Как подключить амперметр к резистору

Измерение тока и напряжения. Вольтметр и амперметр

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Основы электроники” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр и амперметр.

Измерение тока. Амперметр

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

I = \frac{U}{R} = \frac{12}{100} = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Источник: https://microtechnics.ru/izmerenie-toka-i-napryazheniya-voltmetr-i-ampermetr/

Амперметр

Радиоэлектроника для начинающих

Если в каком-либо проводнике течет ток, то он характеризуется такой величиной, как «сила тока». Сила тока в свою очередь характеризуется количеством электронов, которые проходят через поперечное сечение проводника за единицу времени. Но мы все учились в школе и знаем, что электронов в проводнике миллиарды миллиардов и считать количество электронов было бы бессмысленно.

Поэтому ученые вывернулись из этой ситуации и придумали единицу измерения силы тока и назвали ее «Ампер», в честь французского физика-математика Андре Мари Ампера. Что же собой представляет 1 Ампер? Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение провода проходит заряд, равный 1 Кулону.

 Или простым языком, все электроны в сумме должны давать заряд в 1 Кулон и они должны в течение одной секунды пройти через поперечное сечение проводника. Если учесть, что заряд одного электрона 1.6х10-19 , то можно узнать, сколько электронов в 1 Кулоне.

А вот для того, чтобы измерять амперы, ученые придумали прибор и назвали его «амперметром».

Амперметр – это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперами (мкА), миллиАмперами (мА), а также Амперами (А). Следовательно, в зависимости от величины измеряемого тока приборы для измерения силы тока делятся на амперметры (PA1), миллиамперметры (PA2) и микроамперметры (PA3).

На принципиальных схемах амперметр, как измерительный прибор обозначается вот так.

Какие бывают амперметры?

Первый тип амперметра – аналоговый. Их ещё называют стрелочными. Вот так они выглядят.

Такие амперметры имеют магнитоэлектрическую систему. Они состоят из катушки тонкой проволоки, которая может вращаться между полюсами постоянного магнита. При пропускании тока через катушку, она стремится установиться по полю под действием вращающего момента, величина которого пропорциональна току.

В свою очередь повороту катушки препятствует специальная пружина, упругий момент которой пропорционален углу закручивания. При равновесии эти моменты буду равны, и стрелка покажет значение, пропорциональное протекающему через нее току.

 Иногда, для того, чтобы увеличить предел измерения, параллельно амперметру ставят резистор определенной величины, рассчитанной заранее. Это так называемый шунтирующий резистор – шунт.

Про шунтирующее действие измерительных приборов уже подробно рассказывалось в статье про вольтметр. Там же затрагивалось такое понятие, как входное сопротивление прибора. Так вот, применительно к вольтметру, его входное сопротивление должно быть как можно больше. Это необходимо для того, чтобы прибор не влиял на работу схемы при проведении измерений и выдавал точные результаты.

Применительно к амперметру складывается обратная ситуация. Так как амперметр для проведения измерений включается в разрыв электрической цепи, то необходимо стремиться к тому, чтобы его внутреннее сопротивление протекающему току было минимальным. Грубо говоря, сопротивление между его измерительными щупами должно быт мало.

В противном случае, для электрической цепи амперметр будет представлять резистор. А, как известно, чем больше сопротивление резистора, тем меньший ток через него проходит. Таким образом, при включении амперметра в измерительную цепь, мы искусственно понижаем ток в этой цепи. Понятно, что в таком случае, показания амперметра будут некорректные.

Но не стоит расстраиваться, так как измерительная техника разрабатывается с учётом всех этих особенностей.

Это лишь ещё один намёк на то, что при обращении с мультиметрами стоит внимательно относиться к выбору режима работы и правильному замеру тех или иных величин. Несоблюдение этих правил может привести к порче прибора.

Аналоговые амперметры до сих пор используются в современном мире. Их плюс таковы, что им не требуется независимое питание для выдачи результатов, так как они используют питание замеряемой цепи. Также они удобны при отображении информации. Думаю, лучше наблюдать за стрелкой, чем за цифрами.

На некоторых амперметрах есть винтик корректировки для точного выставления стрелки прибора к нулю. Минусы – это большая инертность, то есть для стрелки прибора нужно какое-то время, чтобы она пришла в устойчивое состояние.

Хоть этот недостаток в современных аналоговых приборах проявляется слабо, но он все-таки есть.

Второй тип амперметра – это цифровой амперметр. Он состоит из аналого-цифрового преобразователя (АЦП) и преобразует силу тока в цифровые данные, который потом отображаются на ЖК-дисплее.

Цифровые амперметры лишены инертности, и выдача результатов измерений зависит от частоты процессора, который выдает результаты на дисплей. В дорогих цифровых амперметрах он может выдать до 1000 и более результатов в секунду.

Также цифровые амперметры требуют меньше габаритов для установки, что немаловажно в современной аппаратуре. Минусы – это то, что для измерения им требуется собственный источник питания, который питает все внутренние узлы и микросхемы прибора.

Есть, конечно, и такие цифровые амперметры, которые используют питание измеряемой цепи, но они все равно редко используются в виду своей дороговизны.

Амперметры делятся на амперметры для измерения силы тока постоянного напряжения и для измерения силы тока переменного напряжения. Но, допустим, у вас нет амперметра, чтобы измерить силу тока переменного напряжения. Что же тогда делать? Можно собрать очень простую схемку. Выглядит она вот так:

Но чтобы не собирать самостоятельно измерительную схему и доводить её до ума, купите себе мультиметр. В хорошем мультиметре есть функции измерения силы тока, как для постоянного, так и для переменного напряжения.

Схема для измерения силы тока выглядит вот так:

Это означает, что амперметр мы должны подключать последовательно нагрузке.

Для того чтобы правильно измерить силу тока, нам надо знать, какое напряжение вырабатывает источник питания: переменное или постоянное. Если будем замерять силу тока постоянного напряжения, то и амперметр нам нужен для измерения силы тока постоянного напряжения, а если для переменного, то и амперметр нужен соответствующий. В нашем случае нагрузкой может быть любой прибор или схема, которая потребляет ток. Это может быть лампочка, сотовый телефон или даже компьютер.

Измерение силы тока с помощью амперметра

Давайте рассмотрим на практике, как замерять силу тока с помощью цифрового мультиметра DT-9202A.

В красном кружочке у нас буковка «А~» означает, что ставя переключатель на этот участок, мы сможем замерить силу тока переменного напряжения, а ставя переключатель на секцию со значком «А=» (в синем кружке), мы сможем замерять силу тока постоянного напряжения.

Чтобы измерить силу тока до 200 мА (200m) как переменного, так и постоянного напряжения, нужно поставить щупы такого мультиметра в определенные клеммы:

Если же мы будем измерять силу тока более чем в 5 Ампер, то я рекомендую вам переставить щуп в другую клемму:

Если даже примерно не знаете, сколько должно потреблять ваше устройство или нагрузка, то всегда ставьте щуп и переключатель на самый большой предел измерения. Тем самым вы сохраните своему прибору жизнь.

