Что называют Электроемкостью конденсатора

Электрическая ёмкость: определение, формулы, единицы измерения

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость – способность проводников накапливать заряды. Понятие емкости применяется как для уединенного проводника, так и для системы, состоящей из двух и более проводников.  В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяютсяаккумуляторы, используемые в качестве источников постоянного тока для питания различных устройств. Количественной характеристикой, определяющей время работы аккумулятора, является его электроемкость.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить зарядами противоположно знака и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал. Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под действием внешнего электрического поля в проводнике происходит такое распределение электронов, чтобы внутри его сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды ионов. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными. При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды распределяются равномерно по всей поверхности. Наличие полости любой конфигурации абсолютно не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом, что он снова станет электрически нейтральным.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удалённого из зоны действия электростатического поля. Благодаря тому, что диэлектрик сохраняет полученные заряды, уединенный проводник восстановил свою нейтральность.

Рис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому – отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействие в каждом из проводников, не позволяя им разрядиться. Величина заряда зависит от площади поверхности параллельных проводников и от свойства диэлектрика, расположенного между ними.

Свойство сохранять накопленный заряд называется электроемкостью. Точнее говоря, – это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников путем короткого замыкания их или через нагрузку. С целью увеличения емкости на практике применяют параллельные пластины или же длинные полоски тонкой фольги, разделённой диэлектриком. Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

Рис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

  • переменные;
  • электролитические;
  • оксидные;
  • бумажные;
  • комбинированные и другие.

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

Рис. 3. Электроёмкость проводника

По отношению к конденсатору, для  определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

Источник: https://www.asutpp.ru/elektricheskaya-yomkost.html

Электроемкость конденсаторов. Расчет (формула) энергии заряженных конденсаторов

› Теория ›

05.12.2019

Электроемкость конденсатора – это характеристика двух проводников, которые находятся в теле устройства. Эта величина не зависит от номинала заряда и величины его напряжения. На нее влияют геометрия и габариты самых проводников, их месторасположения относительно друг друга, а также технических характеристик диэлектрика, который находится между ними и его свойств.

Большая часть этих радиодеталей имеют плоский вид. В качестве проводников используются пластины из алюминия или фольги из него. В качестве диэлектрика выступает бумага, пропитанная парафином или слюда. Они так и называются – слюдяные, бумажные или воздушные.

В данной статьи рассмотрены все вопросы по расчеты электроемкости конденсаторов. В качестве бонуса. в конце статьи читатель найдет видеоролик по теме и интересный материал, расчету электроемкости.

Электроемкость

Электроемкость — это скалярная величина, характеризующая способность проводника накапливать электрический заряд.

Электроемкость:

  • не зависит от q и U;
  • зависит от геометрических размеров проводника, их формы, взаимного расположения, электрических свойств среды между проводниками.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу:

единица измерения емкости в СИ: Ф (фарад)

Конденсатор обладает свойством накапливать и сохранять электрическую энергию. Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз. обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Материал по теме: Как проверить конденсатор

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками.  Основные слагаемые электроемкости представлены на рисунке ниже:

Основные слагаемые электроемкости.

Обозначение на электрических схемах:

  • Все электрическое поле сосредоточено внутри конденсатора.
  • Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.

Виды конденсаторов:

  • по виду диэлектрика — воздушные, слюдяные, керамические, электролитические.
  • по форме обкладок — плоские, сферические.
  • по величине емкости — постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

где S — площадь пластины (обкладки) конденсатора

  • d — расстояние между пластинами
  • εо — электрическая постоянная

ε — диэлектрическая проницаемость диэлектрика

Конденсатор — это система заряженных тел обладает энергией.

Энергия любого конденсатора:

где С — емкость конденсатора, (Ф)                     W— энергия (Дж) q — заряд конденсатора, (Кл)

U — напряжение на обкладках конденсатора, (В

Электрическая емкость конденсатора

Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности.

В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя.

Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.

Интересный материал для ознакомления: что такое вариасторы.

Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:

Будет интересно➡  Как устроен трехфазный выпрямитель

С = q/ϕ.

За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества.

Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника.

Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.

Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором. При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой. При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.

Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:

С = q/ U.

1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:

С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.

Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора. Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е. получится пробой диэлектрика.

Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.

Единицы измерения

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:

При неизменном расположении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах.
Единица электроемкости в международной системе – фарад (Ф). Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл. . В практике широко используются дольные единицы электроемкости – микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

  • 1 мкФ = 10-6Ф;
  • 1 нФ = 10-9Ф;
  • 1 пФ = 10-12Ф.

Электроемкость конденсатора прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между обкладками. При введении диэлектрика между обкладками конденсатора его электроемкость увеличивается в e раз. Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рисунок 1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рисунок 2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

Будет интересно➡  Что такое короткое замыкание

Согласно принципу суперпозиции, напряженность  поля, создаваемого обеими пластинами, равна сумме напряженностей  и  полей каждой из пластин. Вне пластин вектора  и  направлены в разные стороны, и поэтому E = 0.

 Поверхностная плотность σ заряда пластин равна q/S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами.

Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Потенциал φ (отсчитываемый от нулевого уровня на бесконечности) пропорционален заряду q проводника, т.е. отношение q к φ не зависит от q. Это позволяет ввести понятие электроемкости. С уединенного проводника, которая равна отношению заряда проводника к потенциалу:

С = q/ φ

Таким образом, чем больше электроемкость, тем больший заряд может накопить проводник при данном φ. Электроемкость определяется геометрическими размерами проводника, его формой и электрическими свойства окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника.

В частности, электроемкость проводящего шара в вакууме равна его радиусу. Наличие вблизи проводника других тел изменяет его электроемкость, так как потенциал проводника зависит и от электрических полей, создаваемых зарядами, наведенными в окружающих телах вследствие электростатической индукции.

В системе ед. СГСЭ электроемкость измеряется в сантиметрах, в СИ – в фарадах: 1Ф = 9*1011 см.
Понятие электроемкости относится также к системе проводников, в частности двух проводников, разделённых тонким слоем диэлектрика, – электрическому конденсатору. Электроемкость конденсатора (взаимная ёмкость его обкладок)

С = q/ (φ1 – φ2),

где q – заряд одной из обкладок (заряды обкладок по абсолютной величине равны), φ1 – φ2 – разность потенциалов между обкладками. Электроемкость конденсатора практически не зависит от наличия окружающих тел и может достигать очень большой величины при малых геометрических размерах конденсаторов.

