В чем разница между коллекторными и бесколлекторными электродвигателями постоянного тока?
Рынок электродвигателей и систем электроприводов процветают в огромном количестве различных областей, в частности в медицинских и роботизированных приложениях. Кроме того, существует большой спрос на малые, эффективные, с большим и небольшим крутящим моментом, а также электродвигатели большой и малой мощности в автомобильном сегменте.
Для этих приложений могут выбирать электропривода из щеточных электродвигателей постоянного тока, бесщеточных электродвигателей постоянного тока (BLDC) или их комбинации. Большинство машин работают благодаря явлению электромагнитной индукции. Тем не менее, между этими машинами существуют ключевые различия, которые необходимо учитывать при выборе электрической машины.
Коллекторные электродвигатели постоянного тока
С конца 1800-х годов машины постоянного тока являются одними из простейших электродвигателей. Они получают питание от источника постоянного тока или батареи, и состоят из якоря (ротор), вала, коммутатора, щеток и обмотки возбуждения, создающей постоянное магнитное поле.
Щетки позволяют создавать магнитный поток в коллекторе обратной полярности по отношению к постоянному магнитному потоку обмотки возбуждения (ОВ), что заставляет якорь вращаться. Направление вращение электрической машины может быть легко изменено путем изменения полярности на щетках (поменять местами провода от источника питания постоянного тока).
Бесколлекторные электродвигатели постоянного тока (BLDC)
В самом названии уже можно увидеть коренное различие между этими машинами. В BLDC машинах отсутствуют щетки, что делает их конструкцию заметно сложнее. Бесщеточная машина постоянного тока имеет четыре или более постоянных магнита в роторе.
Эффективность – основная фишка данных машин. Поскольку ротор имеет постоянные магниты, он не нуждается в источнике напряжения, следовательно, нет физического подключения. Нет подключения – нет щеточно-коллекторного узла, соответственно, исчезают все проблемы связанные с ним.
Но есть и минус – такой тип электрических машин должен иметь электронную систему управления положением ротора в пространстве.
Для анализа поворотов машины и выработки управляющих импульсов в нужный момент используют микроконтроллер, а для отслеживания поворота вала в пространстве – поворотные датчики или датчики на основе эффекта Холла.
Электродвигатели BLDC представляют собой синхронные машины, что означает, что магнитные поля ротора и статора вращаются с одинаковой частотой. Они могут иметь одно-, двух- и трехфазные конфигурации.
Щетки
Когда дело доходит до выбора электрической машины для основных приложений, здесь могут использоваться как щеточные, так и бесщеточные электродвигатели постоянного тока. И как любые сопоставимые и конкурирующие технологии, коллекторные и бесколлекторные электрические машины имеют свои плюсы и минусы.
Но с другой стороны коллекторные машины являются более дешевыми и надежными. Они предлагают простейшее управление (для запуска достаточно подключить к источнику постоянного тока, а для управления скоростью вращения достаточно изменять величину подводимого к якорю напряжения).
При постоянном уходе за коллекторным узлом и плановой заменой щеток такая машина может служить довольно долго и надежно.
Для управления ими не нужно создавать сверх сложных систем управления и можно обойтись минимальным количеством внешних компонентов или вообще без них, такие электродвигатели хорошо подходят для тяжелых условий работы.
Один из главных недостатков – постоянный уход за щетками. Они должны постоянно очищаться и при необходимости заменяться для обеспечения надежности работы механизма. Кроме того, если необходим большой вращающий момент, то коллекторный электродвигатель постоянного тока будет ограничен пропускной способностью щеток. По мере увеличения скорости вращения – возрастают потери крутящего момента, связанные с процессами трения в щеточно-коллекторном узле.
Однако бывают устройства, которые данные характеристики вполне устраивают. Например, электрические зубные щетки требуют более высоких скоростей с уменьшающимся крутящим моментом, что хорошо для щетки, зубов и десен.
К другим недостаткам коллекторных машин постоянного тока можно отнести ухудшенные условия охлаждения, вызванные щеточно-коллекторным узлом, высокую инерционность якоря (ротора), ограниченный диапазон скоростей, электромагнитные помехи (EMI).
