Все о трансформаторах тока. Классификация, конструкция, принцип действия
Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.
Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.
Конструкция и принцип действия трансформатора тока
Трансформаторы тока конструктивно состоят из:
- замкнутого магнитопровода;
- 2-х обмоток (первичной, вторичной).
Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная — замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.
Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.
Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.
Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.
К этим обмоткам в обязательном порядке должна быть подключена нагрузка.
Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.
Интересное видео о трансформаторах тока смотрите ниже:
Погрешность ТТ определяется в зависимости от:
- сечения магнитопровода;
- проницаемости используемого для производства магнитопровода материала;
- величины магнитного пути.
Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.
Предельное значение сопротивление нагрузки указывается в справочных материалах.
Классификация трансформаторов тока
Трансформаторы тока принято классифицировать по следующим признакам:
- В зависимости от назначения их разделяют на:
- защитные;
- измерительные;
- промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
- лабораторные.
- По типу установки разделяют устройства:
- наружной установки (размещаемые в ОРУ);
- внутренней установки (размещаемые в ЗРУ);
- встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
- накладные — устанавливаемые сверху на проходные изоляторы;
- переносные (для лабораторных испытаний и диагностических измерений).
- Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
- многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
- одновитковые;
- шинные.
- По способу исполнения изоляции ТТ разбивают на устройства:
- с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
- с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
- имеющие заливку из компаунда.
- По количеству ступеней трансформации ТТ бывают:
- одноступенчатые;
- двухступенчатые (каскадные).
- Исходя из номинального напряжения различают:
- ТТ с номинальным напряжением — выше 1 кВ;
- ТТ с напряжением – до 1 кВ.
Ещё одно интересное видео о схемах включения трансформаторов тока:
Трансформаторы тока разных производителей
Рассмотрим несколько трансформаторов тока разных производителей:
Трансформаторы тока ТОЛ-НТЗ-10-01
Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.
Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.
Рабочее положение трансформатора в пространстве – любое.
Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:
- класс нагревостойкости «В» по ГОСТ 8865-93;
- уровень изоляции «а» и «б» по ГОСТ 1516.3-96.
Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.
Расположение вторичных выводов:
- «А» — параллельно установочной поверхности;
- «В» — перпендикулярно установочной поверхности;
- «С» — из гибкого провода, параллельно установочной поверхности;
- «D» — из гибкого провода, перпендикулярно установочной поверхности.
Требования к надежности
Для трансформаторов установлены следующие показатели надежности:
- средняя наработка до отказа – 2´105 ч.;
- полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией
ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2
- 10 — номинальное напряжение;
- «0» — конструктивный вариант исполнения;
- «1» — исполнение по длине корпуса;
- «А» — вторичные выводы расположенные параллельно установочной поверхности;
- «Б» — изолирующие барьеры;
- 0,5S — класс точности измерительной вторичной обмотки;
- (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
- 10Р — класс точности защитной вторичной обмотки;
- 10 — номинальная предельная кратность вторичной обмотки для защиты;
- 5 — номинальная вторичная нагрузка обмотки для измерения;
- 15 — номинальная вторичная нагрузка обмотки для защиты;
- 300 — номинальный первичный ток;
- 5 — номинальный вторичный ток;
- 31,5 — односекундный ток термической стойкости;
- «УХЛ» — климатическое исполнение;
- 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.
Опорные трансформаторы тока TОП-0,66
ОАО «СЗТТ»
Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.
Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.
Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:
- высота над уровнем моря не более 1000 м;
- температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
- окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
- рабочее положение — любое.
Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.
Проходные шинные трансформаторы тока для внутренней установки BB, BBO
Изготовитель — Фирма ООО «ABB»
Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).
Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.
Трансформаторы спроектированы и изготовлены согласно следующим стандартам:
- МЭК, VDE, ANSI, BS, ГОСТ и CSN.
- Максимальное напряжение — 3.6 кВ — 25 кВ
- Первичный ток — 600 A – 5000 A
- Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
- Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
- Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.
Источник: https://pue8.ru/relejnaya-zashchita/241-transformatory-toka-printsip-dejstviya.html
Ключевые отличия трансформатора тока от трансформатора напряжения
Чтобы понять, чем отличается трансформатор тока от трансформатора напряжения, необходимо знать особенности первого и второго устройства. Трансформаторы тока созданы — в первую очередь — как измерительные или же защитные приборы.
Основную функцию данных трансформаторов легко понять. Они строго «следят» за тем, чтобы каждый, кто залез в электрическую сеть, не получил смертельный удар. Отличительной особенностью является строгое контролирование.
В самой электрической системе для комфортной работы приборов поддерживается очень высокое напряжение. Однако любая техника рано или поздно может дать сбой, поэтому обязательно нужно оставить окно, через которое специалисты-ремонтники смогут проверять состояние сети, проводить профилактические работы.
Происходит это за счет трансформатора тока, который в определенном месте дает максимально безопасный доступ.
- Измерительные трансформаторы
Измерительные трансформаторы представляют собой особые приборы. Основная их задача — преобразовывать переменный ток, в итоге получается такой же переменный, но уже с допустимыми для измерения значениями. С помощью данного устройства можно подключить к цепи вольтметр, амперметр или любой другой измерительный прибор.
Также имеется дополнительная функция — возможность подключить любую технику, не испортив ее, а также получить максимально точный и правильный результат измерений (иногда даже десятые доли могут радикально изменить картину).
Независимо от конкретного типа основная особенность трансформатора тока заключается в особой точности, а также в возможности образовывать некоторую необходимую безопасную изоляцию.
Трансформаторы напряжения
Трансформаторы тока и напряжения имеют разное предназначение.