Заключение

Более подробно об электроемкости конденсаторов можно узнать  прочитав материал: “Электроемкость: как рассчитать”. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Источник: https://electroinfo.net/teorija/chemu-ravna-jelektroemkost-kondensatora.html

Электроемкость. Емкость заряженного конденсатора (плоского, циллиндрического и коаксиального провода, сферического, двухпроводной линии). Энергия. — Инженерный справочник DPVA.ru / Технический справочник ДПВА / Таблицы для инженеров (ex DPVA-info)

Проект Карла III Ребане и хорошей компании Раздел недели: Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость.
Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма. / / Электростатика. / / Электроемкость. Емкость заряженного конденсатора (плоского, циллиндрического и коаксиального провода, сферического, двухпроводной линии). Энергия.
  • Два проводника, между которыми имеется электрическое поле, все силовые линии которого начинаются на одном проводнике и заканчиваются на другом, называют конденсатором, а сами проводники — обкладками конденсатора.
  • В простом конденсаторе величины зарядов на обкладках равны по величине, но противоположны по знаку.
  • Различают по форме проводящих поверхностей плоские, цилиндрические и сферические (шаровые) конденсаторы.
    • где
      • S — величина поверхности одной пластины (меньшей, если они не равны)
      • d — расстояние между пластинами
      • ε — диэлектрическая проницаемость материала, находящегося между обкладками
    • где
      • b — радиус внешнего цилиндра
      • a — радиус внутреннего цилиндра
      • l — длина конденсатора 
    • где
      • a и b — радиусы внутренней и внешней сфер.
    • где
  • где
    • d — расстояние между осями параллельных проводов
    • a — их радиус
    • l — длина

Энергия, сосредоточенная в заряженном конденсаторе, энергия заряженного конденсатора:

В пространстве, где имеется электрическое поле, сосредоточена энергия. Величина этой энергии в единице объема:

Плотность энергии однородного поля может быть вычислена по формулам для систем СИ и СГС:

    • где
      • E — величина напряженности поля

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста. Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator
ЭТО ИНТЕРЕСНО:  Какое напряжение на электроде при сварке

Источник: https://dpva.ru/Guide/GuidePhysics/ElectricityAndMagnethism/ConseptsAndFormulas/Electrostatic/CondensatorCapacity/

Электроемкость конденсатора, теория и примеры

Одним их важнейших параметров, при помощи которого характеризуют конденсатор, является его электроёмкость (C). Физическая величина C, равная:

называется емкостью конденсатора. Где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками. Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Для конденсаторов с одинаковым устройством и при равных зарядах на его обкладках разность потенциалов воздушного конденсатора будет в раз меньше, чем разность потенциалов между обкладками конденсатора, пространство которого между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Значит емкость конденсатора с диэлектриком (C) в раз больше, чем электроемкость воздушного конденсатора ():

где – диэлектрическая проницаемость диэлектрика.

Единицей емкости конденсатора считают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) является фарад (Ф).

Электроемкость плоского конденсатора

Поле между обкладками плоского конденсатора в большинстве случаев считают однородным. Однородность нарушается только около краев. При расчете емкости плоского конденсатора данными краевыми эффектами обычно пренебрегают. Это возможно, если расстояние между пластинами мало в сравнении с их линейными размерами. В таком случае емкость плоского конденсатора вычисляют как:

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Электрическая емкость цилиндрического конденсатора

Конструкция цилиндрического конденсатора включает две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость такого конденсатора находят как:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где – радиусы обкладок конденсатора.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/elektroemkost-kondensatora/

Формула электроемкости – Формула электроемкости конденсатора

Обкладки должны иметь такую форму и быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально сосредоточено в ограниченной области пространства, между обкладками.

Назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.

Основной характеристикой конденсатора является электрическая емкость (C). Электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:

q – величина заряда на обкладке; – разность потенциалов между обкладками.

Электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. Если пространство между обкладками одного конденсатора заполнено диэлектриком с проницаемостью равной , а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (C) в раз больше, чем емкость воздушного конденсатора ():

Формула электроемкости основных типов конденсаторов

При расчете электроемкости плоского конденсатора нарушением однородности поля около краёв обкладок обычно пренебрегают. Это становится возможным, если расстояние между пластинами существенно меньше, чем линейные размеры обкладок. В таком случае электрическую емкость плоского конденсатора вычисляют при помощи формулы:

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Если плоский конденсатор между обкладками имеет N слоев диэлектрика, при этом толщина каждого слоя равна , а диэлектрическая проницаемость , то его электрическую емкость рассчитывают при помощи формулы:

Цилиндрический конденсатор составляют две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполнено диэлектриком. При этом емкость цилиндрического конденсатора находят как:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

У сферического конденсатора обкладками служат две концентрические сферические проводящие поверхности, пространство обкладками заполняет диэлектрик. Емкость сферического конденсатора вычисляют как:

где – радиусы обкладок конденсатора. Если , то можно считать, что , тогда, мы имеем:

так как – площадь поверхности сферы, и если обозначить , то получим формулу для емкости плоского конденсатора (3). Если расстояние между обкладками сферического и цилиндрического конденсаторов малы (в сравнении с их радиусами), то в приближенных расчетах используют формулу емкости для плоского конденсатора.

Электрическую емкость для линии из двух проводов находят как:

где d – расстояние между осями проводов; R – радиус проводов; l – длина линии.

Формулы для вычисления электрической емкости соединений конденсаторов

Если конденсаторы соединены параллельно, то суммарная емкость батареи (C) находится как сумма емкостей отдельных конденсаторов ():

При последовательном соединении конденсаторов емкость батареи вычисляют как:

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи найдем как:

Сопротивление конденсатора

Если конденсатор включен в цепь с постоянного тока, то сопротивление конденсатора можно считать бесконечно большим.

При включении конденсатора в цепь переменного тока, его сопротивление носит название емкостного, и вычисляют его с помощью формулы:

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Энергия поля конденсатора

Электрическое поле локализованное между пластинами конденсатора обладает энергией, которую можно вычислить при помощи формулы:

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

Определение электроёмкости. Электроёмкость плоского конденсатора, проводящего шара. Формулы

Для заряженного тела или заряженной системы вводят параметр, характеризующий способность тела накапливать заряд, — электроёмкость. Стандартное обозначение — 

, единица измерения —  = Ф (Фарад). Электроёмкость численно равна отношению заряда тела/системы к потенциалу этого тела/системы. Для неизменной системы данный параметр является постоянным.

Формульно:

(1)

Рассчитаем в качестве примера электроёмкость шара радиуса 

.

