Что называется сопротивлением заземляющего устройства

Осмотр, проверка и испытание заземляющих устройств

Заземляющие устройства представляют собой токоотводящие конструкции, которые обеспечивают через металлический проводник соединение с землей. Заземление работает следующим образом: через проводник, имеющий слабое сопротивление, проходит электрический ток, создавая потенциалы. С удалением от заземлителя потенциал стремится к нулю.

Сопротивление, которое оказывает току грунт, называется «сопротивлением растеканию». В практике сопротивление растеканию относят не к грунту, а к заземлителю и применяют сокращенный условный термин «сопротивление заземлителя».

Зимой, когда земля промерзает, и летом, когда грунт пересушен, индуктивное сопротивление максимально при неизменном активном сопротивлении (сопротивление заземлителя). Если заземляющее устройство потеряло контакт с землей, оно будет находиться под напряжением и представлять опасность.

Точно так же опасно, если значение сопротивления заземлителя не соответствует нормируемым величинам, если имеются коррозия и обрывы в заземлителе, наблюдается изменение кривой разницы потенциалов. Чтобы заземляющее устройство работало качественно, требуется регулярно проводить его осмотр, проверку и испытания, измерения.

Заземляющие устройства: осмотр состояния

Заземляющие устройства ( далее-ЗУ) проверяются, в первую очередь, визуально. Точками внимания являются:

  • контакты с оборудованием;
  • контактное соединение с землей;
  • крепления проводников;
  • оценка воздействия на проводники внешней среды;
  • степень коррозии;
  • наличие или отсутствие нагрева.

Вместе с внешним осмотром заземлителей проводится, как правило, и визуальная проверка всего электрооборудования.

При осмотре состояния важно обращать внимание на то, в каких условиях и как долго работают ЗУ.

Так, например, постоянное нахождение на открытом воздухе, в условиях повышенной влажности и осадков (в том числе – снега, который создает при налипании сильное давление, растягивающее тросы, что в свою очередь изменяет потенциалы), приводит к тому, что при внешней стабильности заземляющее устройство находится в практически нерабочем состоянии.

Иногда этот факт маскирует декоративно-защитное покрытие, а также скрывают – при неудобстве доступа для осмотра – детали оборудования, зданий и сооружений. Заземляющие устройства с повреждениями являются нерабочими и подлежат ремонту (восстановлению)  или замене.  

Заземляющие устройства: проверка

Проверка заземляющих устройств происходит после осмотра – сначала проверяются те узлы, которые вызывают сомнение. Так, на прочность проверяются стяжки и крепления, затягиваются ослабленные соединения болтов, производится окраска частей, пострадавших от воздействий внешней среды. Это так называемый косметический ремонт. Его нужно проводить регулярно, и вполне возможно осуществлять силами работников электрохозяйства самого предприятия.

Существует и капитальный ремонт.

Во время капитального ремонта изготавливаются новые электроды заземляющих устройств, а также заземляющие проводники, проводится замена проржавевших и пришедших в негодность креплений, а также проводится ряд других мероприятий, касающихся обслуживания заземляющих устройств. К этому относится составление и корректировка графика осмотра и проверки ЗУ, планирование и обучение согласно плану специалистов, отвечающих за электрооборудование, проверка знаний техники безопасности и методик у персонала.

В силу того, что сопротивление самих проводников, а главное – грунта, меняется в зависимости от времени года, температуры и влажности, проверку заземляющих устройств проводят в несколько этапов. Первый – при нормальной влажности, среднегодовой температуре. Второй – при экстремальной влажности.

Третий – при максимальном сопротивлении грунта (зимой или в разгар летней засухи). Как правило, выясняется, что при промерзании или высыхании земли сопротивление грунта оказывается высоким, что приводит, фактически, к неработоспособности в нормальном режиме системы заземления.

Если требуется снизить сопротивление заземления до нормальных показателей, можно использовать дополнительные электроды или установить новый заземляющий контур. Чтобы оценить состояние ЗУ, также требуется производить вскрытие грунта в местах заземления и измерение параметров самого ЗУ.