Вторые созданы для изменения напряжения с высокого на низкое и наоборот. Это отличный способ «подогнать» определенную электрическую сеть под нужный стандарт.
Подобные трансформаторы позволяют достичь необходимого уровня безопасности, предотвратить огромное количество чрезвычайных происшествий, спасти жизни и здоровье людей, а также оставить огромное количество приборов исправными.
Мало кто знает, что трансформаторы напряжения присутствуют практически в каждом приборе для того, чтобы защитить его от внезапного повышения напряжения, например, при ударе молнии или же в случае нарушения правил эксплуатации.
Основное отличие
Основное отличие этих двух трансформаторов (напряжения и тока) заключается именно в их предназначении и функциях, которые они надежно выполняют.
Основная задача устройства для тока состоит в защите или в обеспечении точности, которая просто необходима для различных измерений или же любого обслуживания электрических сетей как в конкретном месте, так и в комплексе.
Назначение же трансформатора напряжения связано не с проверками и измерениями и даже не с ремонтом и профилактикой, а непосредственно с эксплуатацией. Невозможно запустить сеть без данного аппарата.
Обязательно нужно преобразовывать напряжение с пониженного на повышенное.
Именно с помощью подобных трансформаторов можно использовать везде универсальную электрическую сеть, ток в которой изменяется данным аппаратом и подходит под любую технику, будь то бытовые приборы или же устройства промышленного назначения.
Также стоит отдельно отметить опасность каждого трансформатора.
Угрожает безопасности отсутствие или неработоспособность устройства, регулирующего напряжение: если неожиданно единица измерения повысится в большую сторону, то могут быть очень серьезные последствия, которые чреваты разнообразными трагедиями — от пожаров до других бедствий. Также отсутствие изоляции угрожает ремонтникам, а отсутствие точных измерений может нарушить работу; но слишком серьезных последствий практически невозможно добиться.
Предназначение в электрической сети
Присутствие и одного, и другого трансформатора в электрической сети незаменимо. Трансформатор напряжения встречается практически везде. Он может быть встроен в каждый бытовой прибор. Обязательно находится в общедомовой сети, не говоря уже о более серьезных промышленных объектах.
Отличительной особенностью работы трансформатора тока является то, что он не нужен на каждом мелком объекте, он подходит для достаточно крупных предприятий, куда подводится сеть очень большой мощности.
Настолько большой, что необходима дополнительная изоляция даже для того, чтобы просто измерить все величины.
Не стоит путать эти трансформаторы, это может иметь очень печальные последствия. Нужно грамотно разбираться в данной технике для того, чтобы устанавливать и ремонтировать ее, правильно пользоваться и знать все опасности.
Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения диагностики трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Источник: https://energiatrend.ru/news/otlichiya-transvormatorov-toka-ot-transformatorov-napryazheniya
Трансформатор тока и напряжения. Главные отличия
Подробности 24.05.2018 17:50
Существует ряд электрических трансформаторов, которые производятся для различных функций и требований. Независимо от их конкретного стиля и дизайна, различные виды используют точно такую же концепцию Майкла Фарадея.
В которой говорится, что взаимодействие электрического и магнитного полей создает электродвижущую силу, изменение электрического поля создает магнитное поле, тогда как изменение магнитного поля создает электрическое поле.
Два основных типа трансформаторов, то есть трансформаторы тока и трансформаторы напряжения, имеют много отличий, но главным является то, что трансформатор напряжения используется для регулирования напряжения на вторичной стороне трансформатора, тогда как ток трансформатора регулируется на вторичной стороне, имея в виду произведение напряжения и тока, которое является мощностью, остается неизменным, если ток регулируется либо он поднят, либо понижен, то напряжение будет взаимно изменять его значение, чтобы сохранить значение мощности, поскольку мощность является продуктом тока и напряжения. В трансформаторе напряжения вторичный ток напрямую связан с первичным током. Вторичный ток зависит от напряжения в дополнение к сопротивлению нагрузки. Тогда как в трансформаторе тока: вторичная обмотка может быть закорочена. Разомкнутая вторичная обмотка может привести к повреждению трансформатора.
Трансформатор тока
Трансформатор тока, который часто упоминается как ТТ, регулирует переменный ток. На его вторичном конце переменный ток пропорционален значению тока на его первичной обмотке. Трансформатор тока обычно используется для обеспечения изолированного тока на его вторичных клеммах.
Трансформаторы тока широко используются в целях измерения тока и проверки всего процесса энергосистемы. Трансформаторы тока используют для измерения электроэнергии практически для каждого здания с трехфазными службами и однофазными услугами более двух сотен ампер.
Купить трансформатор тока можно на сайте http://www.zvo.com.ua
Трансформаторы тока уменьшают токи высокого напряжения до некоторого уменьшенного значения и обеспечивают удобный метод правильной проверки конкретного электрического тока, движущегося в линии передачи переменного тока с использованием стандартного амперметра. Ключевая работа трансформатора тока абсолютно ничем не отличается от работы обычного трансформатора.
Трансформатор напряжения
Трансформатор напряжения, который также называется потенциальным трансформатором. Он используется в энергосистеме электрической энергии для снижения или повышения напряжения системы до некоторого защищенного значения.В линиях передачи, где единственной целью является минимизация потерь в линии, потенциальный трансформатор увеличивает напряжение, так что потери в линиях можно избежать настолько, насколько это возможно. Поэтому, как правило, в линиях передачи напряжения очень высокие.
В случае типичного понижающего трансформатора, он имеет меньшее количество витков первичной, чем его вторичные обмотки, с целью снижения апряжения.