На фото снизу я измеряю силу тока, которая кушает лампочка на 12 Вольт. С трансформатора я снимаю переменное напряжение 10 Вольт. Как мы видим, сила тока, потребляемая лампочкой — 1.14 Ампер. Обратите особое внимание, что переключатель мультиметра поставлен на измерение силы тока переменного напряжения (А~).

А вот так мы замеряем постоянный ток, который потребляет автомобильная сирена. Орет она так, что даже уши закладывает .

Обратите также внимание, так как у нас аккумулятор постоянного напряжения 12 Вольт, то и переключатель режимов мультиметра мы поставили на измерение постоянного тока.

А вот столько у нас кушает лампочка: 1.93 Ампера. Здесь замеряется постоянный ток, который потребляется лампой накаливания от аккумулятора.

Меры предосторожности:

  • Никогда не подключайте амперметр в розетку без всякой нагрузки! Тем самым вы просто-напросто спалите прибор. Как уже говорилось, амперметр обладает малым входным сопротивлением.
  • При измерении силы тока не касайтесь голых проводов, а также оголённых частей измерительных щупов. Это исключит электрический удар током. Будьте внимательны со схемой подключения амперметра.

Если Вы хотите узнать больше про измерения электрических величин, то загляните на сайт Практическая электроника. Там вы найдёте много познавательной информации по электронике.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Зачем нужен омметр.
  • Как проверить транзистор мультиметром?

Источник: https://go-radio.ru/ampermetr.html

Как подключить амперметр

> Подключение и установка > Как подключить амперметр

С измерительной системой связано слово «метр». Ток измеряется в амперах. Следовательно, амперметр – это инструмент, измеряющий силу тока. Чтобы получить корректные результаты и не повредить прибор, надо знать, как подключить амперметр к электроцепи.

Разновидности амперметров

Все устройства делятся на две разновидности: аналоговые и цифровые.

Аналоговые приборы:

  1. Магнитоэлектрические. Постоянный магнит, расположенный в приборном корпусе, создает магнитное поле, которое взаимодействует с магнитным полем свободно движущейся катушки во время протекания по ней электрического тока, создавая крутящий момент. Отклонение стрелки, связанной с катушкой, соответствует количественному показателю тока. Прибор отличается высокой чувствительностью и точностью, однако рассчитан на контроль постоянного тока невысоких величин. Для расширения измерительного диапазона устанавливается шунт;
  2. Электромагнитные. Состоят из стрелки, прикрепленной к магниту, размещенному внутри катушки. Когда ток течет через катушку, создается магнитное поле, вызывающее притяжение или отталкивание магнита, пропорциональное величине тока. Универсальные амперметры, которыми замеряют переменный ток промышленной частоты и постоянный ток;
  3. Электродинамические. Имеют две катушки: фиксированную и мобильную, создающие магнитные поля. Реакция между этими полями обеспечивает отклоняющий момент подвижной системы, компенсирующийся спиральными пружинами. Используют в электроцепях переменного тока, работающих на частоте 50-200 Гц, и постоянного тока;
  4. Термоэлектрические. Основаны на принципе, что все проводники расширяются при нагревании. Это расширение соответствует выделившейся энергии, которая, в свою очередь, пропорциональна квадрату тока, независимо от его направления и природы. Ток проходит через резистор, находящийся в контакте с термопарой, соединенной со стрелкой амперметра. Этот косвенный метод в основном применяется с целью замеров высокочастотного тока;
  5. Ферродинамические. Принципом действия похожи на электродинамические системы, но подвижная катушка размещается внутри магнитопровода из ферромагнитных материалов, на котором находятся стационарные катушки. Благодаря этому создается сильное магнитное поле, повышающее чувствительность прибора и его невосприимчивость к сторонним полям.

Технологические достижения обеспечили создание цифровых амперметров с большой универсальностью и производительностью. С цифровыми приборами устраняются ошибки считывания, так как показания визуализируются цифрами. Поскольку механические части заменены электронными схемами, минимизируется износ.

Важно! Качество цифрового прибора зависит от качества используемых схем.

Два из наиболее широко используемых портативных приборов: мультиметр и токоизмерительные клещи. Они доступны в аналоговых и цифровых версиях, но последние сейчас более распространены. Токоизмерительные клещи очень полезны, так как мгновенно измеряют ток без разрывания цепи. Эти приборы управляются магнитным полем, возникающим вокруг провода с протекающим током, в них нет катушек, которые могли бы сгореть.

Способы подключения амперметра

Как самостоятельно подключить люстру к выключателю

Основная особенность прибора заключается в том, что он должен обладать маленьким сопротивлением. Это нужно для обеспечения незначительного падения напряжения на нем.

Для идеального замера прибор должен иметь нулевое внутреннее сопротивление, но это недостижимо. Подключение амперметра в цепь производится последовательно, в отличие от вольтметра.

Если подключить его параллельно источнику питания, ток пойдет фактически короткозамкнутым путем и может повредить прибор.

Схема подсоединения амперметра

Схема подключения амперметра может быть прямой и косвенной. При прямой схеме прибор непосредственно подключается в цепь между источником питания и нагрузкой.

Косвенная схема реализуется двумя способами:

  1. Установка шунта параллельно амперметру, когда почти весь ток пропускается через шунт, обладающий небольшим сопротивлением, а на катушку прибора попадает незначительная его часть. Соотношение между токами и сопротивлениями шунта и прибора:

Iш/Iпр = Rпр/Rш.

Таким образом, применяя откалиброванные шунты можно расширить диапазон измеряемых токов;

  1. Использование измерительных трансформаторов. Применяется для фиксации токов больших величин на электрооборудовании высокого напряжения. Ток в силовых электроцепях преобразуется посредством трансформаторов в маленькие величины (обычно это 5 А). К выводам вторичной обмотки подключаются измерительные приборы.

Важно! Выводы вторичной обмотки всегда замыкаются на резистор, а работа в разомкнутой цепи запрещается из-за того, что она может оказаться под фазным напряжением силовой цепи.

Последовательность подключения амперметра с шунтом

Схемы с трансформаторами тока применяются на энергопредприятиях. Для подключения амперметров в низковольтных цепях электрики-любители, как правило, используют схему с шунтами.

Схема подсоединения амперметра с шунтом

Последовательность шагов по сборке схемы:

  1. Многие амперметры комплектуются откалиброванными шунтами. Необходимо знать приблизительный диапазон токов измерения. Зная ток, выбирается соответствующий шунт;
  2. Закрепить шунт на контактных выводах амперметра;
  3. Обесточить устройство, предназначенное для контроля тока;
  4. Разомкнуть питающую электроцепь и включить в нее последовательно с нагрузкой (лампой, резистором и т. д.) амперметр с закрепленным на нем шунтирующим элементом, учитывая полярность прибора (для аналоговых устройств) и источника;
  5. Подать напряжение и снять данные;
  6. Вновь отключить питающий источник, отсоединить амперметр и восстановить нормальную схему;
  7. Цена одного деления прибора определяется, исходя из значения тока, указанного на шунте.

В мультиметре шунты уже встроены в прибор. Нужно только поставить переключатель в нужный диапазон измерений. Делается это при снятом питании.

Важно! Если амперметр включается в цепь для определения зарядного тока между ЗУ и аккумулятором, то «плюс» ЗУ соединяется с «плюсом» амперметра, а «минус» амперметра с «плюсом» аккумулятора.