Отсутствие щеток
Бесколлекторные электродвигатели постоянного тока (BLDC) имеют ряд преимуществ перед своими «щеточными братьями». Во-первых, они могут реализовать функцию точного позиционирования, полагаясь на датчики положения на основе эффекта Холла для коммутации. Они также требуют меньше, а иногда и никакого обслуживания из-за отсутствия щеток.
Они побеждают коллекторные машины постоянного тока в отношении скорость / крутящий момент благодаря их способности поддерживать или увеличивать крутящий момент на разных скоростях. Важно отметить, что потери мощности в коллекторном узле полностью отсутствуют, что значительно повышает эффективность компонентов. Другие профили BLDC включают высокую выходную мощность, малый размер, лучшую теплоотдачу, более высокие диапазоны скоростей и малошумную (механическую и электрическую) работу.
Тем не менее, нет ничего идеального. BLDC имеют более высокую стоимость. Они также требуют специальные стратегии управления, которые могут быть как сложными, так и дорогостоящими. И им нужен контроллер, который может стоить почти столько же, а иногда и больше, чем управляемый им электродвигатель BLDC.
Выбор типа электродвигателя для механизма
Нижний порог для выбора между компонентами любого типа — это тип приложения и ограничение затрат для конечного продукта. Например, игрушечный робот, ориентированный на детей от шести до восьми лет, может потребовать от четырех до девяти электродвигателей. Они могут быть коллекторными или бесколлекторными машинами постоянного тока или их компоновкой.
Если данный робот выполняет только основные движения или входит в игрушечный набор, нет необходимости применять бесколлекторные BLDC машины, которые стоят дороже, чем их коллекторные аналоги. Игрушка или набор, вероятно, попадут в мусорный ящик задолго до того, как щетки электрической машины выйдут из строя.
Типичные электроприводы с электродвигателем постоянного тока включают моторизованные игрушки, приборы и компьютерную периферию. Автопроизводители «привлекают» их к электроприводам окон, сидений и другим конструкциям в салоне из-за их низкой стоимости и простого исполнения.
Бесколлекторные электродвигатели более универсальны, главным образом из-за их «сообразительности» в отношении скорости и крутящего момента. Они также поставляются в компактных корпусах, что делает их «жизнеспособными» для различных небольших конструкций.
Типичные приложения включают компьютерные жесткие диски, механические мультимедийные проигрыватели, вентиляторы с электронным управлением, беспроводные электроинструменты, HVAC и холодильные установки, промышленные и производственные системы и CD приводы.
Автомобильная промышленность применяет бесколлекторные BLDC машины для электрических и гибридных автомобилей. Эти электродвигатели представляют собой, по существу, синхронные машины с постоянными магнитами в роторе. Другие уникальные применения включают электрические велосипеды, где двигатели устанавливаются в колеса или колпаки, промышленное позиционирование и управление, монтажные роботы и линейные приводы для управления клапаном.
Источник: https://elenergi.ru/v-chem-raznica-mezhdu-kollektornymi-i-beskollektornymi-elektrodvigatelyami-postoyannogo-toka.html
Устройство и принцип действия машин постоянного тока
Машина постоянного тока представляет собой достаточно сложный механизм, который четко должен выполнять свои функции. Для того чтобы она всегда работала стабильно, необходимо, чтобы каждая мелкая деталь идеально выполняла своё предназначение. В этом случае всё вместе будет представлять единый целостный механизм, спокойно выполняющий главную задачу.
:
Устройство всей машины
В зависимости от видов машин постоянного тока схема может немного меняться, но в целом она универсальна. В устройстве обязательно находятся:
- Коллектор. Он необходим для того, чтобы выпрямлять переменный ток в постоянный. Фактически, это сердцевина подобной машины, ее главный действующий элемент.
- Щетки. Они необходимы для лучшего контакта и коммутации. Если щётки работают правильно, то искрения не будет.
- Сердечник якоря. Он необходим для того, чтобы стать основой для обмотки.
- Главный полюс. Это основа для создания магнитного поля.
- Катушки. Эти устройства представляют собой разнополярное устройство, необходимое для возникновения постоянного тока.
- Корпус или станина. Представляет собой неподвижную часть, необходимую для подключения полюсов и создания стабильного магнитного поля.