Исходя из рассмотренного ранее потенциала шара:

(2)

Подставим (2) в (1):

(3)

Формула (3) представляет собой математический способ нахождения электроёмкости проводящего шара.

Ещё одной системой, в которой можно достаточно просто рассчитать электроёмкость, является плоский конденсатор. Для расчёта электроёмкости такой системы воспользуемся (1), знаниями о связи напряжённости электростатического поля и потенциала электростатического поля (4) и напряжённостью электростатического поля между двумя параллельными пластинами (5).

(4)

  • где
    • — напряжённость электростатического поля,
    • — расстояние между взаимодействующими телами.

(5)

  • где
    • — заряд пластины (обкладки конденсатора),
    • — площадь пластин конденсатора.

Тогда:

(6)

Выражение (6) является соотношением для поиска электроёмкости плоского конденсатора.

Вывод: Таким образом, задачи на поиск электроёмкости системы сводятся или к определению электроёмкости (1), или к рассмотрению конкретной системы: шар (3), плоский конденсатор (6).

Источник: https://yato-tools.ru/raznoe/formula-elektroemkosti-formula-elektroemkosti-kondensatora.html

Электроёмкость. Конденсаторы

Мы уже узнали, что в проводнике, помещенном в электрическое поле, происходит перераспределение зарядов до тех пор, пока внешнее поле внутри проводника не скомпенсируется собственным полем разделенных зарядов. Все заряды размещаются на внешней поверхности проводника, которая является эквипотенциальной. Потенциал любой точки этой поверхности считается потенциалом всего проводника.

Выясним, как будет меняться потенциал проводника при изменении его заряда. Возьмем проводник (например, металлический шар), изолированный от земли и других проводников, и, не меняя его положение относительно других проводников, будем его электризовать (увеличивать заряд). С помощью электрометра можно измерять соответствующие значения потенциала проводника.

Во сколько раз увеличивается заряд шара, во столько же возрастает его потенциал, то есть заряд проводника прямо пропорционален потенциалу, q ~ φ. Вводя коэффициент пропорциональности, получаем q = Cφ, где С — коэффициент пропорциональности, постоянный для условий данного опыта. Если мы заменим проводник другим (например, шаром больших размеров) или изменим внешние условия опыта, то значение коэффициента С будет другим.

Этот коэффициент пропорциональности называют емкостью (или электроемкость) проводника.

Электрометр, или электростатический вольтметр — прибор для измерения потенциала заряженного проводника относительно Земли или в отношении другого заряженного проводника.

Электроемкость С — скалярная физическая величина, характеризующая способность проводников накапливать и удерживать определенный электрический заряд. Она измеряется отношением заряда q, который предоставили изолированному проводнику, к его потенциалу φ,

Единица электроемкости — фарад, 1 Ф.

Электроемкость проводника правильной формы можно рассчитать. Например, вычислим емкость отдельной ведущей шара радиусом r. Потенциал заряженного шара

подставляя это выражение в формулу для емкости, получаем: C = 4πε0εr.

Следует отметить, что емкость 1 Ф очень большая. Так, с помощью последней формулы можно показать, что в вакууме электроемкость в 1 Ф имеет шар радиусом 9 · 109 м (что в 23 раза больше расстояния от Земли до Луны). Емкость Земли, радиус которой 6,4 · 106 м, равна 7 · 10 -4 Ф.

Поэтому на практике чаще всего используют микро- и пикофарадами: 1 мкФ = 10-6 Ф, 1 пФ = 10-12 Ф.

Опыты показывают, что емкость проводника зависит от его размеров и формы. Однако она не зависит от материала, агрегатного состояния, формы и размеров полости внутри проводника (объясните самостоятельно почему). Выясним условия, от которых зависит электроемкость проводника.

Поскольку проводник электризуется через внешнее влияние, электроемкость проводника должно зависеть от размещения вблизи него других проводников и от окружающей среды. Покажем это на опыте. Возьмем два металлические диски, закрепленные на подставках из диэлектрика.

Диск А соединим с электрометром, корпус которого заземлен, а диск В отодвинем от диска А. наэлектризует диск А, предоставив ему заряд, который в дальнейшем не будет меняться. Определив значение потенциала диска А по показаниям электрометра, начнем приближать к нему диск В, одновременно наблюдая за стрелкой прибора.

Оказывается, что потенциал диска А при этом уменьшается.

Еще резче уменьшение потенциала диска А можно наблюдать, если заземлить диск В. Принимая во внимание, что заряд на диске А при этом не меняется, делаем вывод, что уменьшение потенциала обусловлено увеличением электроемкости системы дисков. Заменив воздух между дисками другим диэлектриком, снова заметим увеличение электроемкости системы дисков.

Заземление предметов — это соединение их с землей (проводником) с помощью металлических листов, закопанных в землю, водопроводных труб и тому подобное.

Результаты опытов можно объяснить так. Когда диск В попадает в поле диска А, он электризуется и создает свое поле. Если соединить диск В с землей, на нем останутся только заряды противоположного знака по сравнению с зарядами на диске А.

Это усиливает поле диска В, которое еще больше уменьшает потенциал диска А. Если внести между диски диэлектрик, то он поляризуется.

Поляризационные заряды, расположенные вблизи поверхности диска А, компенсируют часть его заряда, следовательно, электроемкость диска возрастает.

Конденсатор. Электроемкость плоского конденсатора

Рассмотренная система проводников является основой для устройств, которые называют конденсаторами. Конденсаторы широко используют в радиотехнике как устройства для накопления и удержания электрического заряда.

Самый простой конденсатор состоит из двух или более разноименно заряженных и разделенных диэлектриком проводников, которые называют обкладками конденсатора. Последние имеют одинаковые по абсолютному значению разноименные заряды и размещены относительно друг друга так, что поле в этой системе сконцентрировано в ограниченном пространстве между обкладками.

Диэлектрик между обкладками играет двойную роль: во-первых, он увеличивает электроемкость, во-вторых — не дает зарядам нейтрализоваться. Поэтому диэлектрическая проницаемость и электрическая прочность на пробой (пробой диэлектрика означает, что он становится проводником) должны быть достаточно большими.

Чтобы защитить конденсатор от механических внешних воздействий, его помещают в корпус.

Накопление зарядов на обкладках конденсатора называют его зарядкой. Чтобы зарядить конденсатор, его обкладки присоединяют к полюсам источника напряжения, например, к полюсам батареи аккумуляторов. Можно также соединить одну обкладку с полюсом батареи, второй полюс которой заземлен, а вторую обкладку конденсатора тоже заземлить. Тогда на заземленной обкладке останется заряд, противоположный по знаку, а по модулю он будет равен заряду другой обкладки. Такой же по модулю заряд уйдет в землю.

Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок. Он прямо пропорционален разности потенциалов (напряжению) между обкладками конденсатора. В таком случае емкость конденсатора (в отличие от отдельного проводника) определяется по формуле

По форме обкладок конденсаторы бывают плоские, цилиндрические и сферические. Как диэлектрик в них используют парафиновый бумагу, слюду, воздух, пластмассы, керамику и тому подобное. Типичный плоский конденсатор состоит из двух металлических пластин площадью S, пространство между которыми разделено диэлектриком толщиной d.

Выведем формулу для емкости плоского конденсатора. Учитывая, что

подставим в эту формулу выражение U = Ed, где Е — напряженность поля, создаваемого двумя пластинами,

В результате получим:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади перекрытия пластин и относительной диэлектрической проницаемости диэлектрика и обратно пропорциональна расстоянию между пластинами. Из формулы следует, что, уменьшая толщину диэлектрика между пластинами или увеличивая площадь перекрытия пластин, можно получить конденсатор большей емкости.

Соответственно можно вывести формулы для емкости конденсаторов других форм. Так, емкость сферического конденсатора вычисляется по формуле

где r и R- радиус внутренней и внешней сфер (в случае обособленной шара, когда R = ∞, имеем: C = 4пε 0 εr).

Соединение конденсаторов

Во многих случаях, чтобы создать нужную электроемкость, конденсаторы соединяют в группу, которая называется батареей.

Последовательным называют такое соединение конденсаторов, при котором отрицательно заряженная обкладка предварительного конденсатора соединена с положительно заряженной обкладкой следующего. В случае последовательного соединения на всех обкладках конденсаторов будут одинаковые по модулю заряды, соответственно одинаковыми будут и потенциалы обкладок, соединенных между собой проводниками.

Учтя это, выведем формулу для вычисления электроемкости батареи последовательно соединенных конденсаторов. Напряжение на батарее U бы равна сумме напряжений на последовательно соединенных конденсаторах, действительно (φ 1 — φ 2 ) + (φ 2 — φ 3 ) + + (φ n -1 — φ n ) = φ 1 — φ n или U 1 + U 2 + + U n = U бы . Использовав соотношение q = CU, получим

Сократив на q, получим

Следовательно, для последовательного соединение электроемкость батареи меньше наименьшей из электроемкости отдельных конденсаторов.

Параллельным называется соединение конденсаторов, при котором все положительно заряженные обкладки присоединены к одному проводнику, а отрицательно заряженные — к другому.

 В этом случае напряжения на всех конденсаторах одинаковы и равны U, а заряд на батареи равна сумме зарядов на отдельных конденсаторах, q б = q 1 + q 2 + + q n , откуда C бы U = C 1 U + C 2 U + + C n U. После сокращения получаем формулу для вычисления электроемкости батареи параллельно соединенных конденсаторов, С б = C 1 + C 2 + + C n.

ЭТО ИНТЕРЕСНО:  Как правильно варить сваркой

 Для параллельного соединения электроемкость батареи больше, чем самая большая из электроемкости отдельных конденсаторов (равна сумме емкостей всех конденсаторов).

Энергия заряженного конденсатора. Как и любая система заряженных тел, конденсатор обладает энергией. Для того чтобы зарядить конденсатор, нужно выполнить работу, затрачиваемое на разделение положительных и отрицательных зарядов. Согласно закону сохранения энергии, эта работа равна энергии конденсатора A = W эл .

Как известно, работа сил электрического поля по перемещению заряда на определенное расстояние равно A = qU, если напряжение постоянное (U = const). В случае подзарядки конденсатора напряжение на его обкладках растет от нуля до U, и, вычисляя работу поля, в этом случае нужно использовать ее среднее значение

соответственно энергия заряженного конденсатора

Поскольку q = CU, то получим еще две формулы для вычисления энергии конденсатора:

Источник: https://www.polnaja-jenciklopedija.ru/nauka-i-tehnika/elektroyomkost-kondensatory.html

Рассчитать электроемкость цилиндрического конденсатора

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало  наличие в исходных  данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах.  Их приходилось переводить в Фарады,  что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал.  Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак  не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик.

 Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания.

Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере  «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал  развития  конденсаторов до  конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой  тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в  метры, фарады и т.д. Достаточно обозначить размерность данных. 

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам  переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя. 

Это стало возможно с созданием бота Система единиц измерения онлайн

Плоский конденсатор. Параметры

Полученные характеристики плоского конденсатора

Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).

Ёмкость такого сооружения определяется следующей формулой.

где ε0 = 8,85.10-12 Ф/м — абсолютная диэлектрическая проницаемость

Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого «слоёного» конденсатора составит

Еще интереснее выглядит формуа такого «слоёного» конденсатора,  если в слоях находятся разные диэлектрики , разной толщины d

S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)

d- расстояние между обкладками

С- ёмкость конденсатора

Рассмотрим примеры

Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?

Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять

Получаем  вот такой ответ

Полученные характеристики плоского конденсатора
d = 1 милиметр  e = 1.00059  C = 350 нанофарад S = 39.524703024086 м2 

Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.

Цилиндрический  КОНДЕНСАТОР

Полученные характеристики цилиндрического конденсатора

Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком

Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.

 

Источник: https://1000eletric.com/rasschitat-elektroemkost-tsilindricheskogo-kondensatora/

Электроемкость плоского конденсатора

> Теория > Электроемкость плоского конденсатора

Один из самых распространённых электронных элементов – конденсатор. В разговоре такие элементы называют «ёмкость». Простейшая конструкция для изготовления и расчетов – плоский конденсатор.

Что такое плоский конденсатор

Это понятие относится к конструкции, состоящей из двух пластин, параллельных друг другу. Расстояние между ними должно быть во много раз больше размеров самих пластин. В этом случае краевыми эффектами можно пренебречь. В противном случае эти эффекты приобретают большое значение, а формулы для расчета ёмкости становятся слишком сложными.

Важно! Другое название этих пластин – обкладки.

Каждый из электродов создаёт вокруг себя электрическое поле одинаковой величины и противоположной направленности: в обкладке, заряженной положительно, q+, а в отрицательной – q-.

В плоском конденсаторе электрическое поле находится между обкладками и является однородным. Напряжённость его рассчитывается по формуле:

E∑=qεε0*S, где:

  • q − заряд электродов;
  • S − площадь обкладок;
  • ε − диэлектрическая проницаемость материала между ними – параметр, определяющий, во сколько раз сильнее влияние зарядов друг на друга, чем в вакууме;
  • Фмε0=8,85*10−12 Ф/м − электрическая постоянная.