Нормативный документ, определяющий последовательность операций и нормируемые величины ЗУ в эксплуатации : «Методические указания по контролю состояния заземляющих устройств электроустановок» — РД 153-34.0-20.525-00

Монтаж нового заземляющего устройства

В осмотр, проверку и испытание заземляющих устройств входит также исследование документации в том числе и скрытых работ: актов монтажа, протоколов измерений, исполнительных чертежей и иной технической документации. В них должны быть указаны расположение, конфигурация и потенциалы всех заземляющих устройств и элементов молниезащиты.

В случае необходимости переделки или изменения заземляющего устройства, либо установки нового, необходимо произвести перерасчет совместной работы сети ЗУ во избежание конфликтов между устройствами.

Новое заземляющее устройство требуется устанавливать не только для снижения регулярного высокого сопротивления: по расчетам экспертов, за каждые 10 лет стальные конструкции теряют в грунте до 2,5 мм толщины, следовательно, если заземлитель изготовлен из полосовой стали толщиной в 5 мм, то очевидно, что коррозия будет составлять более 50%, и электрод потребует замены.

Однако не требуется ждать все 10 лет – при потере половины полезной массы, электрод уже считается нерабочим. В целом, расчет сроков замены заземляющих устройств довольно легко сделать – по толщине элемента и коэффициенту коррозии. Так, для стали срок замены будет составлять число лет, тождественное толщине полосы. При толщине в 8 мм, замена должна произойти через 8 лет, 4 мм – 4 года, 5 мм – 5 лет.

Это – рекомендуемые сроки, хотя заземлители могут работать и дольше, теряя каждый год определенный процент эффективности, что повышает опасность отсутствия эффективности заземления при аварийной ситуации  . В приведенном примере мы использовали полосовую сталь, но аналогично можно рассчитать старение угловой стали, стали круглого сечения или труб.

Чтобы точно выяснить, надо ли менять заземлители, достаточно измерить объем коррозии элементов заземляющего устройства и воспользоваться рекомендациями Нормативнного документа. Если от составляет 50% и больше – замену рекомендуется произвести незамедлительно.

Согласно рекомендациям специалистов, «осмотры с выборочным вскрытием грунта в местах, наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений должны производиться в соответствии с графиком планово-профилактических работ (далее— ППР), но не реже одного раза в 12 лет.

Величина участка заземляющего устройства, подвергающегося выборочному вскрытию грунта (кроме ВЛ в населенной местности), определяется решением технического руководителя потребителя на основе требований НД».

Заземляющие устройства: испытания

Важным моментом завершения работ по замене и мониторингу заземляющих устройств является его испытание. Проводить его можно только после завершения капитального или текущего ремонта.

Отметим, что алгоритмы в обеих случаях различны: после текущего ремонта с помощью приборов или средств измерений для измерения сопротивления или параметров заземления типа МС-08, Ф4103 или их аналогов производится измерение непрерывности цепи.

После капитального ремонта, помимо указанного выше, замеряется:

  • успешность расплавления плавкой вставки предохранителя (методом создания искусственного замыкания);
  • измерение сопротивления петли «фаза-нуль» с глухим заземлением нейтрали;
  • проверка пробивных предохранителей;
  • замер искровых промежутков.

При испытании заземляющих устройств требуется плавное поднятие напряжения, для чего используются реостаты, установленные в цепи трансформатора. При этом подавать напряжение нужно, предварительно проведя проверку состояния и сопротивления изоляции линии, и если она оказывается в ненадлежащем состоянии, то до испытания заземляющих устройств требуется эти дефекты устранить.

Осуществить весь комплекс указанных мер самостоятельно без привлечения специалистов электроизмерительной лаборатории практически невозможно, поскольку требуется работа и с документацией, и непосредственно с оборудованием: с учетом множества условий и ограничений по работе оборудования, проведением многократных замеров. Поэтому необходимо привлекать для работ по оценке состояния заземляющих устройств и параметров молниезащиты квалифицированных специалистов электролаборатории, имеющих опыт данных работ и разрешительные документы для их выплолнения.