- Подшипниковый щит. Он соединяет статор и ротор. Чем он прочнее, тем больше срок эксплуатации всей машины. К счастью, данная деталь может чиниться.
- Вентилятор. Это устройство необходимо для предотвращения перегрева всей машины.
- Обмотка якоря. Именно в ее волокнах образуется и индуцируется ЭДС.
Обязательно нужно четко понимать устройство машин постоянного тока, чтобы правильно их эксплуатировать, а также в случае необходимости произвести ремонт.
Устройство главных полюсов
Главный полюс представляет собой сердечник, состоящий из листов специальной электротехнической стали. На него в определенном порядке насаживаются катушки с последовательной и параллельной обмоткой. Основной функцией данной детали становится образование магнитного поля. Также, имеются такие детали, как наконечник для выравнивания поля.
Детали
- обмотка главного полюса
- сердечник
- наконечник
- болт крепления
- станина
- якорь
Если все эти детали хорошо работают, то в результате образуется магнитное поле. Принцип действия машин постоянного тока не обходится без него.
Для создания магнитного поля и его надежности также используются дополнительные полюса. Они изготавливаются по тому же принципу, но немного проще.
Устройство катушек
Катушки, про которые постоянно упоминают при устройстве машины постоянного тока, на самом деле представляют собой классические устройства. Они могут предназначаться для главных и побочных полюсов. Катушкой подобное устройство называется за то, что это обмотка определенным образом добавленная на основу. На одной её стороне находится плюс, а на другой — минус. За счет этого можно «играть» с полярностью, добиваясь возникновения поля и настраивая его.
Устройство сердечника и якоря
Якорь представляет собой центральную вращающую часть, которая задаёт движение всему агрегату. Сердечник также является центром всего якоря, на котором в дальнейшем будет находиться обмотка и крепится другие детали.
Внешне он напоминает цилиндр, но вовсе не является простой цельной фигурой, скорее – это наборной элемент. На центральную ось набираются кольца или сегменты листовой стали, которые чередуются между собой в определенной направленности. Основным отличием является тот факт, что на внешней их части присутствует огромное количество специальных пазов, которые обеспечивают дальнейшее крепление. В конце они фиксируются с коллектором и становятся единым целым с ним, образуя замкнутую обмотку.
Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Источник: https://energiatrend.ru/news/ustroistvo-i-princip-deystviya-mashin-postoyannogo-toka
Почему аккумулятор разряжается сам собой? Разбираемся с током утечки
Простые времена кончились давно. Приблизительно в ту светлую эпоху, когда автомобили обзавелись электронными устройствами в виде магнитол, иммобилайзеров, охранных систем, навигаторов, радар-детекторов и прочих штучек, работающих от бортовой сети.
И ещё не забываем про, например, электронные блоки управления двигателем, коробкой и другими узлами, которые тоже расходуют ток. Часть этих устройств потребляет электричество даже тогда, когда машина заглушена. Потребление у них маленькое и разрядить быстро АКБ не может.
Но бывают три классические ситуации, когда потребление тока становится больше, чем надо.
Первая причина, по которой потребление тока становится слишком большим, это неправильная установка части этих устройств. Ту же саму магнитолу можно установить так, что она работать будет, но при этом где-то что-то будет замыкать. Про сигнализацию вообще молчу – там можно натворить очень много бед.
Вторая причина – обычная рассеянность. Можно забыть, что, например, нужно выключать свет в салоне или вытаскивать из прикуривателя видеорегистратор. Не все машины умеют «предупреждать» о невыключенном свете и отключать питание на прикуриватель после выключения зажигания. Впрочем, это не совсем наша ситуация.
Ну и третья причина – неисправность в цепи устройства или самом устройстве. Классический пример: горящая лампочка подсветки багажника. Вроде бы всё работает, но после двух-трёх дней простоя запустить мотор, может быть, уже не получится: если АКБ не совсем свежая, она за это время разрядится сильно.
Кроме того, у старых автомобилей утечка может расти по причине не вполне исправной проводки. Где-то она потёрлась, где-то поплавилась, куда-то слазили кривые руки электрика дяди Васи Причин много, а следствие одно – рост тока утечки и севшая АКБ.