Поле плоского конденсатора

От чего зависит электроемкость конденсатора

Емкость конденсатора: формула

Для расчета ёмкости применяется формула:

C=ε*ε0*Sd, где:

  • S − площадь обкладок;
  • d − расстояние между ними;
  • Фмε0=8,85*10−12 Ф/м − электрическая постоянная;
  • ε − диэлектрическая проницаемость изоляционного материала, находящегося между электродами.

Таким образом, ёмкость зависит от площади обкладок, расстояния между ними и диэлектрической проницаемости изоляционного материала.

Электроёмкость плоского конденсатора

Для уменьшения габаритов «сэндвич» из плоских электродов с изолятором между ними сворачивается в рулон. При условии, что толщина изолятора во много раз меньше радиуса цилиндра, последним можно пренебречь.

Ещё один путь увеличения ёмкости – уменьшение расстояния между обкладками, при этом падает электрическая прочность – напряжение, при котором происходит пробой конденсатора, и он выходит из строя.

Интересно. В новом типе конденсаторов – ионисторах в качестве обкладок используется активированный уголь или графен, пористая структура которых позволяет многократно увеличить ёмкость элементов (до нескольких фарад).

Заряд и разряд конденсаторов

Носителями заряда в металлах являются свободные электроны. При подключении устройства к источнику напряжения: батарейке, аккумулятору или сети, электроны из обкладки, подключённой к положительному полюсу батареи, устремятся в источник питания, и обкладка зарядится положительно. В обкладку, подключённую к отрицательному полюсу, начнут поступать электроны. Этот процесс изображён на рисунке ниже.

При этом растёт напряжённость электрического поля в устройстве между электродами и напряжение на устройстве. Этот процесс закончится, когда напряжение между выводами элемента станет равным напряжению сети. При этом внутри него будет запасено некоторое количество энергии, которое рассчитывается по формуле:

E = (U²* C)/2, где:

  • E – энергия (Дж);
  • U – напряжение (В);
  • C – ёмкость (мкФ).

При подключении аппарата в цепь нагрузки избыточные электроны из отрицательного вывода через нагрузку начнут поступать в положительный вывод. Это движение закончится при уравнивании потенциалов между выводами.

Этот процесс не может произойти мгновенно, что позволяет использовать конденсаторы в качестве фильтра, сглаживающего пульсации напряжения в сети.

Важно! Заряженный конденсатор не пропускает постоянный ток, так как диэлектрик между его обкладками размыкает цепь.

Расчёт ёмкости плоских конденсаторов

Расчет емкости конденсатора

Ёмкость идеального устройства, в котором между пластинами находится воздух, можно вычислить по формуле:

Cо=Q/U, где:

  • Cо – ёмкость;
  • Q – заряд на одном из пластин устройства;
  • U – разность потенциалов или напряжение между выводами.

Этот параметр зависит только от напряжения и накопленного заряда, но они меняются при изменениях расстояния между обкладками и типа диэлектрика между ними. Это учтено в формуле:

С=Co*ε, где:

  • С – реальная ёмкость;
  • Со – идеальная;
  • ε – диэлектрическая проницаемость изоляционного материала.

Единица ёмкости – 1 фарад (1Ф, 1F). Есть также меньшие величины:

  • Микрофарады (1мкФ, 1mkF). 1000000mkF=1F;
  • Пикофарады (1пФ, 1pF). 1000000pF=1mkF.

Допустимое напряжение

Кроме ёмкости, важный параметр, влияющий на применение элемента и его габариты, – допустимое напряжение. Это величина разности потенциалов на выводах устройства, при превышении которой произойдёт электрический пробой диэлектрика между обкладками, короткое замыкание внутри конструкции и выход её из строя.

Расчёт последовательного соединения

При этом виде соединения заряды на всех обкладках одинаковы:

Q1=Q2==Qn.

Это происходит потому, что напряжение источника питания подаётся только на внешние вывода крайних элементов. При этом происходит перенос заряда с одного электрода на другой.

Напряжение при этом распределяется обратно пропорционально ёмкости:

U1 = Q/C1, U2 = Q/C2,,Un=Q/Cn.

Итоговое напряжение равно напряжению сети:

Uсет=U1+U2++Un.

Эквивалентная ёмкость определяется по формулам:

  • С=Q/U=Q/(U1+U2++Un),
  • С=1/С1+1/С2++1/Cn,
  • или сложением проводимостей.

Справка. Проводимость – это величина, обратная сопротивлению.

Расчёт параллельного соединения

При параллельном соединении обкладки элементов попарно соединяются между собой. Напряжение на всех устройствах равно между собой, а заряды отличаются в зависимости от ёмкости:

Q1=C1U, Q2=C2U,Qn=CnU.

Общий заряд системы равен общей сумме на всех элементах:

Q=Q1+Q2++Qn,

а общая ёмкость равна общей для всех устройств:

C=Q/U=(Q1+Q2++Qn)/U=C1+C2+Cn.

Как проверить емкость конденсатора

При отсутствии маркировки на корпусе устройства или сомнении в его исправности определение емкости конденсатора производится мультиметром, у которого есть соответствующие функции, или обычным вольтметром и амперметром.

Проверка путём измерения времени зарядки

При подключении ёмкостного элемента к сети постоянного тока через сопротивление напряжение на его выводах растёт по экспоненциальному графику и за период времени 3R*C станет равным 95% U сети.

Соответственно, зная номинал резистора, параметры конденсатора определяются по формуле:

C=(0,95U)/(3R).

Номинал резистора зависит от ожидаемых параметров измеряемого элемента и определяется опытным путём.

Время зарядки конденсатора

Важно! Этим способом можно определить емкость конденсатора от 0,25мкФ и выше.

Измерение ёмкостного сопротивления

Кроме определения времени заряда, можно узнать ёмкостное сопротивление. Оно зависит от частоты напряжения на выводах прибора:

Xc=1/2*π*f*C, где:

  • Xc – ёмкостное сопротивление;
  • π – число «пи» (3,14);
  • f – частота сети (в розетке 50Гц);
  • С – ёмкость конденсатора.

Подключив конденсатор к сети, определить Хс можно двумя способами:

  • зная напряжение сети и ток, текущий в ней по закону Ома:

R=U/R.