Источник: http://www.gorod812.com/blog/osmotr-proverka-i-ispytanie-zazemlyayushchikh-ustrojstv

Зачем нужно заземление для дома

Согласно нормам техники безопасности (ТБ) любое работающее электрооборудование должно быть надёжно защищено от возможности попадания опасного потенциала на его корпус. Для выполнения этого требования все металлические и электропроводящие части оборудования должны быть электрически связаны с землёй (заземлены). Так происходит защита человека, животных и электрических приборов от случайных утечек тока.

Назначение и контролируемые параметры

Основное назначение заземления – обеспечение надёжного соединения электропроводящих частей устройств и приборов с металлической конструкцией особой формы, имеющей надёжный контакт с грунтом.

Профессионалы называют это сооружение заземлителем. Он представляет собой набор металлических заготовок (труб, отрезков арматуры или профилей), соединённых между собой методом сварки.

Надёжность функционирования такой системы зависит от общего сопротивления цепочки заземления, образуемой соединительными шинами и самой конструкцией заземлителя. Чем меньше значение этой величины – тем более безопасной будет эксплуатация оборудования или приборов, для которых предусматривается защита.

В процессе обустройства заземляющего контура подбором соответствующей формы конструкции стараются искусственно увеличить площадь контакта её элементов с землёй.

Того же эффекта удаётся достичь, если умышленно повысить процентное содержание солей в почвах, имеющих непосредственный контакт с металлическими частями заземлителя. Указанные меры способствуют снижению сопротивления стеканию тока в землю, что гарантирует надёжность работы всего контура заземления в целом.

С целью контроля значения этого показателя организуется техническое обслуживание заземляющих систем, предполагающее обязательный замер указанного параметра.

При обнаружении значительных отклонений от требований ПУЭ производится изъятие и ремонт заземляющих устройств, по окончании которого сопротивление растеканию проверяется повторно.

Подобные же действия предпринимаются и в тех случаях, когда необходимо повысить эффективность защиты особо опасных участков электрооборудования.

Принцип работы

Принцип действия заземления заключается в снижении потенциала оказавшейся под напряжением точки соприкосновения с токопроводящей частью до уровня, безопасного для человека.

ЭТО ИНТЕРЕСНО:  Как поменять полярность на сварочном полуавтомате

Фактически, в момент попадания опасного напряжения на корпус оборудования, близкий к нулю потенциал заземлителя переносится в эту точку и на какое-то время создаёт безопасные для работы условия.

За это время должно сработать автоматическое устройство защиты от утечек (УЗО) и окончательно отключить линию питающего напряжения, на которой возникла аварийная ситуация.

В процессе изготовления заземляющего устройства должны выполняться особые требования, обеспечивающие надёжный контакт металлических поверхностей с частицами почвы.

Для повышения электропроводности вокруг погружаемой в землю металлической конструкции заземления создаётся зона с высокой удельной проводимостью. Проводимость повышается за счёт непосредственного химического воздействия на почву. Одним из вариантов такого воздействия является применение упоминавшейся ранее соли.

Все рассмотренные меры способствуют тому, что заземлённое основание защитной конструкции обеспечивает надёжное стекание тока в почву.

Помимо преднамеренного соединения корпусов электрооборудования с заземлённой конструкцией, рассмотренный выше принцип реализуется и в ряде аварийных ситуаций, связанных с непосредственным замыканием фазы на землю.

Обустройство в частном доме

Отдельные владельцы загородного жилья нередко задаются вопросом о том, а нужно ли заземление в деревянном доме? Ответ на него можно найти в основных положениях действующих нормативов (в ПУЭ, например), где указанная защитная мера оговаривается как обязательная.

Более того, оказывается, что изготовить надёжную заземляющую конструкцию в частном доме намного проще, чем в городском многоквартирном строении.

И действительно, для обустройства заземления в загородной местности достаточно выбрать неподалёку от дома удобное для размещения заземлителя место и подвести к нему медную шину.