Так как узнать, всё ли в порядке с этим током на машине и что делать, если он слишком высок?
Ток против мультиметра
Единственный инструмент, который нам понадобится в работе, это мультиметр. Причём я использовал совсем не топовый инструмент, а какую-то балалайку за 140 рублей, которая способна показывать на экране циферки. Профессиональному электрику такой, наверное, не подойдёт, а нам, криворуким, самое то. Потому что в ходе нашей сегодняшней работы по неопытности мультиметр можно сжечь. Как это сделать (а точнее, не сделать)? Легко.
Итак, наша задача – замерить ток, который потребляет автомобиль в «режиме спячки». Для этого переводим мультиметр в режим изменения тока, в нашем случае – на 10 А. В нашем китайском мультиметре это максимально допустимый ток. Если ваш мультиметр покруче нашего (что, в общем-то, несложно), лучше поставить 20 А.
Дело в том, что мультиметр надо включить в цепь, и через него пройдёт весь потребляемый ток. Ток утечки должен небольшим – максимум 80-90 мА, но в момент подключения мультиметра в разрыв цепи через него пройдёт ток всего электрооборудования, которое включится после замыкания цепи. Ток может доходить до 15 А и только через несколько секунд опускаться до нормы.
Но этих нескольких секунд вполне достаточно, чтобы сжечь если не весь мультиметр, то хотя бы его предохранитель (если он есть).
Поэтому не слушайте тех, кто предлагает просто скинуть минусовую клемму и воткнуть в разрыв мультиметр, накинув один его провод на клемму АКБ, а второй – на снятый с клеммы провод.
Конечно, по схеме подключение таким и должно быть, но лучше делать в несколько иной последовательности. А именно – один провод мультиметра подсоединить к клемме, второй – к проводу на этой клемме, и только после этого снять провод с клеммы АКБ.
Таким образом можно избежать скачка тока в момент включения в цепь мультиметра.
Кроме того, этот способ позволяет избежать ещё одного неприятного момента: так как фактического разрыва цепи не происходит, нет необходимости проводить все операции с машиной, которые необходимы после отключения АКБ: настраивать магнитолу, время, работу стеклоподъёмников и проводить прочие адаптации.
Третий положительный момент – не надо ждать, пока «устаканятся» показатели тока утечки. Если разорвать цепь, а потом в разрыв включить мультиметр, первые минуты потребляемый ток будет большим из-за большого количества потребителей, которые возвращаются к жизни.
«Проснётся» ЭБУ, начнут заряжаться конденсаторы, может начать работать климат-контроль (хотя бы самодиагностироваться или вращать заслонками), и как раз тут ток будет завышенным. И тогда придётся ждать, пока системы успокоятся.
До полного «засыпания» электроники в сложных автомобилях может пройти и полчаса. А ждать полчаса – это скучно.
Идеально – это открыть капот, подключить мультиметр, зажать концевой выключатель капота, имитируя его закрытие, поставить машину на сигнализацию и ждать, что покажет мультиметр.
В этом случае ток утечки будет ровно таким, какой он есть в то время, пока вы спите, а какая-то неисправность пожирает зарядку аккумулятора. Но обычно достаточно просто увидеть цифры, которые покажет мультиметр после пары минут работы в цепи. И кстати, не обязательно подключаться к минусовой клемме.
Можно включить мультиметр и между плюсовой клеммой и её проводом, что я и сделал: доступ к минусу на конкретном автомобиле затруднён.
О чём говорят цифры?
Значение нормального тока утечки может заметно отличаться в зависимости от марки и комплектации автомобиля. Чем больше потребителей бодрствуют, тем больше будет ток. Какой-то одной цифры нормального тока нет.
Я бы советовал придерживаться таких порядков: бюджетные автомобили – до 50 мА, средний несложный автомобиль – до 70 мА, автомобиль со сложной электроникой – до 100 мА. Само собой, и цифры, и деление машин несколько условны, но точнее сказать трудно.
Если Киа Рио или Хёндэ Солярис ест больше 50 мА – есть повод искать утечку. Хотя если в нём стоит спутниковая сигнализация Ладно, шучу.