  • подключить последовательно с измеряемым элементом резистор 10 кОм, измерить напряжение на всех деталях, и по формуле Xc=(Ur*Uc)/R определяется ёмкостное сопротивление.

Проверка исправности тестером

Если необходимо проверить исправность электронного прибора, но нет возможности производить длительные измерения, то это можно сделать тестером или светодиодной прозвонкой. Для этого необходимо подключить тестер к выводам. На исправном устройстве во время зарядки тестер покажет цепь, а после её завершения – обрыв. При изменении полярности время заряда увеличивается вдвое.

Знание того, как рассчитывается и проверяется ёмкость плоского конденсатора, необходимо при проектировании и ремонте электроприборов и электронной техники.

Источник: https://elquanta.ru/teoriya/ehlektroemkost-ploskogo-kondensatora.html

Электроемкость. Конденсаторы

Если у нас есть два проводника, изолированных друг от друга, которым мы сообщаем некоторые заряды (обозначим их соответственно q1 и q2), то между ними возникнет определенная разность потенциалов. Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую разность Δφ. Если мы говорим о разности, возникающей в электрическом поле между двумя точками, то ее обычно обозначают U.

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

Определение 1

Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника (q) к разности потенциалов между этими двумя проводниками.

В виде формулы это записывается так: C=q∆φ=qU.

Для измерения электрической емкости применяется единица, называемая фарад. Она обозначается буквой Ф.

1Φ=1 Кл1 В.

Конфигурации и размеры проводников, а также свойства диэлектрика определяют величину электроемкости заданной системы. Наибольший интерес для нас представляют проводники особой формы, называемые конденсаторами.

Определение 2

Конденсатор – это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

Определение 3

Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии друг от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый плоским. При его работе электрическое поле будет располагаться преимущественно в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

Определение 4

Часть электрического поля вблизи конденсатора называется полем рассеяния.

Иногда в задачах мы можем не учитывать его и работать только с той частью электрического поля, которое расположено между обкладками. Однако пренебрегать полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за нарушения потенциального характера электрического поля.

Рисунок 1.6.1. Электрическое поле в плоском конденсаторе.

Рисунок 1.6.2. Электрическое поле конденсатора без учета поля рассеяния, не обладающее потенциальностью.

Модуль напряженности электрического поля, которое создает каждая обкладка в плоском конденсаторе, выражается соотношением следующего вида:

E1=σ2ε0.

Исходя из принципа суперпозиции, можно утверждать, что напряженность E→ поля, которое создают обе пластины конденсатора, будет равна сумме напряженностей E+→ и E-→ полей каждой пластины, то есть E→=E+→+E-→.

Векторы напряженностей обеих пластин во внутренней части конденсатора будут параллельны друг другу. Значит, мы можем выразить модуль напряженности их суммарного поля в виде формулы E=2E1=σε0.

Опиши задание

Как рассчитать электроемкость конденсатора

Вне пластин векторы напряженности будут направлены в противоположные друг от друга стороны, значит, E будет равно нулю. Если мы обозначим заряд каждой обкладки как q, а ее площадь как S, то соотношение qS даст нам представление о поверхностной плотности.

ЭТО ИНТЕРЕСНО:  Какой ток для зарядки автомобильного аккумулятора

Умножив E на расстояние между обкладками (d), мы получим разность потенциалов между пластинами в однородном электрическом поле. Теперь возьмем оба этих соотношения и выведем из них формулу, по которой может быть рассчитана электрическая емкость конденсатора.

C=q∆φ=σ·SE·d=ε0Sd.

Определение 5

Электрическая емкость плоского конденсатора – величина, обратно пропорциональная расстоянию между обкладками и прямо пропорциональная их площади.

Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Определение 6

Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

C=εε0Sd.

Данная формула называется формулой электроемкости плоского конденсатора.

Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

Определение 7

Сферическим конденсатором называется система из 2-х концентрических сфер, сделанных из проводящего материала, радиусы которых равны R1 и R2 соответственно.

Определение 8

Цилиндрическим конденсатором называется системы из двух проводников цилиндрической формы, длина которых равна L, а радиусы R1 и R2.

Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которым можно найти электрическую емкость конденсаторов:

  • C=4πε0εR1R2R2-R1(сферический конденсатор),
  • C=2πε0εLlnR2R1(цилиндрический конденсатор).

Как рассчитать электроемкость батареи конденсаторов

Определение 9

Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей.

Способы соединения могут быть разными. Если соединение будет параллельным, то напряжение всех конденсаторов в системе будет одинаково: U1=U2 =U, а заряды можно найти по формулам q1=С1U и q2=C2U. При таком соединении вся система может считаться одним конденсатором, электроемкость которого равна C, заряд – q=q1+q2, а напряжение – U. В виде формулы это выглядит так:

С=q1+q2U или C=C1+C2

Определение 10

Если в батарее конденсаторов элементы соединены параллельно, то для нахождения общей электроемкости нам нужно сложить емкости ее отдельных элементов.

Рисунок 1.6.3. Конденсаторы, соединенные параллельно. C=C1+C2

Рисунок 1.6.4. Конденсаторы, соединенные последовательно: 1C=1C1+1C2

Если же батарея состоит из двух последовательно соединенных конденсаторов, то заряды обоих будут одинаковы: q1=q2=q. Найти их напряжения можно так: U1=qC1 и U2=qC2. Такую систему тоже можно считать одним конденсатором, заряд которого равен q, а напряжение U=U1+U2.

C=qU1+U2 или 1C=1C1+1C2

Определение 11

Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости нам нужно сложить величины, обратные емкостям каждого из них.

Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

Рисунок 1.6.5. Смоделированное электрическое поле плоского конденсатора.

Источник: https://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/elektroemkost-kondensatory/

Электроемкость проводников и конденсаторов

Уединеннымназывается проводник, вблизи которогонет других заряженных тел, диэлектриков,которые могли бы повлиять на распределениезарядов данного проводника.

Отношение величинызаряда к потенциалу для конкретногопроводника есть величина постоянная,называемая электроемкостью(емкостью)С:

.

Электроемкостьуединенного проводника численно равназаряду, который необходимо сообщитьпроводнику, чтобы изменить его потенциална единицу.За единицу емкостипринимается 1 фарад (Ф) – 1 Ф.

Емкость шара =4εε0R.

Устройства,обладающие способностью накапливатьзначительные заряды, называютсяконденсаторами.Конденсатор состоитиз двух проводников, разделенныхдиэлектриком. Электрическое полесосредоточено между обкладками, асвязанные заряды диэлектрика ослабляютего, т.е. понижают потенциал, что приводитк большему накоплению зарядов напластинах конденсатора. Емкость плоскогоконденсатора численно равна.