Сделать это в городских условиях не представляется возможным, поскольку наличие надёжного заземлителя в границах дома не предусматривается строительными нормативами (СНиП).

В указанной ситуации остаётся довольствоваться заземлением на стороне питающей подстанции, удалённой на значительные расстояния и не обеспечивающей по этой причине требуемой эффективности защиты.

Длительная эксплуатация электрооборудования в границах загородного дома без заземления чревата большими неприятностями для его хозяина. Опасность ситуации объясняется тем, что в любой момент возможно попадание высокого потенциала на металлические части бытовой техники (как правило, вследствие пробоя изоляции проводки).

Довольно часто в загородных хозяйствах используется силовое оборудование, работающее от трёхфазного источника питания, эффективное заземление питающих цепей которого считается обязательным.

Ремонт заземляющих устройств (ЗУ)

В процессе длительной эксплуатации заземления наблюдается коррозия отдельных узлов металлической конструкции и частичное отклонение электрических параметров от номинала.

Чаще всего это случается по причине разрушения защитного покрытия заземления под воздействием грунтовых солей с последующим коррозийным разрушением самого металла.

Устройство заземления в таком состоянии уже непригодно к длительной эксплуатации в качестве снижающей опасный потенциал конструкции, поскольку сопротивление поражённых ржавчиной мест существенно возрастает. Одновременно с этим снижаются токи утечки на землю, вследствие чего заземляющий контур теряет часть своих защитных свойств.

Любой специалист в подобной ситуации вправе заявить, что такое устройство нуждается в капитальном ремонте, предполагающем замену его поражённых частей на новые детали.

При этом возможен вариант, согласно которому часть разрушенных элементов заземления и мест сварки может быть восстановлена без их замены. Для этого необходимо проделать следующие операции:

  • сначала обнаруженные следы ржавчины на металлических частях заземления тщательно очищаются посредством наждачной бумаги или химическим путём;
  • вслед за этим очищенные от ржавчины места обезжириваются растворителем подходящего типа;
  • после высыхания растворителя на поверхность металла наносится слой грунтовки ГФ-18;
  • и в заключении, когда грунтовка полностью просохнет – подготовленные поверхности окрашиваются защитной эмалью чёрного цвета.

При использовании химических методов очистки на поражённые места накладывается кусочек мягкой ткани, смоченный в специальном растворе, предназначенном для удаления следов коррозии.

По завершении ремонта вся конструкция заземляющего контура подвергается контрольному обследованию, в процессе которого производится измерение его электрического сопротивления.

Для этих целей используются специальные контрольные устройства, называемые измерителями заземления (тип М416).

Область применения таких приборов распространяется не только на устройства заземления. С их помощью можно контролировать любые низкоомные цепи, а также с высокой точностью определять коэффициент удельного сопротивления грунта в точке заземления (ρ).

Техническое освидетельствование систем заземления

В целях контроля текущего состояния УЗ его конструкция периодически проверяется на предмет соответствия характеристик нормативным требованиям.

Указанная проверка предполагает проведение следующих операций:

  • визуальный осмотр открытых частей устройства;
  • обследование контактов между отдельными составляющими контура заземления;
  • измерение его активного сопротивления;
  • выборочное обследование размещённых в земле частей заземлителя со вскрытием грунта в этих местах.

В случае необходимости при испытаниях УЗ специалистами измеряется напряжение прикосновения и другие параметры распределительных заземляющих цепей.

Помимо этого, в комплект эксплуатируемого УЗ должен входить паспорт, в котором обязательно указывается дата ввода изделия в эксплуатацию, его рабочая схема, а также информация о текущем техническом состоянии системы.

Визуальное обследование открытых частей УЗ, как правило, проводится в соответствии с заранее утверждённым графиком ТО.

Для устройств, эксплуатируемых в условиях повышенной влажности, а также подвергающихся постоянным механическим воздействиям периодичность проведения таких проверок должна оговариваться особо.

Подводя итоги всему сказанному, можно отметить следующую особенность работы конструкции заземления. С целью повышения эффективности защиты от поражения электричеством в питающих цепях обязательно наличие заземляющего устройства. Оно реагирует на малейшие утечки тока на землю через тело человека.