Напряжение системы подается на клеммы первичной обмотки этого трансформатора, после чего вторичное напряжение появляется в соответствии с коэффициентом трансформации на вторичных выводах трансформатора напряжения. Обычно вторичное напряжение составляет 220 вольт.
Идеальный трансформатор напряжения — это тот, в котором отношение первичного и вторичного напряжений совпадает с отношением с количеством витков первичной и вторичной обмотки.
Ключевые отличия:
- В трансформатора тока ток и плотность изменяются в широких пределах, но в трансформаторе напряжения он изменяется в небольшом диапазоне.
- Первичный трансформатор тока имеет небольшое напряжение на нем, в то время как трансформатор напряжения имеет полное напряжение питания
- Трансформатор тока применяется в цепи последовательно, в то время как потенциальный трансформатор применяется параллельно
- Первичный ток трансформатора не зависит от нагрузки, а разность потенциалов зависит от нагрузки
- Можно измерить высокие напряжения малыми вольтметрами с использованием трансформатора напряжения, тогда как высокие токи измеряются малыми амперметрами с использованием трансформаторов тока
- Первичный ток не зависит от нагрузки, тогда как первичный ток трансформатора напряжения зависит от внешних условий, которые являются нагрузкой
Источник: http://myelectro.com.ua/1031-transformator-toka-i-napryazheniya-glavnye-otlichiya
Трансформаторы тока и напряжения
Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:
- понижающими, выдающие на выходе меньшее напряжение, чем на входе;
- повышающими, выполняющие противоположное преобразование;
- разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.
Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.
С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.
Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.
Зачем нужны измерительные трансформаторы напряжения
В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:
- при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
- изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.
Трансформатор напряжения НОЛ
Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения
Трансформаторы напряжения и их конструкция
На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В.
Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более.
Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.
Конструктивно трансформаторы напряжения выполняются:
- элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
- один корпус содержит трансформатор для преобразования всех трех фаз.
Трехфазный трансформатор напряжения НАМИ
Первичные обмотки трехфазных трансформаторов соединяются в звезду.
Вторичных обмоток у трансформаторов напряжения несколько:
- обмотка для приборов учета, имеющая класс точности 0,5s;
- обмотка для измерительных приборов – класс точности 0,5;
- обмотка для устройств релейной защиты – класс 10Р;
- обмотка для разомкнутого треугольника – класс 10Р.
Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.
Трансформатор напряжения НОМ-10
Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.
Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.
Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.
Три однофазных трансформатора ЗНОЛ, собранные вместе
А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации.
Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением.
Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.
Зачем нужны трансформаторы тока
Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.
Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:
- максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
- включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
- вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
- Заменить амперметр прямого подключения можно, только отключив нагрузку.
Принцип действия и конструкция трансформаторов тока
Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.
Варианты конструктивного исполнения трансформаторов тока до 1000 В
Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.
Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.
Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего.
И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.
Установка трансформаторов тока в ячейке выше 1000 В
Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой.
Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика.
А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.
Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения.
Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).
про трансформаторы тока
Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.
Источник: http://electric-tolk.ru/transformatory-toka-i-napryazheniya/
Трансформатор тока — принцип работы, назначение и устройство
При необходимости контроля над токами, протекающими в электрической сети, применяют измерительные трансформаторы тока и напряжения. Подключенные специальным образом подобные устройства снижают измеряемые параметры электрической цепи до величин, подходящих для их измерения. Таким образом, происходит разделение сильноточной цепи от цепи слаботочной. Это необходимо для того, чтобы измерительная или иная аппаратура, в которую включена вторичная обмотка трансформаторов, не вышла из строя.
Индуктивные связи в трансформаторах тока (ТТ)
Согласно основному закону электромагнитной индукции, который обосновал Фарадей, все трансформаторы напряжения (ТН) и тока (ТТ) работают по принципу взаимной индукции. Если расположить на одном замкнутом магнитном сердечнике две обмотки и подключить одну из них к источнику переменного тока, то изменяемый магнитный поток вызовет возникновение электродвижущей силы (ЭДС).
Важно! Такую ЭДС называют индуцируемой. Во второй (вторичной) обмотке устройства в результате взаимодействия магнитных полей также индуцируется ЭДС, и начнёт протекать электрический ток.
Особенности трансформации энергии для ТТ
Что такое диод — принцип работы и устройство
Чтобы понять, для чего нужны трансформаторы тока, и отличие их от трансформаторов напряжения (ТН), можно рассмотреть их конструкцию. Присутствие в электрических схемах подобных устройств связано с необходимостью трансформировать: понизить или повысить напряжение или ток. Переменное электричество, вырабатываемое генераторами на электростанциях, перед передачей по сетям энергосистемы предварительно подвергается трансформации.
Как работает устройство
Когда стало понятно, что из себя представляет трансформация, пришло время рассмотреть подробнее принцип действия трансформатора тока.
Особенности применения и выбора измерительных трансформаторов тока
На замкнутый сердечник (магнитопровод), собранный из пластин, надеты две обмотки. Первая катушка включена последовательно в силовую цепь нагрузки. Вторичная катушка своими выводами подключена к измерителям. Сердечник собран из пластин кремнистой стали холодного качения.
К сведению. Учёт электроэнергии выполнен именно таким способом. В однофазные и трёхфазные цепи включены трансформаторы тока, которые позволяют снимать показания по каждой фазе, подавая данные на счётчик.
При прохождении переменного электричества по виткам первой (основной) обмотки вокруг неё образуется переменный магнитный поток Ф1. Поток Ф1, пронизывая все обмотки трансформатора, индуцирует в них ЭДС (Е). В этом случае возникают Е1 и Е2. При подключении в цепь вторичной обмотки любой нагрузки через неё начнётся движение электричества.