ЭТО ИНТЕРЕСНО:  Что происходит с силой тока при коротком замыкании

Подсоединение цифрового вольтамперметра

Как правильно подключить электросчетчик к проводам

Существует интересный цифровой модуль для постоянного тока, совмещающий функции вольтметра и амперметра в одном устройстве. Вольтамперметрам под силу одновременно показывать и ток, и напряжение при правильном подсоединении.

Пример такого прибора модель DSNVS288, состоит из:

  • самого измерительного устройства;
  • 2-проводного кабеля (вход и выход амперметра);
  • 3-проводного кабеля (питание прибора и измерение напряжения).

Измеряемый диапазон ампервольтметра:

  • от 0 до 100 В по напряжению,
  • от 0 до 10 А по току.

Так как питающее напряжение прибора 3,5-30 В, схема его включения различается:

  1. При необходимости подсоединить прибор в цепь, напряжение которой лежит в пределах между 3,5 и 30 В, общее питание одновременно используется и для прибора. Черный провод 2-проводного кабеля идет к «минусу», красный – к нагрузке и от другого вывода нагрузки к «плюсу». На 3-проводном кабеле: желтый и красный – соединяются вместе на «плюсе» источника, а черный – остается свободным;
  2. Если напряжение ИП больше или меньше диапазона питания прибора, то вольтамперметр надо подсоединить к индивидуальному ИП. Двухпроводный кабель подключается аналогично, у трехпроводного –красный и черный – идут на «плюс» и «минус» своего ИП, а желтый – на «плюс» основного ИП.

Схемы присоединения DSN-VS288

Каждый тип амперметра подключается по одному принципу, но с обязательным учетом количественного значения измеряемого тока и выбором для этого соответствующих приборов и приспособлений.

Как подключить дверной звонок

Источник: https://elquanta.ru/ustanovka_podklychenie/kak-podklyuchit-ampermetr.html

Как подключить амперметр?

Амперметр – прибор, с помощью которого измеряют силу электрического тока (постоянного или переменного). Как известно, сила электрического тока измеряется в амперах. На электрических схемах обозначается кружком, внутри которого пишется «А», что значит ампер, то есть Ампер – единица измерения тока.

Применение амперметра

Амперметр применяется для измерения электрического тока как постоянной, так и переменной величины в диапазоне от мкА до кА. Амперметр следует применять на ток, не превышающий максимальный ток шкалы, с учетом схемы подключения. В зависимости от верхнего предела измерений амперметры делятся на микроамперметры (10-6), миллиамперметры(10-3), амперметры, килоамперметры(10+3).

Как подключить амперметр правильно?

Амперметр подключается в разрыв цепи, последовательно. Схема подключения амперметра через шунт

Расчет шунта для амперметра

Шунт необходим в тех случаях, когда необходимо измерить ток больше максимального измеряемого тока амперметра. В этом случае производится расчет сопротивления шунта, по формуле.

Rш=(RА*IА)/(IШ-IА)

В этой формуле:

  • Rш – искомое сопротивление шунта, Ом
  • RА – внутреннее сопротивление амперметра, Ом
  • IА – максимальная величина тока, измеряемая амперметром, А
  • IШ – величина тока, которую необходимо измерить (с шунтом).

Внутреннее сопротивление амперметра

Внутреннее сопротивление амперметра должно на порядок меньше сопротивления измеряемой цепи. Если внутреннее сопротивление амперметра неизвестно, то его можно измерить. Подключаем к источнику питания амперметр и нагрузочное сопротивление последовательно, а параллельно амперметру ставим еще чувствительный вольтметр. Разделив показания чувствительного вольтметра, на показания амперметра получим величину внутреннего сопротивления амперметра.

Подключение:

  • С самого начала хотим предупредить, что шунт для амперметра должен быть из комплекта поставки данного прибора. Если возьмёте другой, это может привести к тому, что показания будут выдаваться неверно. С чем это связано? В первую очередь с тем, что даже у индикаторов разных марок с одинаковым током полного отклонения у стрелок может быть неодинаковое внутреннее сопротивление.
  • Теперь выберите шунт для амперметра, предельный ток которого будет ниже измеряемого. Допустим, если подразумевается, что ток в цепи будет колебаться в следующих пределах – от 5 до 8А, тогда вам нужно выбрать шунт на 10А.
  • На винтах прибора вы найдёте по две гайки. С каждого из винтов отверните  первую из них, а вторую, которая находится ближе к корпусу, отворачивать не нужно, в противном случае винт провалится внутрь, и амперметр придётся вскрывать.
  • Теперь на винты наденьте шунты и закрепите гайками. Между шунтом и вторыми гайками, которые расположены на каждом из этих винтов, должны быть две шайбы, не забудьте об этом.
  • Схема подключения амперметра дальше такова: нужно обесточить устройство, у которого вы хотите измерить потребляемый ток. Просто разорвите цепь его питания, а затем, соблюдая полярность, амперметр включают в цепь с шунтом. Провода при этом зажимайте меду шайбами. После выполнения этих действий можно снова включать питание, прочитав показания, а затем опять обесточивайте цепь, убирайте амперметр и восстанавливайте соединение.
  • Умножьте показания прибора на коэффициент, который указан на шунте. Если этих данных нет, вычислить цену деления можно самостоятельно. Как это сделать? Вот пример – если ток при полном отклонении индикатора равен 100 мкА, а шунт рассчитан на 10 А, то каждому микроамперу на шкале соответствовать будет 0,1 А тока в цепи.
  • На худой конец вы можете воспользоваться шунтом без обозначений, а также любым магнитоэлектрическим индикатором. Последовательно соедините испытуемый и образцовый амперметр и затем смело подключайте их к стабилизатору тока. Постепенно повышайте ток от нуля, вследствие чего вы должны добиться полного отклонения стрелки испытуемого прибора. Таким образом, образцовый амперметр поможет вам узнать значение тока в цепи. Поделите это значение на количество делений, которые находятся  на шкале, это поможет вычислить цену одного деления.

Теперь вы знаете, как подключить амперметр, надеемся, что вы сможете использовать предложенные инструкции на практике.

Источник: http://www.gamesdraw.ru/?page_id=416

Как подключить амперметр и вольтметр: схема, способы подключения, в цепь постоянного тока

Амперметр – это электроизмерительный прибор, предназначенный для фиксации силы постоянного либо переменного тока, протекающего в цепи — то есть устройство для измерения тока. Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток.

Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким). Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.
Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор.

Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.

Что такое амперметр и вольтметр

Амперметры нашли свое применение в разных промышленных и бытовых сферах. Их регулярно используют на больших предприятиях, которые связаны с выработкой и распределением тепловой и электроэнергии. Кроме того, их применяют в:

  • электрических лабораториях;
  • строении автомобилей;
  • точных науках;
  • строительных работах.

Подключение амперметра

Важно! Однако, помимо средних и крупных компаний, рассматриваемую технику используют обычные люди. Фактически каждый электрик с соответствующими навыками имеет в арсенале такое устройство, которое дает возможность провести измерения параметров потребления электрической энергии приборами, узлами автомобиля и др.