При этом связка «заземление плюс зануление» металлических корпусов приборов и оборудования позволяет достичь высокой эффективности защиты. Устройство заземления обеспечивает мгновенность отключения питания при случайном повреждении или пробое изоляции.

Источник: https://evosnab.ru/ustanovka/zemlja/naznachenie-zazemlenija

Измерение сопротивления заземления

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления.

Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства.

В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления.

В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью).

Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя)

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.
ЭТО ИНТЕРЕСНО:  Как соединить треугольником Выводы обмоток трехфазного двигателя

Порядок проведения измерений

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме.

Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении).

В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол)

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение.

В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др.

соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

Источник: http://electry.ru/zazemlenie/izmerenie-soprotivleniya-zazemleniya.html

Контур заземления

Контур заземления представляет собой конструкцию, состоящую из соединённых друг с другом и проложенных в земле заземлителей.

Ориентировочные размеры при устновке в грунт вертикального заземлителя.

Заземлители, выполняя монтаж, устанавливают в ряд или в виде тругольника, квадрата, прямоугольника и т.п., исходя из требований и наличия площади для монтажа.

В грунтах с большим удельным сопротивлением один заземлитель [даже глубинный] — может имеет большое сопротивление и для получения требуемой меньшей величины сопротивления растеканию тока приходится устраивать заземление из нескольких, соединённых между собой, единичных заземлителей, включенных параллельно. Такой контур заземления называется многоэлектродным.

Токи, растекающиеся с параллельно соединенных одиночных заземлителей, оказывают взаимное влияние, возрастает общее сопротивление заземляющего контура, которое тем больше, чем ближе расположены вертикальные заземлители друг к другу. Поэтому расстояние между вертикальными заземлителями должно быть не менее их длины.

Верхние слои грунта подвержены значительным изменениям влажности. Вследствие этого сопротивление контура будет тем стабильнее, чем глубже он расположен в грунте.

Для уменьшения влияния климатических условий на сопротивление заземления верхнюю часть заземлителя размещают в грунте на глубину не менее 0,7 метра.

Контур устанавливается с меньшими затратами, где грунт имеет низкое удельное сопротивление, эффективность заземления при правильном расчёте выборе его расположения может быть повышена в несколько раз.

Материалы для заземления:

Материалы для контура заземления должны выбираться с учетом защиты от коррозии, соответствующих термических и механических воздействий, эти значения указаны в нормативных документах

Заземлители и проводники, проложенные в земле, должны иметь размеры не менее приведенных в табл. 1.7.4.(ПУЭ)

Дополнения к ПУЭ — это перечень и требования для материалов с антикоррозионными покрытиями ( для омеднённой и нержавеющей стали) — Указаны в ГОСТ Р 50571.5.54-2013 «Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов.»

Виды контуров заземления:

В зависимости от назначения контура заземления, используемой площади и удельного сопротивленя грунта — заземлители, для контура, могут устанавливаться различных видов — некоторые из них: — Кольцевой контур заземления — чаще всего монтаж производится плоским проводником(полоса). Важный момент — полоса в траншее должна укладываться на ребро.

Кольцевой заземлитель является заземлителем поверхности, который должен быть проложен в виде замкнутого кольца на расстоянии 1,0 м и на глубине 0,5/0,7 м в земле вокруг фундамента дома.

— Многоэлектродный контур заземления — это совмещённый монтаж горизонтального и вертикальных заземлителей, чаще всего выполняется в виде треугольника, а при необходимости — с большим количеством электродов.

Для монтажа «треугольника» или контура с большим числом вертикальных заземлителей, могут использоваться модульные электроды — установка выполняется сборным вертикальным стержнем, который поэтапно наращивается и забивается электроинстументом с большой ударной силой на требуемую глубину с одной точки. Такие заземлители в зависимости от вида почвы могут прокладываться в земле вручную или с помощью соответствующих электрических, бензиновых или пневматических молотов.