Особенности конструкции
Из чего состоят такие трансформаторы? Чем отличается трансформатор тока от трансформатора напряжения? На эти вопросы можно найти ответы в описании особенностей конструкций. Трансформаторы тока, назначение и принцип действия их, подразумевают постоянство некоторых условий:
- всякий ТТ должен иметь на своём магнитопроводе больше одной обмотки;
- обмотки, являющиеся вторичными, непременно подключаются к нагрузке (Rн);
- сопротивление Rн не должно содержать отклонений от заявленных в документах ТТ;
- первичная обмотка изготавливается как шина, проходящая через сердечник или в форме катушки.
Новые счетчики электроэнергии: принцип работы и преимущества
Отсутствие нагрузки по вторичной обмотке не обеспечивает возникновение в сердечнике магнитного потока Ф2, который обладает компенсирующим свойством. Это приводит к повышению температуры сердечника и его расплавлению. Нагрев происходит от того, что Ф1 приобретает слишком высокое значение.
Отклонение сопротивления Rн влияет на погрешность измерений и ухудшает их. В случае превышения сопротивления во вторичной обмотке повышается напряжение U2, и изоляция ТТ может не выдержать. Произойдёт пробой, и прибор выйдет из строя.
Информация. Трансформаторы напряжения (ТН) отличаются от ТТ по способу применения и схеме включения. Они присоединяются параллельно и определены для повышения или понижения напряжения, развязки силовой схемы от схемы управления и контроля. Основной регламент работы ТН близок к режиму холостого хода (х.х.). Это обусловлено тем, что параллельно включенные элементы схемы управления потребляют малый ток, а их Rн большое.
Классическое устройство ТТ
Схемы подключения измерительных ТТ
Монтаж трансформаторов тока выполняют по определённой схеме. Это зависит от напряжения измеряемой сети, а именно:
- в 3-х фазных сетях с Uн до 1000 В ТТ встраиваются в цепь каждой фазы;
- в 3-х фазных сетях с Uн 6-10 кВ установка осуществляется на две фазы (А и С).
В первом варианте, в электроустановках (ЭУ), где нейтраль глухозаземлена, концы вторичных обмоток ТТ замыкаются между собой по схеме «звезда».
Во втором случае, в ЭУ с изолированной нейтралью, они присоединяются по схеме «неполная звезда».
Классификация трансформаторов тока
Принцип работы трансформатора тока, а также способы подключения и назначения позволяют провести их разделение по следующим различиям:
- назначению;
- типу установки;
- способу размещения;
- выполнению первичной обмотки;
- типу изоляции;
- рабочему напряжению;
- количеству ступеней трансформации.
Кроме того, есть другие качества, позволяющие произвести классификацию ТТ. Одна из отличительных черт – специфика конструкции.
По конструктивным особенностям ТТ различаются на:
- одновитковые;
- многовитковые;
- оптико-электронные.
У каждого из этих видов есть типы моделей, которые желательно рассмотреть отдельно.
ТТ катушечного типа
Это одни из несложных трансформаторов тока. Они относятся к ранним ТТ, построенным и продвигавшимся на структуре, где за основу взят силовой трансформатор. Обе обмотки (первая и вторая) набраны на каркас с изоляционными свойствами. Каждая из них представляет собой катушку. Отсюда происходит название. Кроме того, что они компактны и дёшевы в изготовлении, можно выделить недостаток: низкое разрядное напряжение из-за слабой изоляции катушек.
Такая конструкция позволяет использовать их только на напряжение до 3 кВ. Чтобы повысить величину Uразр., приходится увеличивать окно сердечника и отделять первичную обмотку от внутренней поверхности пластин. В образовавшийся в результате этого зазор вставляется изоляционная прокладка, имеющая п-образный вид.
Проходной трансформатор
Устройства распределения (РУ), напряжением от 6 до 35 кВ, подразумевают установку подобных трансформаторов тока. Это многовитковый ТТ, где за базу взята пара проходных изоляторов, соединённых между собой посередине. Такая сборка позволяет проходить через стены и использовать их в закрытых РУ. При этом отпадает необходимость специально задействовать проходной изолятор.
Обмотка, служащая первичной, прокладывается через пустоту, расположенную внутри. Количество витков берётся из расчёта нужных «ампер-витков» для соответствующего класса точности. Под фланцем, который заземлён, помещены втулки. В их средине закреплены магнитопроводы вторичных обмоток, закрытых кожухом.
Внимание! Расположение обмоточного вывода для первичной обмотки приходится на верхнюю плоскость, относительно заземлённого фланца.
Проходной высоковольтный ТТ
Стержневое устройство
Данный тип устройства предназначен для работы с U = 10-20 кВ и Iн = 600 и 1500 А. Такой ТТ относится к проходным одновитковым трансформаторам, имеющим фарфоровую изоляцию. У него токоведущий стержень, пронзающий фарфоровый изолятор, служит первичной обмоткой.
Стержневой трансформатор тока
Шинный прибор
Следующая конструкция предназначена для установки в комплектные трансформаторные подстанции (КТП). Они реализовывают передачу информации об измерениях на контрольно-измерительные приборы (КИП). Сигналы от аналогичных ТТ передаются также на схемы защиты и управления.
Шинный ТТ типа ТШЛ-0,66-1
Преимущества и недостатки
У каждого из перечисленных устройств есть свои плюсы и минусы. Рассматривать их предпочтительнее на разделении: одновитковые и многовитковые модели.
К плюсам одновитковых ТТ можно отнести:
- простоту устройства;
- низкую стоимость;
- малые габариты;
- устойчивость к токам КЗ (короткого замыкания).