Дляварьирования значений электроемкостиконденсаторы соединяют в батареи. Приэтом используется их параллельное ипоследовательное соединения.

При параллельномсоединении конденсаторовразностьпотенциалов на обкладках всех конденсатороводинакова и равна (φA– φB). Общий зарядконденсаторов равен

Полнаяемкость батареи (рис.28) равнасумме емкостей всех конденсаторов;конденсаторы включаются параллельно,когда требуется увеличить емкость и,следовательно, накапливаемый заряд.

При последовательномсоединении конденсаторов общий зарядравен зарядам отдельных конденсаторов,а общая разность потенциалов равна(рис.29)

,,.

Отсюда.

Припоследовательном соединении конденсаторовобратная величина результирующейемкости равна сумме обратных величинемкостей всех конденсаторов. Результирующаяемкость получается всегда меньшенаименьшей емкости, используемой вбатарее.

Энергия заряженного уединенного проводника, конденсатора. Энергия электростатического поля

Энергия заряженногопроводника численно равна работе,которую должны совершить внешние силыдля его зарядки: W=A. При перенесениизарядаdqиз бесконечности на проводник совершаетсяработаdAпротив сил электростатического поля(по преодолению кулоновских силотталкивания между одноименнымизарядами):dA=jdq=Cjdj.

Чтобызарядить тело от нулевого потенциаладо потенциала j,потребуется работа

.

Итак,энергия заряженного проводника:

.

Выражениепринято называтьсобственной энергиейзаряженного проводника. Энергиязаряженного плоского конденсатора:

,

гдеDj– разность потенциаловего обкладок.

Энергияэлектростатического поля ,

Объемнаяплотность энергии, т.е. энергия единицыобъема

ω= W/V:.

Типы диэлектриков. Поляризация диэлектриков

Вдиэлектрике молекулы нейтральные, т.е.сумма всех положительных зарядов равнасумме всех отрицательных зарядов.

Еслизаменить положительные заряды ядермолекул суммарным положительным зарядом,находящимся в центре тяжести положительныхзарядов, и заряд всех электронов –суммарным отрицательным зарядом,находящимся в центре тяжести отрицательныхзарядов, то молекулу можно рассматриватькакэлектрический дипольсэлектрическим моментом.

Диполь– система двух разноименных, одинаковыхпо величине зарядов, расположенных нанекотором расстоянии,называемом плечом диполя.

Внесениедиэлектриков во внешнее электрическоеполе приводит к возникновению отличногоот нуля результирующего электрическогомомента диэлектрика. Это явлениеназывается поляризацией.

Различаюттри вида диэлектриков:

1. К первой группеотносятся вещества (Н2, О2,С2), в молекулах которых центрытяжести положительных и отрицательныхзарядов молекул совпадают. Такиедиэлектрики называютсянеполярными.Под действием электрического полязаряды неполярных молекул смещаются,и молекула приобретает дипольный моментв результате деформации электронныхорбит. Этому типу соответствуетэлектронная,илидеформационная,поляризация.

2. Вторая группадиэлектриков (Н2О,SО2,СО) представляет собой вещества, молекулыкоторых имеют асимметричное строение,центры тяжести положительных иотрицательных зарядов молекул несовпадают. Такие молекулы называютполярными.

В целом диэлектрик необладает дипольным моментом вследствиетеплового движения частиц.

При внесениитаких диэлектриков во внешнее электрическоеполе молекулы, обладающие дипольныммоментом, испытываюториентационнуюилидипольную поляризацию(положительные заряды диполя ориентируютсяпо направлению вектора,отрицательные – против поля).

3. К третьей группеотносятся (NaCl,KCl,KBr) вещества, имеющиеионное строение. Ионные кристаллыпредставляют собой пространственныерешетки с правильным чередованием ионовразных знаков.

В кристаллах нельзярассматривать одну молекулу, а необходиморассматривать кристалл как системудвух вдвинутых одна в другую подрешеток.При внесении во внешнее электрическоеполе с напряженностьюданная группа диэлектриков испытываетсмещение ионных подрешеток, и возникаетдипольный момент.

Положительные ионыориентируются вдоль поля, отрицательные– против поля. Такая поляризацияназываетсяионной.

Особыйкласс диэлектриков составляютсегнетоэлектрики, молекулы которыхобладают дипольным моментом в отсутствиевнешнего электрического поля. Они имеютмозаичное строение и состоят из доменов– областей, обладающих дипольныммоментом.

В целом образец не обладаетдипольным моментом вследствие тепловогодвижения частиц. При внесении во внешнееэлектрическое поле их поляризованностьзависит от,и наблюдается гистерезис – нелинейнаязависимостьот.

https://www.youtube.com/watch?v=fhCnpBhVauY

При температуре,называемой точкой Кюри, сегнетоэлектриктеряет свои особые свойства.

Источник: https://studfile.net/preview/6179861/page:13/

Определение энергоемкости плоских конденсаторов: от чего зависит энергоемкость — Искра Газ

Электроемкость конденсатора — это его способность накапливать электрический заряд. Формула электроемкости следующая.

C=q/U

Измеряется эта величина в фарадах. Как правило, емкость элемента очень мала и измеряется в пикофарадах.

В задачах часто спрашивается, как изменится электроемкость конденсатора, если увеличить заряд или напряжение. Это вопрос с подвохом. Проведем другую аналогию.

Представьте, что речь идет про обычную банку, а не конденсатор. Например, у вас она трехлитровая. Аналогичный вопрос: что произойдет со вместимостью банки, если туда налить 4 литра воды? Разумеется, вода просто выльется, но при этом размеры банки никак не изменятся.

То же самое с конденсаторами. Заряд и напряжение никак не влияют на емкость. Этот параметр зависит только от реальных физических размеров.

Формула будет следующей

  • Только эти параметры влияют на реальную электроемкость конденсатора.
  • На любом конденсаторе есть маркировка с техническими параметрами.

Разобраться несложно. Достаточно минимальных знаний по электричеству.

Виды конденсаторов

Существует огромное количество конденсаторов. Они отличаются как по размеру, так и по форме.

Разумеется, емкость вычисляется у всех по-разному.

Сферический конденсатор

Здесь также большое значение имеет, какой диэлектрик или материал помещен внутрь. Так как деталь имеет размер сферы, ее емкость зависит от радиуса.

Цилиндрический конденсатор

В случае с цилиндрической формой, кроме среды внутри, значение имеют радиусы и длина цилиндра.

