Что представляет собой статор электродвигателя

статор электродвигателя

Что представляет собой статор электродвигателя

Что такое асинхронный электродвигатель знает практически каждый человек, который хоть немного имеет отношение к технике. А вот как именно он работает и из чего состоит, знает не так много, даже тех, кто работает и использует такие двигателя. В статье будут детально рассмотрены основные составные части и принцип работы. Дадим ответы на вопросы:

  • Что такое статор ЭД и его назначение?
  • Что такое якорь в двигателе?
  • Что такое обмотки возбуждения?

Трехфазный асинхронный электродвигатель был изобретен русским, ученным М. О. Доливо-Добровольский, в 1889 году. Его основное предназначение – преобразование электрической энергии в механическую. благодаря свое эффективной работе и низкой стоимости он является одним из самых выпускаемых двигателей. Еще, соей популярности они обязаны, простоте своей эксплуатации.

Асинхронный электродвигатель применяется во всех отраслях промышленности. Их массово применяют для бытовых приборов. Как правило, используют двигателя, которые работают на переменном токе. Встретить их можно даже в детских игрушках.

Принцип работы основан на двух законах: магнитной индукции и законе Ампера. Первый закон описывает появление электродвижущих сил, под влиянием изменения магнитного поля, создаваемого статором. Второй закон описывает работу ротора, которая заключается в электрических зарядах, поступающих к проводнику, которые находятся внутри магнитного поля и объясняет распределение движущихся сил.

Что такое статор ЭД и его назначение?

Статор – это неподвижная часть двигателя, которая работает в паре с ротором. Статор состоит из основания и сердечника. Основание это цельный корпус, изготовленный из сплавов алюминия или чугуна. Сердечник изготовлен листовой электротехнической стали, толщина которой зависит от характеристик двигателя и оставляет от 0,35 до 0,5 мм.

В статоре есть пазы, предназначенные для размещения обмотки. Обмотка – это свитые межу собой повода, соединенные параллельным способом, что позволяет при работе уменьшить возникающие вихревые токи. Трехфазная перемотка статора создает электромагнитное поле. В пазы устанавливают определенное количество катушек, которые соединятся между собой.

В случае поломки электродвигателя выполняется перемотка статора. Варианты перемоток зависят от типа изоляции. Изоляцию выбирают в зависимости от показателя максимального напряжения, температуры перемотки, типа паза и вида обмотки.

Используемый материал для обмотки – медная проволока. Перемотка осуществляется в один или два слоя, в зависимости от расположения катушек в пазах.

Ремонт ЭД начинается с очистки или продувки от грязи и пыли составных частей статора. Следующий шаг – разборка корпуса для замены обмотки. При помощи механических инструментов проводят срезку лицевой части статора, где находится перемотка.

Для того чтобы осуществить разборку статор необходимо нагреть до температуры 200 градусов, после чего снятие обмотки и катушек будет более простым. После того как статор разобран прочищаются пазы. В очищенные и подготовленные пазы устанавливают новую обмотку, используя готовые шаблоны. Установленные новые катушки необходимо покрыть лакоми и высушить при температуре 150 градусов, выдержав два часа.

Сопротивлением между корпусом и обмоткой проверять можно только после того, как была выдержана все технология сушки. Использование различного по диаметру кабеля позволяет проводить регулировку параметров работы ЭД.

Во время эксплуатации электродвигателя возможны ситуации, когда детали начинают перегреваться. Это связано с изменением потребляемого тока. Это происходит из-ща размыкания электрической цепи. Еще одна причина нагрева ЭД – износ подшипников. Это негативно сказывается работоспособности обмотки изоляции. Производители устанавливают на всех типах ЭД защиту от перегрева. Она следит и срабатывает в случаях:

  • превышения пускового времени;
  • перегрузка;
  • скачков напряжения;
  • выхода из строя фазных проводов;
  • заклинивания ротора;
  • сбоя приводных устройств.

Также для защиты статора применяется тепловое реле. Оно срабатывает, когда нагревается биметаллическая пластина, которая под воздействием пружины размыкает электрическую цепь. В исходное положение пластина возвращается при нажатии кнопки.

Реле, может встроенным в ЭД, а может быть приобретено как отдельная единица. 

 Что такое якорь в двигателе?

Якорем асинхронных электродвигателей за частую может называться ротор. И так, ротор – это подвижная часть ЭД, состоящий из цилиндра, который собран из листов специальной стали, предназначенной для электрических устройств. Эти листы одеты на вал. Роторы или же якоря бывают фазными и короткозамкнутыми. Трехфазная обмотка фазного ротора соединяется схемой «звезда» и имеют на валу контактные кольца. С помощью щеток к кольцам подключают:

  • дросселя, которые удерживают ток ротора и стабилизирую работу ЭД во время перегрузок и резкого изменения оборотов;
  • источник тока (постоянного);
  • реостат для регулировки пускового момента;
  • инверторное питание, которое позволяет управлять частотой вращения вала и регулировать характеристики моментов.