Допустим, мультиметр показывает около 40 мА (как это получилось в нашем случае). Это абсолютно нормальный показатель. Можно возвращать клемму на место, убирать мультиметр и спать спокойно дальше.
Если мультиметр показывает слишком большой ток, нужно искать, что его там в машине потребляет. Для этого нужно выполнить всего одну нехитрую операцию: открыть блок с предохранителями и вытаскивать их по очереди, наблюдая за показаниями мультиметра.
Если при одном вытащенном предохранителе ток утечки сильно снижается, значит, в цепи этого предохранителя и находится тот баловник, который поедает зарядку АКБ. Ну а дальше осталось проверить цепь и потребители проблемной сети.
Если не знаете, что за предохранитель оказался у вас в руках, посмотрите на обратную сторону крышки предохранителей – на ней обычно бывает их схема.
Что не так?
В общем-то, на этом проверка тока утечки заканчивается. Но было бы неправильным не сказать об ещё одной вещи. Что делать, если утечку найти не удалось, а АКБ всё равно утром севший?
В первую очередь придётся проверять работу генератора. Вполне вероятно, что никакой запредельной утечки нет, а причина садящегося аккумулятора кроется в его обычном недозаряде.
Кроме того, никаких предохранителей в цепи генератора обычно не бывает, так что замер тока утечки ничего в этом случае не даст. Поэтому переводим мультиметр в режим вольтметра, измеряем напряжение на клеммах АКБ, затем смотрим напряжение на клеммах после пуска мотора.
Если там с работающим мотором и без включенных потребителей остаются все те же унылые 12-13 вольт, генератор пора ремонтировать.
Правда, если у него близок к концу диодный мост, без нагрузки он может показывать нормальное напряжение, а вот под нагрузкой сильно просаживаться. Но диагностика генератора с помощью мультиметра – это уже совсем другая история. Скучная, простая и тысячу раз разжёванная.
Источник: https://www.kolesa.ru/article/pochemu-akkumulyator-razryazhaetsya-sam-soboy-razbiraemsya-s-tokom-utechki
Принцип действия и устройство электродвигателя постоянного тока
Сейчас невозможно представить нашу жизнь без электродвигателей.
Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне.
Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.
Краткая история создания
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается.
Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом.
Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Принцип действия электродвигателя постоянного тока
На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию.
Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю.
Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.
Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.
Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).
Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников.
Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно.
Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).
Устройство электродвигателя постоянного тока
Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.
Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.
В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.
Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.
Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.
Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.
Особенности и характеристики электродвигателя постоянного тока
Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.
Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:
- Их себестоимость, следовательно, и цена достаточно высока.
- Для подключения к сети необходим выпрямитель тока.
- Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
- При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.
Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.
Источник: https://www.szemo.ru/press-tsentr/article/printsip-deystviya-i-ustroystvo-elektrodvigatelya-postoyannogo-toka/
Эксплуатация электрических машин и аппаратуры — Неисправности машин постоянного тока
Неисправности вызывают искрение, эксплуатировать машину при значительном искрении щеток нельзя: могут выйти из строя коллектор и обмотка якоря.
Основные неисправности: ослабленное давление пружин, прижимающих щетки к коллектору; значительный износ щеток; щетки плохо пригнаны к коллектору, слабо или туго сидят в обойме щеткодержателя; неравномерное расстояние между центрами щеток; щетки несоответствующей марки или разных марок; обоймы щеток слишком далеки или близки к поверхности коллектора; щеточные болты слабо прикреплены к траверсе; наклон щеток к поверхности коллектора не соответствует направлению вращения якоря генератора; у части щеток не работают гибкие проводники, соединяющие щетки с болтом.
Коллектор.
Поверхность коллектора изношена, нет правильной цилиндрической формы; миканитовые прокладки выступают или на одном уровне с рабочей поверхностью коллекторных пластин; замкнуты, затянуты медью коллекторные пластины; ослабло крепление пластин, они радиально перемещаются; пластины перекошены под некоторым углом к образующей цилиндра рабочей поверхности коллектора; разрушены миканитовые манжеты, изолирующие коллектор от нажимных конусов; ось вращения цилиндрической поверхности коллектора не совпадает с осью вала машины.