Повреждения в конденсаторах

Подумайте, как изменится электроемкость плоского конденсатора, если на нем будут повреждения? Существуют различные сбои, которые могут повлиять на работоспособность конденсаторов.

Например, они рассыхаются или вздуваются. После этого они становятся непригодными для нормальной работы устройства, куда установлены.

Рассмотрим примеры повреждений и выхода из строя конденсаторов. Вздуться могут все сразу.

Иногда из строя выходят только несколько. Такое бывает, когда конденсаторы разных параметров или качества.

  1. Наглядный пример порчи (вздутие, разрыв и выход наружу содержимого).

Если вы увидите вот такие ленты, это крайняя степень повреждения. Хуже и быть не может.

Если вы заметите на устройстве (например на видеокарте в компьютере) такие вздутые конденсаторы, это повод задуматься о замене детали.

Подобные проблемы можно устранить только заменой на аналогичную деталь. У вас должны совпадать все параметры один в один. Иначе работа может быть некорректной или очень кратковременной.

Менять конденсаторы нужно аккуратно, не повредив платы. Выпаивать нужно быстро, не допуская перегрева. Если вы не умеете этого делать, лучше отнесите деталь в ремонт.

Основной причиной разрушения является перегрев, который возникает в случае старения или большого сопротивления в цепи.

Рекомендуется не затягивать с ремонтом. Поскольку у поврежденных конденсаторов изменяется емкость, устройство, где они расположены, будет работать с отклонением от нормы. И со временем это может стать причиной выхода из строя.

Если у вас на видеокарте вздулись конденсаторы, то их своевременная замена может исправить ситуацию. В противном случае может сгореть микросхема или что-то еще. В таком случае ремонт будет стоить очень дорого или вовсе окажется невозможным.

Меры предосторожности

Выше был приведен пример с банкой воды. Там говорилось, что если воды налить больше, то воды выльется. А теперь подумайте, куда могут «вылиться» электроны в конденсаторе? Ведь он запечатан полностью!

Если вы подадите в цепи больше тока, чем тот, на который рассчитан конденсатор, то как только он зарядится, его излишек попытается выйти куда-то. А пространства свободного нет. Результатом будет взрыв. В случае незначительного превышения заряда хлопок будет небольшой. Но если подать колоссальное количество электронов на конденсатор, его просто разорвет, и диэлектрик вытечет.

Будьте аккуратны!

Источник: https://istra-gaz.ru/osveshhenie/opredelenie-energoemkosti-ploskih-kondensatorov-ot-chego-zavisit-energoemkost.html

Статьи по теме электрика. Физика. Электрическая емкость. Плоский конденсатор. Соединения конденсаторов

При сообщении проводнику заряда всегда существует некоторый предел, более которого зарядить тело не удастся. Для характеристики способности тела накапливать электрический заряд вводят понятие электрической емкости. Емкостью уединенного проводника называют отношение его заряда к потенциалу:

В системе СИ емкость измеряется в Фарадах [Ф]. 1 Фарад – чрезвычайно большая емкость. Для сравнения, емкость всего земного шара значительно меньше одного фарада. Емкость проводника не зависит ни от его заряда, ни от потенциала тела. Аналогично, плотность не зависит ни от массы, ни от объема тела. Емкость зависит лишь от формы тела, его размеров и свойств окружающей его среды.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

Величина электроемкости проводников зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами.

Каждая из заряженных пластин плоского конденсатора создает вблизи своей поверхности электрическое поле, модуль напряженности которого выражается соотношением уже приводившимся выше. Тогда модуль напряженности итогового поля внутри конденсатора, создаваемого двумя пластинами, равен:

За пределами конденсатора, электрические поля двух пластин направлены в разные стороны, и поэтому результирующее электростатическое поле E = 0. Электроёмкость плоского конденсатора может быть рассчитана по формуле:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Обратите внимание, что S в этой формуле есть площадь только одной обкладки конденсатора. Когда в задаче говорят о «площади обкладок», то имеют в виду именно эту величину. На 2 умножать или делить её не надо никогда.

Еще раз приведем формулу для заряда конденсатора. Под зарядом конденсатора понимают только заряд его положительной обкладки:

Сила притяжения пластин конденсатора. Сила, действующая на каждую обкладку, определяется не полным полем конденсатора, а полем, созданным противоположной обкладкой (сама на себя обкладка не действует). Напряженность этого поля равна половине напряженности полного поля, и сила взаимодействия пластин:

Энергия конденсатора. Ее же называют энергией электрического поля внутри конденсатора. Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор. Существует три эквивалентные формы записи формулы для энергии конденсатора (они следуют одна из другой если воспользоваться соотношением q = CU):

Особое внимание обращайте на фразу: «Конденсатор подключён к источнику». Это означает, что напряжение на конденсаторе не изменяется. А фраза «Конденсатор зарядили и отключили от источника» означает, что заряд конденсатора не изменится.

Энергия электрического поля

Электрическую энергию следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.

Энергия заряженных тел сосредоточена в пространстве, в котором есть электрическое поле, т.е. можно говорить об энергии электрического поля. Например, у конденсатора энергия сосредоточена в пространстве между его обкладками. Таким образом, имеет смысл ввести новую физическую характеристику – объёмную плотность энергии электрического поля.

На примере плоского конденсатора, можно получить такую формулу для объёмной плотности энергии (или энергии единицы объёма электрического поля):

Соединения конденсаторов

Параллельное соединение конденсаторов – для увеличения ёмкости. Конденсаторы соединены одноименно заряженными обкладками, как бы увеличивая площадь одинаково заряженных пластин. Напряжение на всех конденсаторах одинаковое, общий заряд равен сумме зарядов каждого из конденсаторов, и общая ёмкость также равна сумме емкостей всех конденсаторов соединенных параллельно. Выпишем формулы для параллельного соединения конденсаторов:

При последовательном соединении конденсаторов общая ёмкость батареи конденсаторов всегда меньше, чем ёмкость наименьшего конденсатора, входящего в батарею. Применяется последовательное соединение для увеличения напряжения пробоя конденсаторов. Выпишем формулы для последовательного соединения конденсаторов. Общая емкость последовательно соединенных конденсаторов находится из соотношения:

Из закона сохранения заряда следует, что заряды на соседних обкладках равны:

Напряжение равно сумме напряжений на отдельных конденсаторах.

Для двух последовательно соединённых конденсаторов формула выше даст нам следующее выражение для общей емкости:

Для N одинаковых последовательно соединённых конденсаторов:

Источник: http://www.elecom37.ru/articles_electric_23.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]