Чтобы определить параметры тока в электрической цепи, используют спецприборы — амперметры. Приспособление включается последовательно в изучаемую электроцепь, и, из-за очень малого внутреннего сопротивления, такой измерительный аппарат не будет вносить какие-то значительные изменения в электрических параметрах цепи.

Амперметр

Вольтметр является устройством, выступающим как измерительное приспособление показателей напряжения до 1000В в сетях с постоянным и переменным током, промышленной частоты и применяется для общего анализа и проведения статистических замеров. Лучшие приспособления будут обладать крайне высоким, бесконечным сопротивлением. Благодаря большому сопротивлению устройства будет достигнута крайне высокая точность, широкие сферы применения.

Вольтметр

Предназначение амперметра

Ещё на старых советских автомобилях устанавливалось некое подобие амперметра, но оно было менее функциональным и информативным, нежели современные модели. Такое устройство работало только “в одну сторону” и показывало направление тока, то есть, к АКБ или из нее. Иными словами, такой прибор лишь давал информацию, заряжается АКБ или разряжается в данный момент времени.

Современные модели в случае правильного подключения предоставляют гораздо больше полезной информации автолюбителю. Это стало возможным благодаря тому, что амперметры стали цифровыми, соответственно, могут считывать не только направление электрического тока, но и другие сведения. Они показывают нагрузку с достаточно высокой точностью, что значительно повышает их функциональность.

В целом, амперметр в автомобиле позволяет контролировать следующие характеристики бортовой сети:

  • Прогресс заряда АКБ. Этот показатель зависит от следующих факторов: уровень заряда АКБ, температурные условия, тип движения и так далее.
  • Разряд АКБ. Потребление тока изменяется в зависимости от внешних факторов. Знание этой информации позволяет приблизительно оценить время автономной работы и текущее состояние аккумулятора.
  • Состояние генератора. Работоспособность во время движения, прогресс зарядки АКБ.
  • Оценка текущей мощности генератора. Амперметр показывает, хватает ли мощности для удовлетворения текущей нагрузки. Особенно важна эта характеристика, если на автомобиле установлена дополнительная техника, потребляющая электроэнергию, например, мощная акустическая система, инвертор 12-220V.
  • Показатели потребления тока. Это позволяет понять, какой ток расходуется всеми потребителями в текущий момент времени.
  • Реальная мощность оборудования. По амперметру без труда можно вычислить уровень потребления каждого прибора. Зная напряжение легко вычислить текущую мощность, время автономной работы и другие интересные данные.
  • Зависимость между текущей нагрузкой и потреблением. Амперметр позволяет узнать, насколько сильно меняется уровень потребления при использовании того или иного оборудования. Так, например, можно выяснить, достаточно ли получает энергии АКБ во время работы двигателя.

Выше перечислены только наиболее важные функциональные возможности амперметра. Продвинутые модели предоставляют информацию еще о нескольких десятках ключевых характеристик автомобиля.

Принцип работы

Когда рассматривается стандартный принцип функционирования амперметра, то его действие основывается на определенных аспектах. На оси кронштейна наряду с магнитом располагается якорь из стали, на котором закреплена стрелка. Оказывая воздействие на якорь, магнит будет передавать ему магнитные качества. В такой ситуации положение якоря будет находиться вдоль силовых линий, которые проходят вдоль самого магнита.

Подобное расположение якоря определит нулевое положение стрелки на шкале. Во время протекания тока от генератора либо иного источника по шине, возле нее появляется магнитный поток. Его силовые линии в месте положения якоря направлены под наклоном 90 градусов к магниту.

Магнитный поток, который образован электротоком, будет действовать на якорь, стремящийся развернуться под прямым углом. При этом ему будет препятствовать магнитный поток, который образован в постоянном магните. Взаимодействие каждого потока будет зависеть от направления и силы электротока, который протекает по шине. На такую величину и произойдет отклонение стрелки устройства от 0.

Работа амперметра

Основой функционирования вольтметра является метод аналогово-цифрового преобразования с 2-хтактным интегрированием. Преобразователи, которые установлены в устройстве, замеряя показатели напряжения постоянного и переменного тока, его силу, сопротивление, будут преобразовывать в нормализованное напряжение и в процессе применения АЦП трансформируют в код из цифр.

Функциональная схема вольтметра функционирует, используя 4 преобразователя:

  • Масштабирующий.
  • Низкочастотное устройство, которое преобразует напряжение переменного тока в постоянный.
  • Преобразователь силы тока в напряжение.
  • Преобразователь сопротивления в напряжение.

Работа вольтметра

Как подобрать шунт для амперметра

Для расчета параметров дополнительной цепи применяют формулуRш=Rвн*Iпр/(Iвх-Iпр), где:

  • Rш – сопротивление шунта;
  • Rвн – внутреннее сопротивление амперметра (приведено в техпаспорте);
  • Iпр – максимальный ток, на который рассчитан прибор;
  • Iвх – входной ток (источника) до разветвления цепи.

Как включается амперметр в цепь с шунтом

Характеристики приборов

Конструкция амперметра достаточно проста: стрелка с катушкой, находящейся в поле постоянного магнита. Принцип функционирования рассматриваемого устройства крайне прост: во время его включения по катушке будет течь электроток. Под воздействием силы Ампера катушка будет поворачиваться до того момента, пока упругость возвратных пружин не совпадет с силой Ампера.

Нормальное функционирование вольтметра возможно при температурных показателях воздуха не более 25 — 30 градусов с влажностью до 80% и атмосферным давлением 650 — 800 мм ртутного столба. Частота питающей электросети составляет 50 Гц и имеет показатели напряжения 220В (частота не более 400 Гц). На показатели замеров значительное воздействие окажет форма кривой переменного напряжения электросети.

Возможности приспособления оценивают посредством таких параметров и величин:

  • Сопротивление рассматриваемого устройства.
  • Диапазон замеряемых показателей напряжения.
  • Категория точности замеров.
  • Диапазон границ частоты напряжения в переменной цепи.

Включение амперметра в электрическую цепь [ править | править код ]

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт.

Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ).

При высоких напряжениях (выше 1000В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.

Разновидности

Точность измерений рассматриваемого устройства будет зависеть от принципа воздействия и разновидности приспособления. Согласно распространенной классификации все амперметры можно разделить на такие виды:

  • Магнитоэлектрические.
  • Электромагнитные.
  • Электродинамические.
  • Термоэлектрические.
  • Цифровые.
  • Ферродинамические.

Есть и иные аппараты специализированного назначения, чтобы измерять силу тока. Их применяют в узкопрофильных сферах, они не распространены настолько, как указанные выше.

Электромагнитный

Приспособления с электромагнитным принципом функционирования не оснащаются двигающейся катушкой, в отличие от магнитоэлектрических разновидностей приборов. Конструкция рассматриваемых устройств намного проще. В корпусе располагается спецустройство и 1 либо более сердечников, установленных на оси.

Рассматриваемый тип амперметра обладает меньшей восприимчивостью в сравнении с магнитоэлектрическим устройством, потому точность замеров аппарата будет значительно ниже. Достоинствами подобных приспособлений станет универсальность функционирования. Это значит, что они способны измерить силу тока в цепи постоянного и переменного токов. Это в значительной мере расширит сферу использования подобного устройства.