Сопротивление контура заземления частного дома:

Электросеть загородного частного дома относится к электроустановкам напряжением до 1кВ (1000 Вольт), соответственно сопротивление заземляющего контура не должно превышать допустимые параметры.

Значения сопротивления заземляющих устройств для каждого вида электроустановок должны удовлетворять значениям, приведенным в соответствующих главах Правил(ПУЭ) и таблице 1.8.38.

Наибольшие допустимые значения сопротивлений заземляющих устройств(ПУЭ)

Расчёт контура заземления:

Чтобы правильно произвести расчет- длину и количество заземлителей, входящих в будущую конструкцию контура, нужно знать знать максимальное значение удельного сопротивления слоя грунта на глубине, приблизительно в три раза превышающей глубину закладки заземлителя. Это значение определяется путем измерений удельного сопротивления грунта в месте устройства заземления с учетом коэффициентов влажности.

Если взять значение удельного сопротивления грунта из таблиц(как чаще всего это делают при проектировании в офисе и не выезжая на место строительства), то после монтажа такого контура заземления — расчетное значение может не совпасть с измеренным после выполнения работ.. Поэтому часто в проектах заземления указывают, что если значение сопротивления установленного контура будет превышать допустимое, следует увеличить количество заземлителей, т.е.

увеличить объём работ, соответсвенно увеличивается заложенная в смете цена.

Для заземления газового котла расчетное сопротивление не должно превышать 10 Ом.

Подключение контура заземления к электросети дома:

Следует иметь в виду, что только монтажа и подключения контура заземления — не достаточно для обеспечения электробезопасности, например дачи или частного дома и т.п. Для этого, должны быть соблюдены требования к электроустановкам указанные в гавах ПУЭ: Глава 1.7. «Заземление и защитные меры электробезопасности» Глава 7.1. «Электроустановки жилых, общественных, административных и бытовых зданий»

Эти требования являются взаимосвязанными и их частичное выполнение может привести к непредсказуемым последствиям, как для электро, так и пожарной безопасности..

Чтобы произвести монтаж и подключение заземления, нужно обладать знаниями по устройству электроустановок и нормативных документов. Если при монтаже самой конструкции контура своими руками проблем особо не возникает, то при проверке сопротивления и подключении заземляющего устройства в электросеть дома, часто совершаются ошибки. Когда нет ответа на часть из многих существенных вопросов, неоходимых для монтажа и подключения контура заземления — например:

— Чем отличается система заземления ТТ от системы заземления TN(три типа)? — Почему эксплуатация электросети дома с системой заземления ТТ без УЗО — запрещена? — Какая система заземления будет применяться в вашем доме? — Почему сопротивление растеканиЮ тока является основным показателем качества контура заземления и как оно проверяется во время монтажа?

— и т.п.

В этом случае, чтобы не совершать ошибок, следует изучить правила.

Проверка:

Основной критерий качества установленного контура заземления для частного дома (и не только) — это сопротивление растеканию тока, точное значение которого возможно узнать только после поверки измерительным прибором.
Производить замеры нужно в обязательном порядке и сопротивление заземления должно соответствовать нормативам.

Но чаще всего владельцы загородных частных домов при самостоятельном монтаже(или нанятые работники), пренебрегают замерами, без которых нельзя оценить в полной мере качество установленного заземляющего устройства.

ЭТО ИНТЕРЕСНО:  Можно ли зарядить гелевый аккумулятор обычным зарядным устройством

При профессиональном монтаже, после установки выполняются приемо-сдаточные испытания согласно ПУЭ и выдаётся электроизмерительной лабораторией протокол. В дальнейшем, измерение сопротивления растеканию тока заземляющих устройств должно производиться в сроки, установленные ПТЭЭП, а также после каждого капитального ремонта.

Периодичность проверки в полном объеме производится не реже 1 раза в 12 лет. Проверка коррозионного состояния элементов, находящихся в земле:

Локальные коррозионные повреждения в земле выявляются при осмотрах со вскрытием грунта. Если элементы конструкции выполнены из чёрного металла (уголков, труб, полосы и т.п.), то самыми уязвимыми для коррозии являются сварные соединения и такие места проверяются в первую очередь.