Сюда же можно добавить то, что, изменяя сечение токовода (стержня), добиваются изменения термической устойчивости.
Минусом у таких моделей является невысокая точность при маленьких измеряемых токах.
Что касается многовитковых моделей, то явным положительным моментом является наличие некоторого количества витков в первичной обмотке. Это позволило значительно повысить класс точности измерений. К отрицательным характеристикам относятся:
- сложность конструкции;
- удорожание;
- подверженность первичной обмотки межвитковым перенапряжениям.
При этом сюда же можно отнести низкую устойчивость к токам КЗ.
Параметры трансформаторов тока
Зная, по определению, что эти детали служат для измерений и защитных функций, можно догадаться, что основными их характеристиками будут: KI и класс точности.
Коэффициент трансформации KI
Трансформаторные узлы только выполняют масштабирование параметров электроэнергии, сами её не производят. Для определения величины масштабирования используют коэффициент трансформации.
Отношение между величиной тока (I) или напряжения (U), поданной на вход и снятой на выходе, носит название коэффициента трансформации (Ктр).
В случае преобразования тока речь ведут о:
КI = I2/I1,
где:
- КI – коэффициент трансформации ТТ;
- I1 – ток на входе;
- I2 – ток на выходе.
Для ТТ выполняется пропорциональное отношение между первичным и вторичным токами. Это следует из выражений:
- I1 =I2 / KI;
- I2 = I1 * KI.
Уточнение. Номинальный Ктр ТТ отображают в виде дробного выражения. В числителе ставится номинальная величина тока, протекающего в первичной катушке, в знаменателе – величина номинального тока во вторичной электрообмотке. Он всегда больше единицы.
Таким образом, номинал измеряемого тока отображает КI ном. Указанные паспортные данные детали (КI = 65/5) обозначают то, что при пропускании через первичную катушку 65 А во вторичной катушке будет проходить ток в 5 А.
Указание значений на шильдике детали
При использовании ТТ выполняют снижение тока во вторичной цепи, что даёт возможность обеспечить безопасность эксплуатации. Во вторичную цепь включается не только измерительная аппаратура, фиксирующая значение тока, но и системы защиты или автоматического переключения. В этом случае КI < 1.
Для значений напряжения формула коэффициента иная:
KU = U2/U1.
Изменения масштабирования (знак) зависит от величины К. При K>1 трансформатор повышает подводимую электрическую величину, при значении К
Источник: https://amperof.ru/elektropribory/transformator-toka-princip-raboty.html
Трансформаторы тока и напряжения: подключение, отличия
11 января 2015 г.
Трансформатор тока (ТТ) – это специальное устройство, используемое для преобразования тока. В сильноточной электротехнике такие приборы выполняют измерительную и защитную функции. Также трансформатор тока применяется для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в системах дифференциальных защит и т. д.
Первичная обмотка ТТ подключается к источнику тока, а вторичная обмотка – замыкается на защитные и измерительные устройства, обладающие малыми внутренними сопротивлениями. Трансформаторы тока могут иметь одну или две ступени трансформации, двухступенчатые устройства называются каскадными.
По номинальному напряжению трансформаторы делятся на два типа:
Подключение трансформаторов тока
Трансформаторы тока могут использоваться как для наружной, так и для внутренней установки. Трансформаторы первого типа предназначены для ОРУ (открытых распределительных устройств) и могут устанавливаться вне помещений. Трансформаторы внутренней установки используются только на закрытых площадках и подходят для закрытых (ЗРУ) и комплексных (КРУ) распределительных устройств.
Бывают приборы, встроенные в электрические аппараты и машины (выключатели, трансформаторы, генераторы и др.). Накладные трансформаторы надеваются сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора), а переносные применяют для контрольных измерений и лабораторных испытаний.
По способу установки ТТ бывают проходными и опорными. Проходные трансформаторы устанавливаются в проёмах стены либо металлического основания, выполняя функцию проходного изолятора. Опорные – крепятся на ровную плоскость, причём вывода первичной обмотки располагаются либо все вверху, либо один вывод – слева, другой – справа.
Трансформатор напряжения(ТН) – это специальный прибор, применяемый для преобразования и гальванической развязки высокого напряжения (6 кВ и выше) в низкое (обычно 100 В). Данное устройство изолирует низковольтные логические цепи защиты и измерительные цепи от высокого напряжения, что даёт возможность сэкономить на изоляции низковольтных сетей. Главным образом, трансформатор напряжения работает в режиме холостого хода.
По типу преобразования электрического напряжения трансформатор может быть:
- Понижающий (напряжение на вторичной обмотке ниже, чем на первичной);
- Повышающий (напряжение на вторичной обмотке выше, чем на первичной).
Иными словами, понижающий трансформатор понижает выходное напряжение, а повышающий – наоборот, повышает его. Прибор первого типа подойдёт, если, например, необходимо из 220 В на входе получить 36 В на выходе. Если же 220 В нужно преобразовать в 660 В на выходе, тогда потребуется повышающий трансформатор. Любой трансформатор напряжения обратим: если его перевернуть, он тут же из повышающего станет понижающим и наоборот.
Одним из основных параметров трансформатора электрического напряжения является его мощность. Существуют устройства малой, средней и большой мощности.
Схема работы трансформатора напряжения довольно проста: первичная обмотка, состоящая из большого числа витков, подключается к цепи с измеряемым напряжением, а сами приборы учёта подсоединяются к зажимам вторичной обмотки. ТН конструктивно включает в себя магнитопровод и катушку с обмотками. Коэффициент трансформации равен отношению числа витков вторичной обмотки к числу витков первичной обмотки.