Электромагнитный амперметр

Магнитоэлектрический

Принцип воздействия подобной разновидности устройств основан на взаимодействии магнитного поля и двигающейся катушки, которая находится в конструкции приспособления.

Преимуществами рассматриваемого изделия станет невысокое энергопотребление при работе, повышенная восприимчивость и точность замеров. Каждый магнитоэлектрический прибор оснащается равномерным градуированием измерительной шкалы. Подобное даст возможность производить высокоточные замеры.

Важно! К минусам рассматриваемого приспособления относят сложность внутреннего устройства, присутствие двигающейся катушки. Подобное изделие не считается универсальным, поскольку оно подойдет лишь для постоянного тока.

Невзирая на минусы амперметра, такая разновидность аппарата широко распространена в разных промышленных сферах, в лабораториях.

Источник: https://instanko.ru/elektroinstrument/podklyuchenie-ampermetra.html

Что такое амперметр, его виды

Как показано на рисунке, прибор включают последовательно в цепь, по которой идет электрический ток. Чтобы минимизировать влияние на реальные физические процессы, необходимо уменьшить внутреннее сопротивление амперметра. Для снятия показаний пригодится крупная шкала. При выборе подходящего оборудования также учитывают следующие факторы:

  • цифровой индикатор упрощает процесс измерений;
  • работать с малыми и сильными токами проще с применением разделения на несколько диапазонов;
  • при неблагоприятных внешних условиях (влажность, вибрации) следует учитывать соответствующую защищенность прибора.
ЭТО ИНТЕРЕСНО:  Сколько энергии расходует посудомоечная машина

Магнитоэлектрические

Измерительный блок приборов данной категории состоит из двух основных компонентов. Между полюсами постоянного магнита размещают индукционную катушку. При прохождении через обмотки тока она поворачивается. Присоединив стрелку и шкалу, фиксируют эти движения для получения результатов измерений. Встроенными пружинами ограничивают амплитуду отклонений, возвращают движущиеся компоненты в исходное положение. Встроенным поводком регулируют натяжение. Грузиками компенсируют силу тяжести.

Устройство и принцип действия магнитоэлектрического прибора

На двух схемах цифрой 1 обозначен источник поля, которое поворачивает катушку (3), жестко закрепленную на центральной оси. Устройство начинает функционировать, когда по цепи проходит ток. Спиральная пружина (4) корректирует движения. В первом варианте установлен ограничитель (2), предотвращающий повреждение стрелки.

Преимуществами такого инженерного решения являются:

  • высокая точность;
  • хорошая чувствительность;
  • отсутствие дополнительных источников питания;
  • демократичная стоимость.

На заметку. Главный недостаток – механические части. Сложность конструкции подразумевает ухудшение надежности. Следует помнить о негативном влиянии ударов и других внешних воздействий. Такой прибор подходит для измерения постоянного тока.

Электромагнитные

Вряд ли обычному пользователю придется ремонтировать сложные устройства. Поэтому далее подробно рассмотрены выбор и подключение амперметра. Электромагнитные приборы универсальны. Они подходят для измерения постоянного и переменного тока. Чувствительность в данном случае несколько ниже, по сравнению с предыдущим примером. Однако в некоторых ситуациях ее вполне достаточно.

Термоэлектрические

Приборы этой категории выполняют измерения по косвенной методике. С помощью термопары или аналогичного устройства происходит преобразование переменного тока в постоянный. Его значение контролируют включением в дополнительную цепь магнитоэлектрического или другого амперметра. В контактном исполнении обеспечивается повышенная чувствительность. Чтобы исключить гальваническую связь, датчик помещают в слой из нейтрального материала (стекла, полимера).

Электродинамические

В этом варианте устанавливают рядом две катушки. Через одну, подсоединенную к индикаторному устройству, пропускают ток. Вторая – фиксируется неподвижно. Такая схема отличается повышенной чувствительностью. Даже слабые магнитные поля оказывают на движущийся элемент достаточно сильные воздействия. Чтобы получить точные измерения, максимально удаляют прибор от источников помех, применяют экранировку.

Ферродинамические

Особенным элементом устройства является проводник с ферритовыми свойствами. Высокая напряженность поля в рабочей зоне существенно уменьшает внешние паразитные воздействия. Такие приборы даже без специальной экранировки можно подключать в цепь около силовых линий электропередач.

Чем амперметр отличается от вольтметра

Разбираемся с электроизмерительными приборами

Главные особенности понятны из специфических названий. На первой картинке показано, как подключается амперметр (последовательно). Это необходимо для пропускания тока и соответствующего измерения его величины. Подсоединение вольтметра делают параллельно. В таком варианте прибор будет показывать разницу потенциалов между двумя точками, напряжение на определенном резисторе или другом элементе электрической схемы.

Как определить цену деления амперметра

Разнообразие приборов создает естественные затруднения в ходе проведения измерений. Следующий пример поможет разобраться с методикой правильного определения значений на стрелочном индикаторе. В любом случае начинают с буквенного обозначения на циферблате:

  • «А» – это амперы, пересчет не нужен;
  • «mA» – миллиамперы, итоговое значение вычисляют умножением на 0,001.

Как подключить трехфазный электродвигатель в сеть 220в

Этим прибором измеряют силу тока до 4 ампер включительно. Перевод значений не нужен, потому что есть отметка «А». Чтобы узнать цену одного деления, вычитают из большего меньшее значение соседних цифр. Далее делят на количество пустых промежутков между рисками.

Справка. «РИСКА – линия (штрих), нанесённая на шкалу измерительного прибора». Большая политехническая энциклопедия под редакцией Рязанцева, вып. 2011 г.

В приведенном примере:

(3-2)/5=0,2 А.

В описании к прибору можно найти допустимую производителем погрешность. Эту величину, как правило, указывают в процентах.

Как работают амперметр и вольтметр

Учимся легко считать потребляемую мощность электроприбора

Рассмотренные выше конструкции пригодны для создания одного и другого прибора. Разница – не только в схеме подключения. Отличаются разметка и сопротивление индукционной катушки. Встроенным резистором ограничивают силу тока/ мощность в амперметре/ вольтметре, соответственно.

В первом варианте он выполняет функции шунта. Параллельное подсоединение с минимальным электрическим сопротивлением обеспечивает прохождение большей части тока именно по этой цепи. Этим защищают индуктивный элемент от повреждений.

Во втором – подбирают сопротивление, во много раз превосходящее соответствующий показатель катушки. Другой особенностью является выбор материала резистора с минимальным изменением рабочих параметров при росте (уменьшении) температуры.

Как подключают амперметр в электрическую цепь

Подсоединить прибор в разрыв цепи несложно. Для безопасности эту процедуру выполняют после отключения источника питания. Предварительно надо убедиться, что максимальный ток не превышает возможности амперметра. Данные шкалы дублированы в сопроводительной технической документации.

После подачи питающего напряжения снимают показания. Следует дождаться прекращения колебаний стрелки. Если она перемещается в обратную сторону, меняют полярность подключения. При чрезмерно большом токе используют дополнительное шунтирование.

Как подобрать шунт для амперметра

Для расчета параметров дополнительной цепи применяют формулу Rш=Rвн*Iпр/(Iвх-Iпр), где:

  • Rш – сопротивление шунта;
  • Rвн – внутреннее сопротивление амперметра (приведено в техпаспорте);
  • Iпр – максимальный ток, на который рассчитан прибор;
  • Iвх – входной ток (источника) до разветвления цепи.