Контур заземления для молниезащиты III Категории

Молниезащита III Категории (РД 34.21.122-87) 2.26..каждый токоотвод молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;

.Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.

Из этого следует, что для электорустановки и молниезащиты дома устанавливается общий контур заземления.

Источник: http://thegrounding.ru/kontur_zazemlenija.shtml

Гост р 57190-2016 заземлители и заземляющие устройства различного назначения. термины и определения, гост р от 25 октября 2016 года №57190-2016

ГОСТ Р 57190-2016

Группа Т50

ОКС 01.120, 29.120

Дата введения 2017-09-01

1 РАЗРАБОТАН ООО «МИНАДАГС», ООО «НПФ ЭЛНАП»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 336 «Заземлители и заземляющие устройства различного назначения»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 октября 2016 г. N 1511-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации».

Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном указателе «Национальные стандарты».

В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий данной области знания.

Для каждого понятия установлен один стандартизованный термин.

Не рекомендуемые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой «Нрк».

Термины-синонимы без пометы «Нрк» приведены в качестве справочных данных и не являются стандартизованными.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации.

Наличие квадратных скобок в терминологической статье означает, что в нее включены два (три, четыре и т.п.) термина, имеющие общие терминоэлементы.

В алфавитном указателе данные термины приведены отдельно с указанием номера статьи.

Помета, указывающая на область применения многозначного термина, приведена в круглых скобках светлым шрифтом после термина. Помета не является частью термина.

Приведенные определения можно, при необходимости, изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приводится и вместо него ставится прочерк.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском (еn) языке.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, — светлым, синонимы — курсивом.

1 Область применения

Настоящий стандарт устанавливает термины и определения (буквенные обозначения) понятий в области заземляющих устройств, предназначенных для обеспечения промышленной и социальной безопасности (электроустановок) электрических цепей (сетей) различного назначения.

Настоящий стандарт не распространяется на термины и определения (буквенные обозначения) понятий в области элементов и конструкций, случайно выполняющих функции заземляющих устройств.

Термины, установленные настоящим стандартом, рекомендуются для применения во всех видах документации и литературы (по данной научно-технической отрасли), входящих в сферу действия работ по стандартизации и (или) использующих результаты этих работ.

Настоящий стандарт пригоден для целей подтверждения соответствия заземляющих устройств различного назначения.

2 Нормативные ссылки

Источник: http://docs.cntd.ru/document/1200140752

Проверка заземления

Наша электроизмерительная лаборатория производит проверку заземления в Москве и Московской области.

У нас вы можете заказать :

  • Измерение сопротивления растеканию тока контура заземления (заземляющего устройства);
  • Проверку наличия цепи между заземлёнными установками и элементами заземлённой установки(металлосвязь)
  • Паспорт заземляющего устройства

Стоимость работ по проверке заземления

от 8000 рублей

  • Стоимость выезда, измерение сопротивления заземляющего устройства, тех-отчёт

от 60 рублей за точку

  • Проверка наличия цепи между заземлителями и заземленными элементами

Защитным заземлением называют соединение проводящих частей электрооборудования, по которым не должен течь ток, с землёй. Функция контура заземления – защита людей от поражения током и электрооборудования от выхода из строя в случае появления электрического потенциала на его проводящей нетоковедущей части. Это может случиться, например, из-за повреждения изоляции кабеля или из-за неисправности оборудования.

В случае короткого замыкания через заземление идёт большой ток. Поэтому даже не очень большое сопротивление контура заземления может вызвать значительное падение потенциала на нетоковедущей части оборудования, которое попало под напряжение. Данный сбой может стать причиной возникновения опасной ситуации.

Поэтому сопротивление растеканию тока заземляющего устройства должно иметь минимальные значения, чтобы обеспечивать наибольшее снижение потенциала, появившегося на проводящей части оборудования. Такие испытания проводятся, чтобы удостовериться в том, что этот параметр соответствует норме.