Чем отличаются измерительные трансформаторы напряжения и тока?
Трансформаторы тока и напряжения часто используют в измерительных целях. Главной задачей этих приборов является приведение I (U) на выходе к значению, удобному для учётно-измерительных работ.
В первую очередь, измерительные трансформаторы напряжения отличаются от измерительных трансформаторов тока тем, что первые преобразуют высокое напряжение в низкое, а последние – трансформируют силу электрического тока. Напомним, что электрическое напряжение измеряется в вольтах (В), а сила тока – в амперах (А). Для нахождения силы тока, согласно закону Ома, используют следующую формулу: I = U / R, где I – сила тока, U – напряжение, R – сопротивление участка цепи.
Также трансформаторы напряжения и тока имеют различное подключение первичных обмоток: в первом случае – фазное или линейное напряжение, во втором – последовательное подключение в первичную цепь. Идеальный режим работы у этих приборов также отличается: для ТН это режим холостого хода, а для ТТ – режим короткого замыкания вторичных обмоток.
Другие статьи
Источник: https://ooo-sem.ru/articles/transformatoryi-toka-2015011175.html
Принцип действия ТТ и их назначение
В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.
Назначение трансформаторов тока: преобразование тока и разделение цепей
Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.
- Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
- Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.
Из чего состоит ТТ, принцип его работы
Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.
Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.
Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.
В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1.
Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока.
Его называют потоком намагничивания.
Коэффициент трансформации идеального ТТ
В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.
Коэффициент трансформации реального ТТ
В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:
- создание магнитного потока в магнитопроводе
- нагрев и перемагничивание магнитопровода
- нагрев проводов вторичной обмотки и цепи
К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам
В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.
Режимы работы трансформаторов тока
У ТТ существуют два основных режима работы – установившийся и переходный.
В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.
Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.
ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.
Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора
Существуют существенные отличия в работе ТТ и ТН.
Во-первых, первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
Во-вторых, ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
В-третьих, не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Причины повреждения кабелей
Определение температуры термосопротивления по ГОСТ
Расчет тока трансформатора по мощности и напряжению
Выпрямительные диоды: расшифровка, обозначение, ВАХ
Самое популярное
Единицы измерения физвеличин
Напряжение смещения нейтрали
Источник: https://pomegerim.ru/electricheskie-apparaty/naznachenie-i-princip-dejstviya-transformatorov-toka.php
Трансформатор тока: конструкция, принцип работы, классификация
Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.
Конструкция и принцип действия
Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.
Рис. 1. Трансформатор тока
Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).
Рис. 2. Промышленный керамический трансформатор тока
Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.
Рис. 3. Принципиальная схема трансформатора тока
В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).
Рис. 4. Схематическое изображение ТТ Рис. 5. Устройство ТТ
Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).
Рис. 6. ТТ с разъемным корпусом
Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.
Принцип действия.
Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.
Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .
Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.
На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.
Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.
В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.
Рис. 7. Принцип действия трансформатора тока
На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.
Классификация
Семейство трансформаторов токаклассифицируют по нескольким признакам.
- По назначению:
- По способу монтажа:
- наружные (см. рис. 8), применяются в ОРУ;
- внутренние (размещаются в ЗРУ);
- встраиваемые;
- накладные (часто совмещаются с проходными изоляторами);
- переносные.
Рис. 8. Пример наружного использования ТТ
- Классификация по типу первичной обмотки:
- многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
- По величине номинальных напряжений:
Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.
Расшифровка маркировки
Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:
- Т — трансформатор тока;
- П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
- В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
- ВТ — встроенный в конструкцию силового трансформатора;
- Л— со смоляной (литой) изоляцией;
- ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
- Ф — с надежной фарфоровой изоляцией;
- Ш — шинный;
- О — одновитковый;
- М — малогабаритный;
- К — катушечный;
- 3 — применяется для защиты от последствий замыкания на землю;
- У — усиленный;
- Н — для наружного монтажа;
- Р — с сердечником, предназначенным для релейной защиты;
- Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
- М — маслонаполненный. Применяется для наружной установки.
- Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
- Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
- следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
- после позиции дробных символов — код варианта конструкционного исполнения;
- буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
- цифра на последней позиции — категория размещения.
Схемы подключения
Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.
Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.
При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.
Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.
Схема «неполная звезда» применяется для двухфазного соединения.
В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.
Основные схемы подключения:
Основные схемы подключения
- В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
- Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
- Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
- Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.
Технические параметры
Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.
Коэффициенттрансформации
Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.
У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.
Класс точности
Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:
Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.
О назначении
Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.
Источник: https://www.asutpp.ru/transformatory-toka.html
Чем отличается трансформатор тока от трансформатора напряжения
Найти информацию о том, чем отличаются трансформаторы тока от трансформаторов напряжения непросто из-за недостатка информации по этой теме. В рамках этой статьи вы узнаете все необходимой по данной теме и сможете разобраться. В чем отличие в роли и специфике применения каждого типа трансформаторов.
Что такое трансформаторы напряжения
Трансформаторы напряжения в свое время были разработаны для перехода с высокого напряжения на более низкое, а также наоборот. Сегодня они чаще всего используются для того, чтобы привести какую-то отдельную электрическую сеть к определенному стандарту.
Трансформаторы напряжения могут предотвратить массу происшествий, которые могут быть вызваны чрезвычайно высоким или низким напряжением, увеличивают степень безопасности всей сети.
Они также предотвращают порчу приборов, которая зачастую может быть вызвана свойствами электрической сети.
Трансформатор напряжения, пусть и небольшой, присутствует почти в каждом приборе, работающем от электричества, будь то компьютер или насос. Они защищают технику от перепадов напряжения и тем самым продлевают срок службы.