Как включается амперметр в цепь с шунтом

Измерение значений постоянного тока

Для работ с такими цепями выбирают «классический» магнитоэлектрический или другой подходящий прибор. Проверяют совместимость по максимуму токов. При необходимости пользуются схемой с параллельным шунтом. В цепях с переменными электрическими параметрами подобный амперметр не пригодится, так как будут наблюдаться колебания стрелки около нулевой отметки. Сильная амплитуда сигнала способна вызвать механическое повреждение.

Измерение значений переменного тока

Впрочем, если дополнить магнитоэлектрический измеритель выпрямителем, можно получить нужный результат. Это дополнение внесет определенные погрешности, поэтому лучше пользоваться фабричным изделием. Схема подключения амперметра такого типа не отличается от рассмотренных выше вариантов.

Следует помнить! На точность измерений оказывает влияние форма входного сигнала.

Бесконтактный способ измерения тока

Без особой необходимости вряд ли нужно нарушать целостность качественных кабелей. Иногда невозможно отключить питающее напряжение. При работе с мощными силовыми линиями пригодятся дополнительные меры безопасности. Во всех перечисленных ситуациях измерить ток можно с применением специализированных приборов.

Кольцевая часть инструмента после замыкания образует катушку индукции. Встроенный цифровой прибор регистрирует наведенные токи.

Для чего контролировать ток заряда в аккумуляторе

Применение измерительного прибора можно рассмотреть на примере типовой технологической операции. Обслуживаемый автомобильный аккумулятор заражают по специальной методике. Устанавливают и поддерживают величину тока на уровне 10% от указанной в паспортных данных емкости. Это предотвращает чрезмерно активное выделение взрывоопасных газов. Продолжительность процедуры (24 часа и более) подразумевает необходимость дополнения прибора средствами автоматического отключения.

Как подключить амперметр «ТК-1382» к зарядному устройству

С помощью приведенных сведений можно самостоятельно выбрать подходящий прибор, выполнить измерения, собрать схему шунтирования. На стадии предварительной подготовки следует уточнить предполагаемый рабочий диапазон, условия эксплуатации. При покупке рекомендуется изучить официальные инструкции производителя.

Источник: https://amperof.ru/elektropribory/kak-podklyuchit-ampermetr.html

Подключить вольтметр – схема подключения вольтметров к цепи

Работа с электрическими сетями может оказаться необходимой в различных жизненных ситуациях: ремонт автомобиля, прокладка проводки в доме или на производстве. Одной из величин, которые часто требуется измерить при проведении работ подобного характера, является напряжение. Его можно определить при помощи специального прибора под названием вольтметр. О принципе его работы, устройстве, а также способах подключения и пойдет речь ниже.

Устройство и принцип действия

Если говорить о принципе действия, то все устройства такого типа, что позволяют осуществлять различные замеры в электрических сетях, бывают 2 видов:

  • электромеханического типа;
  • электронные.

Первая категория представляет собой стрелочные устройства. В них стрелка крепится к специальной раме, куда намотан кабель. Такая катушка будет располагаться рядом с магнитом в тех устройствах, что обычно применяются для сетей с постоянным током. Или рядом с другой катушкой – если прибор предназначается для тока переменного типа.

Тут следует уточнить, что модель, рассчитанная для сетей с переменным характером тока, в сети постоянного работать не будет.

Но если для подключения использовать диодный мост, то осуществить необходимые измерения в сети переменного тока он сможет, но с небольшой потерей точности.

Когда электрический ток проходит через обмотку, то в ней появляется электромагнитное поле, которое осуществляет взаимодействие с магнитом либо иной обмоткой, и происходит поворот рамки. Вращаться катушке, где расположена стрелка, не дает пружина. По этой причине угол поворота рамки будет соответствовать току, который через нее идет, и потенциалу на клеммах.

Для снижения стрелочных колебаний в устройстве присутствует электромагнитный демпфер.

Он может быть поршневым, выполненным из цилиндра и поршня, или сделанным из алюминиевой пластины. Чтобы увеличить точность показаний, стрелка имеет специальные противовесы, что сводят к нулю влияние силы тяжести. Да и сама система делается из такого типа стали, как легированная, чтобы уменьшает ее износ.

Чувствительный элемент в электронных аналогах – электронная плата, что осуществляет трансформацию входящего сигнала в приборные показания. Работать это устройство может либо от напряжения, которое измеряется, либо от батареек или внешнего питания. Сами по себе электронные вольтметры делятся на 2 категории:

В устройствах, относящихся к первой категории, присутствует преобразователь входящего сигнала в угол стрелочного поворота, который показывает величину исследуемого напряжения, что отображается на шкале. Минусом таких устройств будет необходимость пересчета показаний шкалы в случае смены измерительного предела.

Цифровой вольтметр оснащен соответствующим дисплеем, а также преобразователем, благодаря которым сигнал приобретает цифровой вид. Если устройство подключается в сеть, где присутствует постоянный ток, на табло можно увидеть полярность подключения. Отличительными чертами такого прибора будет компактность, а также точность. Правда, последний момент будет зависеть от модели встроенного контроллера.

Общие рекомендации по подключению

Теперь приведем небольшие рекомендации, как правильно подключить вольтметр, чтобы он показал максимально точные данные. Первый момент состоит в том, что подключение прибора в электроцепь нельзя осуществлять последовательно, иначе он поломается из-за снижения тока. Подключение должно осуществляться лишь параллельно, ведь это не влияет на течение тока. И сопротивление должно быть большим.

Многие очень часто путают вольтметр с амперметром, в котором все будет наоборот.

Схема подключения прибора будет выглядеть так, что для замера напряжения, которое присутствует в цепи между 2 точками, он подсоединяется так, чтобы включение было расположено напротив источника питания. Устройство влияния на ток не оказывает по причине того, что пропускает его через себя. Поэтому его сопротивление так велико.

Для расширения диапазона замеров можно подсоединить к обмотке устройства дополнительный резистор.

Тогда на измеритель пойдет лишь часть тока, что будет пропорциональна сопротивлению прибора. Если нам известно сопротивление резистора у вольтметра, то можно будет определить показатель напряжения.

Сам резистор устанавливается внутрь вольтметра и одновременно используется с целью снижения влияния различных факторов на результаты измерений. Поэтому он делается из материала, который имеет максимально низкий температурный коэффициент. Его сопротивление будет меньше, чем в катушке, из-за чего общее сопротивление не будет зависеть от температурного режима.

Постоянное напряжение

Если говорить о напряжении постоянного типа, то для замера показателей электрической цепи следует иметь так называемый постоянный тококомпенсатор. Хотя более простым решением будет использование обычного цифрового устройства. Чтобы измерить значения, начинающиеся от десятков милливольт и заканчивающиеся сотнями вольт, применяют такие устройства:

  • электродинамические;
  • электромагнитные;
  • магнитоэлектрические.

При таком типе измерений можно использовать и добавочные сопротивления.

Если осуществляется измерение такого типа напряжения в несколько киловольт, то обычно используются вольтметры электростатического типа. Реже – другие типы устройств, что подключаются через делитель.