Обрыв в обмотке.
При обрыве чернеют коллекторные пластины, изоляция между ними выгорает, после чистки они снова чернеют. В момент прохождения коллекторных пластин, между которыми разорвана обмотка, под щеткой сильное искрение.
При нескольких обрывах в обмотке якоря чернеют несколько пластин, коллектор сильно искрит, обмотка якоря очень перегревается, в отдельных случаях генератор не возбуждается, двигатель не разворачивается
Замкнуто накоротко несколько витков или секций.
При этой неисправности замкнутые витки или секции чрезмерно перегреваются, машина искрит, обмотка дымит, пахнет характерным запахом горящей изоляции, генератор плохо возбуждается, двигатель плохо разворачивается. Кроме повреждений в самой обмотке, указанные признаки могут возникнуть и из-за соединений коллекторных пластин между собой на рабочей поверхности коллектора, в петушках.
Межвитковые соединения или короткое замыкание катушки главных полюсов.
При этой неисправности якорь машины перегревается от уравнительных токов, напряжение генератора и скорость вращения двигателя могут быть ненормальными, машина склонна к искрению, при надежном коротком замыкании одной катушки она остается холодной.
Обрыв в обмотке возбуждения.
При обрыве параллельной (шунтовой) обмотки генератор на холостом ходу дает 2-4номинального напряжения, двигатель без нагрузки может пойти «вразнос», а под нагрузкой потребляет большой ток и не берет с места.
При обрыве последовательной обмотки генератор не дает напряжения, а двигатель не трогается с места.
Межвитковое соединение и короткое замыкание одной или нескольких катушек дополнительных полюсов приводит к тому, что машина при незначительных нагрузках работает нормально, а при увеличении нагрузки начинает искрить. Обрыв обмотки дополнительных полюсов дает те же результаты, что и обрыв последовательной обмотки.
Неправильное чередование главных и дополнительных полюсов.
Машина при холостом ходе работает нормально, за исключением момента пуска двигателя в ход, а при нагрузке сильно искрит.
Щетки сдвинуты с линии геометрической нейтрали.
При сдвиге по направлению вращения генератор уменьшает напряжение, двигатель уменьшает скорость и сильно искрит. При сдвиге щеток против направления вращения генератор несколько увеличивает напряжение и сильно искрит, а двигатель увеличивает скорость.
Указанные явления отчетливо заметны в машинах, работающих под нагрузкой. В двигателях изменение скорости в зависимости от положения щеток можно наблюдать при холостом ходе.
Генератор с самовозбуждением не возбуждается
Генератор при правильном направлении вращения и исправных обмотках может не возбуждаться, если остаточный поток и поток, созданный током в обмотке возбуждения, не совпадают, сопротивление цепи возбуждения чрезмерно велико (выше критического), машина потеряла остаточный магнетизм, а генераторы последовательного возбуждения не возбуждаются при отсутствии нагрузки.
Возбудитель синхронного генератора представляет собой обыкновенную машину постоянного тока, и, следовательно, в ней могут быть все неисправности, описанные выше. Якорь синхронного генератора обыкновенно устроен так же, как статор асинхронного двигателя.
Увеличено напряжение якоря генератора при номинальной скорости вращения.
Это происходит от увеличенного тока возбуждения, протекающего по обмотке ротора генератора. Основной поток машины увеличен, активная сталь машины перегревается на холостом ходу, перегревается возбудитель генератора и обмотка ротора генератора.
Неодинаковые междуфазные напряжения генератора.
Причиной может быть витковое замыкание в обмотке статора или короткое замыкание между фазами. Часть обмотки генератора перегревается при холостом ходе, генератор сильно гудит, возможно появление дыма.
Обрыв в обмотке ротора генератора.
Ток возбуждения не протекает, генератор не возбуждается.
Обрыв одной фазы обмотки статора генератора.
При соединении его обмоток звездой напряжение будет только между исправными фазами.
Колебания тока генератора, работающего в одиночку.
При неизменной нагрузке токи в фазах генератора колеблются из-за неустойчивой работы приводного двигателя.
Источник: https://forca.ru/knigi/arhivy/ekspluataciya-elektricheskih-mashin-i-apparatury-51.html