Трансформатор напряжения
Что такое трансформаторы тока
Трансформаторы тока сконструированы, прежде всего, как измерительное устройство, но они также выполняют защитные функции. Трансформаторы тока постоянно встраиваются в такие приборы, как измерительные реле, счетчики энергии и т.д. Существует несколько типов трансформаторов тока, каждый из которых подробно описан ниже:
Измерительные трансформаторы тока. Они занимаются преобразованием переменного тока таким путем, чтобы затем можно было измерить его значения. Измерительные трансформаторы применяют, когда к сети нужно подключить амперметр, вольтметр и другие устройства. Измерительные трансформаторы тока дают не только предельно точные измерения мощности напряжение, но предоставляют некую минимально необходимую для безопасности изоляцию.
Измерительные трансформаторы тока
Защитные трансформаторы. Важнейшая функция этих устройств понятная из самого их названия. Эти приборы необходимы для того, чтобы каждый подключенный к сети прибор не получил чрезвычайно мощный заряд тока, способный испортить его.
Гаджет строго контролирует состояние сети и при этом поддерживает в ней очень высокое напряжение. Защитный трансформатор тока также предоставляет «свободное окно» на случай сбоев в работе устройств и/или сети.
Этим окном смогут воспользоваться специалисты, который займутся починкой системы.
Защитные трансформаторы
Лабораторные. Эти устройства встречаются нечасто и в основном используются в различных исследованиях и экспериментах, отсюда и название. В повседневной практике вы их вряд ли встретите, поэтому стоит ограничиться двумя предыдущими типами.
Лабораторный трансформатор
Ключевые отличия между трансформаторами
Главное отличие между трансформатором напряжения и трансформатором тока кроется в том, какую роль играют эти устройства в рамках электрической сети и для каких целей их туда устанавливают.
Устройство для тока сосредоточено на защите и гарантировании точности. Эти две вещи критически необходимы в проведении измерений и при обслуживании сетей. По этой причине отказаться от использования трансформатора тока просто невозможно, и он обязательно должен присутствовать.
Вместе с тем трансформатор напряжения никак не связан с измерениями, проверками, а также тонкостями технического обслуживания приборов. Он относится напрямую к их эксплуатации. Сегодня привести электросеть в рабочее состояние без него просто нереально.
Смена силы напряжения с повышенной на пониженную критически необходима. Именно трансформатор напряжения позволяет использовать повсеместно одну универсальную электрическую сеть вне зависимости от того, какую технику вы собираетесь подключать. Это могут быть промышленное оборудование.
Бытовые устройства и прочие приборы – сеть сможет питать всю технику без нанесения повреждений.
При этом необходимо обратить внимание на угрозу, которая способна исходить от каждого из трансформаторов. Вернее, угроза кроется в отсутствии или неисправности трансформаторов. Без трансформатора напряжения ваша сеть перестанет регулироваться и многие подключенные к ней устройства могут просто «сгореть» из-за слишком высокого уровня напряжения, либо просто отключаться по причине слишком низкой мощности сети.
Вывод
Теперь вы понимаете, чем отличается трансформатор тока от трансформатора напряжений. Реальный отличия между данными устройствами очень существенны. Они ни в коем случае не заменяют друг друга и их никогда нельзя путать. Недостаток любого из приборов в электросети или его сбой могут обернуться очень серьезными негативными последствиями, поэтому часто практикуют установку дополнительный, резервных приборов.
Источник: https://vchemraznica.ru/chem-otlichaetsya-transformator-toka-ot-transformatora-napryazheniya/
Назначение и принцип действия измерительных трансформаторов
Назначение и принцип действия измерительных трансформаторов
На предприятиях в энергетических установках требуется постоянный контроль режимов функциональности оборудования. Контроль выполняют с помощью учета электроэнергии и наблюдением за показаниями приборов нагрузки и рабочего и сетевого напряжения.
Приборы для измерения тока нагрузки, рабочего напряжения в высоковольтных установках подключаются через трансформаторы тока и напряжения. Кроме измерения трансформаторы нужны для присоединения защитных устройств и реле.
Для чего нужны измерительные трансформаторы тока и напряжения
Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения.
Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:
-
снижают габариты и вес приборов измерения;
-
повышают уровень безопасного обслуживания оборудования;
-
предупреждают последствия от ошибочных действий электротехнического персонала;
-
расширяют пределы измерения переменного тока.
Назначение трансформаторов напряжения
Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.
Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А.
Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ
Рассмотрим какие бывают трансформаторы напряжения.
Классификация трансформаторов напряжения
Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:
-
однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;
-
незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;
-
каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;
-
емкостный ТН с делителем;
-
двухобмоточный ТН с одной обмоткой вторичного напряжения;
-
трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.
Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО
Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью
Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.
Устройство трансформаторов напряжения
Конструкцию ТН рассмотрим на примере лабораторных трансформаторов НЛЛ, используемыми для проверки работы большинства трансформаторов измерения и приборов.
Трансформаторы напряжения на 3, 6 или 10 кВ имеет магнитопровод с конструкцией из электротехнической стали в основном стержневого типа. На магнитопроводе расположена внутренняя вторичная обмотка. Первичка представляет собой две секции, которые соединены между собой.
Изоляции представляет собой заливку компаудом, что создает монолитный блок с высокой степенью электрической прочности от попадания влаги и внешних повреждений.
Выводы первичной обмотки размещаются вверху корпуса трансформатора.
С торца трансформатора на клеммнике размещены выводы вторичной обмотки и контакты заземления.