Переменный ток

Чтобы правильно замерить характеристики переменного тока рассматриваемым устройством, нужно иметь так называемый измерительный трансформатор. Он используется для осуществления подобных замеров и повышения безопасности людей за счет того, что позволяет получить гальваническую развязку от цепи высокого напряжения. Кстати, этот способ будет единственно правильным вообще, ведь по технике безопасности запрещено проводить измерения без таких трансформаторов.

Использование подобных трансформаторов даст возможность увеличить пределы измерения устройств, то есть можно замерять большие напряжения и токи посредством низковольтных и слаботочных приборов. Если измеряется переменный ток до значений в единицы вольт, то применяют:

  • цифровые вольтметры;
  • выпрямительные;
  • аналоговые.

Если до сотен вольт – электродинамические, выпрямительные и электромагнитные. Если же до нескольких десятков мегагерц, то измерения нужно проводить электростатическими и термоэлектрическими вольтметрами.

Установка на усилитель

Установка вольтметра на усилитель в машине осуществляется сравнительно легко. Для ее осуществления потребуются следующие элементы:

  • изолента;
  • вольтметр;
  • провод ПВС 3х75.

Сначала в корпусе, где располагается кармашек над магнитолой, необходимо просверлить отверстие с диаметром где-то 1,6 миллиметра, куда следует установить соответствующий разъем с подключенным к нему проводом.

Теперь необходимо пропустить провод до самого багажника, попутно прикрепляя его при помощи изоленты к кабелю питания самого усилителя, и закрепить на усилительных клеммах. REM-кабель, что осуществляет управление магнитолой, а также усилитель подключаются к вольтметру, чтобы он включался одновременно с ними. Именно благодаря этому можно будет видеть точное напряжение на усилительных клеммах, когда в этом есть необходимость.

Данная система очень проста в эксплуатации, а затраты, которые необходимы для ее создания, очень малы.

Как подключается к аккумулятору?

Для успешного контроля состояния заряда аккумулятора автомобиля необходимо знать, как можно подключить вольтметр и осуществить правильную расшифровку его измерений.

Со времени появления автомобилей, где за контроль над системами отвечает бортовой компьютер, необходимость в отдельном устройстве отпала. Но такие машины может позволить себе не каждый.

Да и не везде в таких машинах реализована функция наблюдения за состоянием заряда аккумулятора. А в зимнее время — это будет крайне важно.

Максимально соответствующие реальности показания будут давать устройства, которые подключены непосредственно в приборную панель. И хоть установить их бывает сложновато, это окупит себя с лихвой, когда вы будете знать все о зарядке аккумулятора вашего автомобиля.

Большинство устройств, которые сегодня можно найти на рынке, для подключения в автомобиль имеют 2 или 3 провода для подключения к сети. В последнее время появились и 4-контактные модели. Но, как правило, большинство имеет три провода, так что остановимся на рассмотрении маркировки именно 3-проводных моделей:

  • провод красного цвета будет означать плюс;
  • черный – минус;
  • белый будет отвечать за отключение и включение прибора, а также за управление яркостью подсветки.
ЭТО ИНТЕРЕСНО:  Как подключить 2 х клавишный проходной выключатель

Иногда случается так, что прибор светит очень тускло или вообще не работает. Причиной этого является чуть другая маркировка кабелей. В таком случае белый провод будет минусом, а черный – управлять прибором. Датчик напряжения ставится на место, где обычно располагаются часы, но в ряде случаев бывает так, что свободного места нет на приборной панели, поэтому приходится делать специальное отверстие.

Говоря непосредственно о подключении, скажем, что схем существует большое количество.

Но мы рассмотрим, как это осуществить на примере вольтметра, что оснащен импульсным стабилизатором. Корпус устройства может иметь поверхность рельефного типа. То есть речь о том, что рамка вокруг дисплея будет выступать над поверхностью автомобильной панели. Из-за этого вольтметр не будет проваливаться внутрь и станет скрывать неровности краев самодельного отверстия.

Обычно подключение вольтметра производится посредством трех контактов, что располагаются на корпусе датчика. Тогда для этого еще понадобится четырехжильный кабель от обычного компьютерного дисковода.

Широкий разъем IDE-формата отрезается, а остальные провода прикрепляются при помощи пайки к контактам проводки автомобиля.

Четырехпиновый контакт обеспечивает отличное соединение и, если в этом есть необходимость, позволяет быстро и без каких-либо серьезных усилий и временных затрат осуществить замену вольтметра, если он вышел из строя.

Вне зависимости от того, какое вольтметр имеет строение, перед его установкой в автомобиль, следует детально изучить схему проводки, а также внимательно прочитать инструкцию, что идет в комплекте с устройством.

В следующем видео вы узнаете, как установить вольтметр в автомобиль.

Источник: https://esr-energy.ru/raznoe/podklyuchit-voltmetr-sxema-podklyucheniya-voltmetrov-k-cepi.html

Шунт

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt –  в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

https://www.youtube.com/watch?v=Z4LFMtJ4Tp8

Помните Закон Ома  для участка электрической цепи? Вот, собственно и он:

где

U – напряжение

I – сила тока

R – сопротивление

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы 

получаем формулу:

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с  расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

Те, которые справа внизу  могут пропускать  через себя силу тока  до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать  шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт  встраивается прямо в корпус самого прибора.

Работа шунта на практическом примере

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

Сзади можно прочитать его маркировку:

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5  – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется  простая автомобильная лампочка накаливания на 12 Вольт:

Выставляем на  Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс ;-)

Вспоминаем, что показывал наш блок питания?

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра” ;-)

Где купить шунт

Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке:

Источник: https://www.ruselectronic.com/shunt-dlya-ampermetra/

Подключение амперметра и вольтметра * Электрон Град

Данные прибору получили наибольшее распространение у радиолюбителей. Амперметры данного типа обладают равномерной шкалой и хорошей чувствительностью. Внешний вид такого прибора на рисунке с низу.

Чувствительным элементом такого амперметра является рамка из тонкого картона или фольги с намотанной на нее катушкой. Рамка находится как бы в подвешенном состоянии на двух полуосей — кернах, концы которых упираются в подпятники. К рамке крепится противовес и стрелка.

Вся эта конструкция находится в внутри сильного постоянного магнитного поля, то есть вокруг рамки находится магнит. Выводами катушки рамки являются две спиралевидные пружины, благодаря им стрелка удерживается в исходном состоянии.

Стрелка прибора выставляется в положение 0 за счет корректора закрепленного на корпусе прибора и рычага соединенного с пружиной.

Принцип работы амперметра

При возникновении тока на катушке рамки вокруг нее возбуждается магнитное поле.

Оно начинает взаимодействовать с магнитным полем постоянного магнита и рамка будет стремится повернуться так, чтобы ее полюса рамки находились напротив полюсов магнита противоположной полярности.

Чем больше ток на рамке тем сильнее ее магнитное поле и значительнее усилие поворачивающее ее. При пропадании тока в цепи катушки рамки на нее начинают воздействовать пружины. Благодаря этому рамка возвращается в исходное состояние.

Приборы магнитоэлектрической системы способны измерять только постоянные или пульсирующие токи. Для измерения переменных токов их следует преобразовать в постоянные такой же величины.