Ток через заземляющее устройство – аварийное явление. Поэтому при исправной системе защиты от аварийных ситуаций ток через заземлитель будет идти очень короткое время (сотые-десятые доли секунды). За это время успеет сработать либо устройство защитного отключения, либо (если УЗО нет, а через заземление идёт большой ток) сработают аварийные предохранители или автоматические выключатели.

Проверка сопротивления заземлителя

Сами номинальные значения зависят от напряжения, с которым работает оборудование и удельного сопротивления грунта. Максимальные значения сопротивления контура заземления электроустановок представлены в ПТЭЭП (приложение 3.1, таблица 36). Проводятся эти работы в период, когда сопротивление грунта обладает максимальным значением (засушливая погода либо сильное промерзание).

На этом фото можно увидеть как происходит измерение сопротивления заземляющего устройства, показатели достаточно хорошие 0,14 Ом

Периодичность проведения данных работ устанавливается также ПТЭЭП (приложение 3, п.26).  Согласно действующим правилам измерение сопротивления заземляющего устройства должно проводиться раз в 6 лет или чаще, если есть подозрения о нарушении структуры ЗУ.

Само соединение заземляемого объекта с землёй называется металлосвязью. Измерение переходного сопротивления контактов (то есть металлосвязи) также должно проводиться не менее одного раза в год. ПТЭЭП определяет максимальное значение этого параметра в 0,05 Ом.

На этом фото ГЗШ – или главная заземляющая шина.

Это напряжение, под которое попадает человек, который прикоснулся к заземлённой установке, когда по ней проходит ток. Максимальное значение этого параметра определено в ПТЭЭП (приложение 3, п.26).

Оно зависит от расчётной длительности воздействия (чем дольше действует напряжение, тем меньше его допустимое значение). Например, если напряжение будет присутствовать на заземлителе 0,1 с, то оно может достигать 500 В.

Если же время реакции защитного оборудования на аварийную ситуацию превышает 1 с, то максимальное значение такого напряжения – 65 В.

Наша лаборатория выполнит замер сопротивления контура заземления на объекте любой сложности и в кратчайшие сроки. Так же имеется возможность выполнять измерение сопротивления заземления без использования штырей (метод токовых клещей).

Помимо измерения заземления проводится визуальный осмотр видимых частей ЗУ. Такие диагностические мероприятия нужно проводить минимум два раза в год. Кроме того, не реже одного раза в 12 лет следует проводить подробный осмотр с выборочным вскрытием грунта в тех местах, где наиболее вероятна коррозия.

Если почва в местности является агрессивной, то частота выполнения осмотра может быть увеличена. В случае, когда при проверке заземлителя оказывается, что повреждено более половины сечения, его следует заменить. Помимо этого, не реже, чем 1 раз за 6 лет проверяется состояние защитных предохранителей.

Данный перечень работ, как правило, проводит электроизмерительная лаборатория, специалисты которой имеют необходимый допуск и оборудование.

Полученные результаты измерений вместе с результатами осмотра заземлителя и замечаниями заносятся в паспорт контура заземления (паспорт заземляющего устройства).

Наши приборы

Часто задаваемые вопросы :

Если при измерении контура заземления показатели заземлителя будут плохими, можете ли вы устранить это?

Да, у нас можно заказать монтаж модульного заземлителя, а также восстановление металлосвязи, с последующими измерениями и выдачей документации.

Возможно измерение без отключения заземлителя от ГЗШ?

Возможно, у нас есть специальные клещи METREL A 1018 и А 1019, позволяющие провести измерения без кольев и отключения заземлителя.

Официальная ли у вас форма протокола?

Протоколы которые мы выдаем соответствуют ГОСТ Р 50571, также мы прикладываем свидетельство о регистрации электролаборатории и документ о поверке прибора, которым проводились испытания.

Делаете ли вы паспорт заземляющего устройства?

Да, у нас можно заказать такую услугу.

Последние выполненные работы

Источник: https://cenerg.ru/electrolaboratorya/proverka-zazeml/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как правильно варить дуговой сварки

Закрыть
Для любых предложений по сайту: [email protected]