Измерительные трансформаторы напряжения, условия безопасной эксплуатации
Для обеспечения рабочих условий эксплуатации клеммы вторичной обмотки присоединяют к измерительными приборам или защитному оборудованию. Одну из клемм и основание оборудования заземляют.
Цепи при вторичной работе не замыкают, иначе может произойти термическое разрушение.
Если существует не использованная вторичная обмотка ее оставляют открытой, заземлив одну из клемм. Разомкнутая треугольная цепь должна включать резистор соответствующего напряжения и номинальной мощности вторички. Заземление цепи производится по техническим рекомендациям.
Нейтральный вывод первичной обмотки однофазного трансформатора заземляется только в нейтральную систему замыкания.
Будьте уверены, что правильный выбор и эксплуатация измерительных трансформаторов приведут вас к объективным показателям нагрузки и качества электрической сети.
Рис. №6. Схема подключения трансформатора напряжения где: 1 – первичная обмотка, 2 – магнитопровод, 3 – обмотка вторичного напряжения
Рис. №7. Размещение трансформатор напряжения в ячейке КРУН, подключение к питающей сети через предохранители
Назначение и принцип действия трансформаторов тока
Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением.
Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.
Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую.
С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.
О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит» Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.
Трансформатор постоянного тока
Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока.
Устройство трансформаторов тока
Большинство измерительных трансформаторов тока выполнены в виде литой и опорной конструкции. Изоляция, например, как у трансформаторов тока ТОЛ-СЭЩ-10-IV выполнена из циклоалифатической смолы, защищающей обмотки от влаги и всех внешних повреждений. Катушки первичного напряжения выполнены из 2, 3 или 4 магнитопроводов со вторичными обмотками.
Эксплуатационные условия для трансформаторов тока
Важно. Трансформаторы тока запрещено включать в линию без измерительного прибора.
Для безопасной эксплуатации
-
Чтобы увеличить степень надежности ТТ и обеспечить безопасную эксплуатацию кожух трансформатора и одну из клемм «вторички» необходимо заземлить.
-
Вторичная обмотка не эксплуатируется при разомкнутой цепи, а та обмотка, которая не используется закорачивается и заземляется.
-
Трансформаторы тока с ответвителем емкостного делителя присоединяются к индикатору. Неиспользованное ответвление заземляют.
Обслуживание измерительных трансформаторов
Перед началом работы с поверхности трансформаторов удаляется смазка, пыль и прочие загрязнения. Протирка производится с использованием уайт-спирита. Ветошь не должна оставлять ворс.
Трансформатор исследуется на наличие сколов, трещин и наличие следов коррозии.
После визуального осмотра трансформатор подвергают испытанию или проверяют прибором/мегомметром (2500 В) на достаточность сопротивления изоляции. Вторичная обмотка проверяется мегомметром со шкалой деления на 1000 В.
Ток холостого хода проверяется со стороны вторичной обмотки под напряжением равным 1,2 от номинального. Отличие полученного результата не должно быть отличным от паспортного больше чем на ±10%.
Основное требование к трансформаторам – номинальная мощность не должна быть больше указанных в паспорте изделия.
Качество электроэнергии в сети должно быть соответствующим требованиям ГОСТ 32144.
Установка трансформатора должна производиться на место с обеспеченным доступом к клеммным контактам.
При обслуживании трансформатора измерения проверяют надежность контактного соединения.
Разомкнутые треугольные обмотки однофазных индукционных ТН обеспечивают безаварийность кабельных систем распределения энергии.
Для повышения надежности разомкнутых треугольных обмоток трансформатора напряжения в цепь добавляют стабилизаторы напряжения, ограничители, стабилитроны. Эти устройства поддерживают работоспособность систем распределения электроэнергии после аварий и сбоев.
Работы по обслуживанию измерительных трансформаторов производятся по наряду в соответствии с технологическими картами. Капитальный ремонт, например, у трансформаторов тока не делают. Если испытания и замеры сопротивления основной изоляции показали неудовлетворительные результаты трансформатор меняют на другой. Основная изоляция должна иметь сопротивление не менее 300 МОм.
Вторичная обмотка в отключенном и отсоединенном состоянии должна показать сопротивление не менее 50 МОм, с подключенными вторичными цепями не менее 1 МОм.
При обслуживании трансформаторов тока проверяют переходное сопротивление болтового контактного соединения. Оно не должно превышать 33 мкОм для контактов на 2000 А и не выше 60 мкОм для контактных соединений на 630 А.
Технология ремонта измерительных трансформаторов: разборка магнитопровода, демонтаж и ремонт катушек, перемотка обмоток, замена пластин магнитопровода и прочее схожи с ремонтом силовых трансформаторов. На время ремонта трансформатора обмотки закорачивают между собой, чтобы исключить возможный контакт и обратную трансформацию и напряжение при выполнении ремонтных работ.
Важные примечания
В индукционных однополюсных измерительных трансформаторах тока при замыкании цепи и во время затухания токов замыкания на «землю» возникает феррорезонанс, следствием которого является перегрев, появляется высокое напряжение, а сам трансформатор может разрушиться.
Для предупреждения феррорезонанса в разомкнутую треугольную цепь трех обмоток трансформатора напряжения включают резистор. Заземление выполняют только в одной точке. В контакты разомкнутого треугольника присоединяют приборы, которые следят за токами замыкания не землю.
Приобретение и установка измерительного трансформатора в соответствии с паспортными данными нагрузки и напряжения электроустановки гарантируют бесперебойную и точную работу приборов и оборудования.
Источник: https://www.kesch.ru/info/articles/naznachenie-i-printsip-deystviya-izmeritelnykh-transformatorov/