Измерение токов и напряжений, шунтирующий резистор

Для измерения постоянного тока в цепи, прибор подключается последовательно нагрузке. Ток проходящий в этой цепи не должен превышать пределы подключаемого прибора. В противном случае шкала прибора зашкалит, а при существенном превышении может сгореть обмотка рамки. Для увеличения диапазона измерения тока в цепь добавляют шунтирующий резистор. Данный резистор подключается параллельно амперметру. Рассчитывается он по формуле

Rш=Rи/(Iп/Iи-1)

Где, Iп — предел измерения в Амперах.
— ток полного отклонения стрелки в Амперах.
— сопротивление рамки прибора в Омах.
Например: имеем микроамперметр с параметрами Iи=100мкА=0,0001А. Сопротивление рамки 1000Ом. Требуется рассчитать шунт для измерения токов до 100мА=0,1А.
Rш=1000/(0,1/0,0001-1)=1Ом

Измерение напряжения и добавочный резистор

Для измерения напряжения Вольтметр подключается параллельно нагрузке. При отсутствии Вольтметра можно подключить амперметр. Но следует учесть, что амперметры способны измерять относительно низкие напряжения. Так как в них отсутствует или слишком мало добавочное сопротивление катушки. Добавочный резистор подключается последовательно с прибором и позволяет расширить пределы его измерения.

Расчет добавочного сопротивления

Для измерения напряжения Вольтметр подключается параллельно нагрузке. При отсутствии Вольтметра можно подключить амперметр. Но следует учесть, что амперметры способны измерять относительно низкие напряжения. Так как в них отсутствует или слишком мало добавочное сопротивление катушки. Добавочный резистор подключается последовательно с прибором и позволяет расширить пределы его измерения.
Расчет добавочного сопротивления

Rд=(Uп/Iи)-Rи

где, Uп — максимальный предел измерения напряжения в Вольтах
— ток полного отклонения стрелки в Амперах.
— сопротивление рамки прибора в Омах.
Например: имеем тот же самый амперметр, что и в предыдущем примере. Iи=100мкА=0,0001А. Сопротивление рамки 1000Ом. Максимальный предел измеряемого напряжения 10В.
Rд=(10В/0,0001мА)-1000Ом=99000Ом=99кОм

Источник: https://electrongrad.ru/2019/05/01/podkl-a-v/

Цифровые модульные вольтметры и амперметры

Амперметр — это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперметрами (мкА), миллиАмперметрами (мА), а такжке Амперметрами (А). Следовательно в зависимости от измеряемого тока приборы делятся на амперметры (РА1), миллиамперметры (РА2) и макроамперметры (РА3), которые обозначаются на принципиальных схемах следующим образом:

Аналоговый амперметр (стрелочный)

Амперметры этого типа имеют магнитноэлектрическую систему. Они состоят из катушки тонкой проволоки, которая может вращаться между полюсами постоянного магнита. При пропускании тока через катушку, она стремиться установиться по полю под действием вращающего момента, величина которого пропорциональна току.

В свою очередь повороту катушки препятствует специальная пружина, упругий момент которой пропорционален углу закручивания. При равновесии эти моменты будут равны, и стрелка покажет значение, пропорциональное протекающему через нее току. Иногда, для того, чтобы увеличить предел измерения, параллельно амперметру ставят резистор (шунт — шунтирующий резистор) определенной величины, рассчитанной заранее.

Так как амперметр для проведения измерений включается в разрыв цепи, то необходимо стремиться к тому, чтобы его внутреннее сопротивление протекающему току было минимальным. В противном случае, для электрической цепи амперметр будет представлять резистор. (Чем больше сопротивление резистора, тем меньший ток через него проходит).

Таким образом, при включении амперметра в цепь, мы понижаем ток в этой цепи, но измерительная техника разрабатывается с учетом этих особенностей и показания амперметра корректны.

Аналоговые амперметры до сих пор находят своё применение.

схема: 

Плюсы:

  • не требуется независимое питание, т.е. питание от замеряемой цепи
  • удобны при отображении информации, на многих присутсвует возможность коррекции

Минусы:

  • большая инертность (стрелкам прибора требуется некоторое время, чтобы прийти в устойчивое состояние), в современных аналоговых приборах этот недостаток проявляется слабо,но он есть.

Цифровой амперметр

Цифровой амперметр состоит из аналого-цифрового преобразователя (АЦП) и преобразует силу тока в цифровые данные, которые потом отображаются на ЖК-дисплее.

Цифровые амперметры лишены инертности, и выдача результатов измерений зависит от частоты процессора, который выдает результаты на дисплей. В дорогих цифровых амперметрах он может выдать до 1000 и более результатов в секудну.

Также цифровые амперметры требуют меньше габаритов для установки, модульные корпуса для установки на din-рейку. Минусы — это то, что для измерения им требуется собственный источник питания, который питает все внутренние узлы и микросхемы прибора.

Есть и такие цифровые амперметры, которые используют питание измеряемой цепи, но они редко используются в виду своей дороговизны.

Амперметры делятся на амперметры для измерения силы тока постоянного напряжения и для измерения силы тока переменного напряжения.

на сайте vserele.ru можно посмотреть следующие модели:

Амперметр цифровой А-05 для измерения величины тока в цепях переменного тока с частотой 50 Гц.

Амперметр цифровой А-05 (DC) для измерения силы постоянного тока с наружным шунтом 75мВ.

Цифровой вольтметр

Вольтметр — это прибор, предназначенный для определения напряжения в электрических цепях.

 По виду измеряемой величины цифровые вольтметры делятся на: вольт­метры постоянного тока, переменного тока (средневыпрямленного или сред­него квадратического значения), импульсные вольтметры — для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтмет­ры, предназначенные для измерения напряжения постоянного и переменного тока, а также ряда других электрических и неэлектрических величин (сопро­тивления, температуры и прочее).

Принцип работы цифровых измерительных приборов основан на дискретном и цифровом представлении непрерывных измеряемых величин. Более подробно с устройством и работой цифрового вольтметра можно ознакомиться из лекции «Электромагнитные измерения.Цифровые вольтметры. «

В электронике в основном оперируют Вольтметрами (В), миллиВольтметрами (мВ), а такжке микроВольтметрами (мкВ). Следовательно в зависимости от измеряемого тока приборы делятся на вольтметры (РV1), милливольтметры (РV2) и макровольтметры (РV3), которые обозначаются на принципиальных схемах следующим образом:

Иногда рядом с изображением вольтметра также указывается максимальная величина напряжения, которую способен измерить вольтметр. (для стрелочных приборов)

Кроме этого, рядом с выводами вольтметра могут быть знаки полярности подключения его в схему для измерения постоянного напряжения.

схема:

на сайте vserele.ru можно посмотреть следующие модели:

Вольтметр цифровой V–03 используется для измерений величины напряжения в однофазной и трехфазной цепях переменного тока с частотой 50 Гц.

Вольтметр цифровой V-03 (DC) предназначен для контроля постоянного и переменного однофазного (50Гц) напряжения в диапазоне 150-300В.

Источник: http://vserele.ru/article/cifrovye-modulnye-voltmetry-ampermetry

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]