таким образом электричество обходилось слишком дорого. Поэтому батареи данного типа нашли применение только в космической отрасли. И только к 90-м годам удалось изобрести такие приборы, которые, отличаясь относительно недорогой стоимостью, могли выдавать КПД более 20%.

Это уже позволило задуматься о том, чтобы применять батареи в производственных и бытовых сферах.

Что представляют собой современные солнечные батареи

О том, что такое солнечные батареи, наверное, слышали многие, но мало кто знает, из чего устроены эти приборы. На самом деле, конструкция устройств, с одной стороны, сложная, с другой – довольно проста, так как состоит всего из нескольких элементов. Если рассматривать классический вариант оборудования по преобразованию солнечной энергии в электричество, то в его устройство входят:

  • Собственно, солнечная батарея;

  • Инвертор, необходимый для преобразования постоянного тока в переменный;

  • Аккумулятор, оснащенный прибором для контроля заряда.

Сама солнечная батарея также состоит из нескольких элементов, они называются фотоэлектрическими преобразователями. Подавляющее большинство данных элементов изготовляют из кремния.

Фотоэлектрические преобразователи (они же солнечные элементы, как их еще называют) соединяются между собой как последовательно, так и параллельно, что позволяет увеличить необходимые параметры, такие как мощность, напряжение и ток.

Кроме того, такой способ соединения является страховкой – если один из элементов выйдет из строя, то устройство продолжит работать, хоть и с меньшей производительностью.

Для чего же можно использовать данный источник энергии? Да практически для всего, что требует электропитания. В частности – это освещение, работа бытовых электроприборов, а также отопление зданий.

Во многих странах рядовые пользователи уже устанавливают на крышу частных домов солнечные панели, чтобы получить полную автономию и независимость от поставщиков электроэнергии. Но самыми крупными на данный момент потребителями, конечно же, являются коммерческие компании.

Хорошее распространение солнечных батарей наблюдается в агропромышленных комплексах, так как огромная территория таких комплексов дает возможность разместить большое количество панелей, чтобы получать требуемый объем электроэнергии.

Принцип работы

Не вдаваясь в сложные технологические подробности, можно описать принцип работы солнечных батарей следующим образом. Имеются две кремниевые пластины, одна из них покрыта фосфором, что дает избыток электронов, заряженных отрицательно, вторая пластина покрыта бором, что образует некие «дыры» из-за нехватки отрицательных зарядов.

При попадании солнечного света на панель с отрицательным зарядом образуются дополнительные «дыры» и отрицательные заряды. Под действием солнечных лучей электроны начинают двигаться, что и вызывает появление электрического тока в батарее.

Ток, в свою очередь, при помощи медных жил, покрывающих батарею, отводится от панели и направляется непосредственно в место назначения. Это может быть либо электронный прибор, к которому напрямую подается электричество, либо же аккумулятор, в котором оно накапливается.

Однако стоит знать, что напрямую электричество от солнечной панели может подаваться только к потребителю постоянного тока, например, лампочке. Но для использования данного вида энергии в электроприборах, являющихся потребителями переменного тока, необходим инвертор.

Преимущества перед другими источниками энергии

Первым, и одним из главных достоинств солнечных батарей, можно назвать тот факт, что пользователь, установивший их, получает полную независимость от поставщиков электроэнергии. Больше не придется беспокоиться о том, что внезапно могут отключить свет ввиду профилактики или аварии. А с таким явлением, как отключение, хорошо знакомы жители частного сектора, особенно – удаленных от города населенных пунктов.

Да и в самом городе, если это не крупный мегаполис, нередко возникают перебои с электричеством. Самая банальная причина – вызванная бурей авария, в результате которой потребителям приходится ждать, пока ремонтники устраняют неисправность. Это может занять несколько часов, а порой – и целый день. И для кого-то это может создать определенные проблемы, если, к примеру, от электроэнергии зависит работа человека.

Да и в бытовом плане такое происшествие вызывает дискомфорт. Наличие же солнечных панелей навсегда избавляет от таких неприятных ситуаций. Если сравнить их с таким автономным источником питания, как дизельный генератор, то, во-первых, расход топлива у него достаточно большой, а оно тоже постоянно растет в цене. А во-вторых, солнечные батареи работают бесшумно, в отличие от генератора.

Да и в эксплуатации более безопасны.

Вторым преимуществом является цена получаемого электричества. По сути, она равняется нулю, ведь Солнце светит совершенно бесплатно. Расходы будут только при покупке и установке оборудования, что, конечно, может показаться довольно дорогим капиталовложением. Однако если рассмотреть вопрос детальнее, то становится понятным, что в будущем это окупится, и довольно хорошо.

Ведь стоимость электроэнергии постоянно повышается, во многом зависит опять же от запросов поставщиков, которые могут неоправданно и резко повысить цену. Обслуживать панели вовсе не нужно, за ними необходим только небольшой уход, который заключается в протирании поверхностей от пыли и грязи. Единственное, что потребуется – помимо самих панелей надо приобрести дополнительное оборудование.

Это контроллер, а также инвертор для солнечных батарей, который можно купить на нашем сайте.

Третье достоинство состоит в том, что панели можно наращивать. Это очень полезное качество, так как не все потребители готовы сразу приобрести большую установку и полностью перейти на данный источник энергии. При желании, можно установить батареи как дополнительный источник, не отказываясь пока от главного.

А убедившись, что система работает, можно в течение нескольких последующих лет постепенно добавлять все новые панели. Это будет не так затратно для семейного бюджета, а пользователь не будет беспокоиться о том, что система ненадежная или не внушает доверия. В будущем же можно окончательно отдать предпочтение использованию солнечной батареи.

И, что еще немаловажно, подключение новых панелей можно выполнять самостоятельно, не вызывая каждый раз специалистов.

Ну и последнее преимущество, это – экологичность. Те, кто беспокоится за окружающую среду, могут быть спокойны, используя безопасный и чистый источник электроэнергии, не нанося вред природе.

Источник: http://huawei.energy/useful-know/chto_takoe_solnechnye_batarei/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]