Электродвигатели с фазным ротором устанавливают на машинах, работающих с переменными нагрузками.

Якорь практически не изнашивается при работе. Замене подлежат только щетки. В основном якорь подлежит только чистке от нагара, который появляется при нагреве обмотки статора. При нарушении базирования ротора из-за износа подшипников приводит возможны серьезные поломки, приводящие к остановке ЭД. Во избежание нежелательного простоя оборудования, ожидая замены ЭД, проводят профилактику.

Негативно на работу якоря влияет влага, которая привод к появлению коррозии на металлической поверхности, увеличивая трение, приводящее к возрастанию токовой нагрузки. Это приводит к чрезмерному нагреванию, оплавки контакта и искрению ЭД. По появлению искрения можно сделать вывод, что изжили свой срок службы токосъемники. Если же ЭД оказывается работать, то скорее всего замене подлежат щетки коллектора диэлектрик между пластинами. Возможно, произошло корытное замыкание цепи.

Об неисправности ЭД можно говорить если:

  • двигатель искрится;
  • слышен гул при работе;
  • появляется вибрация;
  • якорь меняет свое направление вращения меньше чем за оборот;
  • корпус сильно нагревается;
  • появляется запах гари.

Видя эти нарушения в работе, рекомендовано отключить ЭД от сети питания и провести первичный осмотр, по результатам которого будет определена неисправность и двигатель отправлен на техническое обслуживание.

Что такое обмотки возбуждения?

Ротор – это постоянный магнит, а статор – это генератор переменного магнитного поя. Поле, которое создает статор неподвижно относительно него.

Включив электродвигатель, исходного варианта никакой работы не произойдет, а статор будет находится под воздействием поля или без него. для того, чтобы заставить якорь вращаться необходима обмотка возбуждения.

Основная функция обмотки возбуждения – менять полярность ротора, таким образом, задавая ему вращательное движение. При достижении необходимых оборотов обмотка возбуждения отключается.

Источник: https://www.ttaars.ru/about/stati/stator-elektrodvigatelya/

Асинхронный двигатель с короткозамкнутым ротором: конструкция, принцип работы

Что представляет собой статор электродвигателя

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока.

Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой.

Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Рис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца.

В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия.

К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

  • однофазные;
  • двухфазные;
  • трёхфазные.

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

n1 = (f1*60) / p, где n1 – синхронная частота,  f1 – частота переменного тока, а p – количество пар полюсов.

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем.

В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы.

Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

Источник: https://www.asutpp.ru/asinxronnyj-dvigatel-s-korotkozamknutym-rotorom.html

Электрический двигатель

Что представляет собой статор электродвигателя

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТКН которые повсеместно используются в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте).

По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление.

Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя 

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует ЭДС), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.

Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется cкольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.

Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.

Асинхронные двигатели нашли широкое применение во всех отраслях техники.

Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода.

Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

ЭТО ИНТЕРЕСНО:  Сколько ватт в плазменном телевизоре

Рис. 1Трёхфазный двухполюсный асинхронный двигатель.

На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока:

При частоте 50 Гц получаем для= 1, 2, 3 (двух-, четырех- и шести-полюсных машин) синхронные частоты вращения поля= 3000, 1500 и 1000 об/мин.

Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).

В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и закорачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.

У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу.

При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки).

После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

Классификация электродвигателей 

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные имагнитоэлектрические. У двигателей первой группы вращающий момент создается вследствиегистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока(также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока 

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

Двигатель постоянного тока — электрический двигатель, питание которого осуществляетсяпостоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узлаподразделяется на:

  1. Коллекторные двигатели;
  2. Бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.

По типу возбуждения коллекторные двигатели можно разделить на:

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением (обмотка якоря включается параллельно обмотке возбуждения);
  2. Двигатели последовательного возбуждения (обмотка якоря включается последовательно обмотке возбуждения);
  3. Двигатели смешанного возбуждения (обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря).

Бесколлекторные двигатели(вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.

Двигатели переменного тока 

Трехфазные асинхронные двигатели

Двигатель переменного тока — электрический двигатель, питание которого осуществляетсяпеременным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели.

Принципиальное различие состоит в том, что в синхронных машинах первая гармоникамагнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном.

Для переменного тока номинальные напряжения 127, 220 В, для постоянного 110, 220 В. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 Гц не позволяют получить частоту вращения выше 3000 об/мин.

Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы).

При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока. Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети.

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин.

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Синхронный электродвигатель возвратно-поступательного движения

Принцип его работы заключается в том, что подвижная часть двигателя представляет собой постоянные магниты, закреплённые на штоке. Через неподвижные обмотки пропускается переменный ток и постоянные магниты под действием магнитного поля, создаваемого обмотками, перемещают шток возвратно-поступательным образом.

Источник: http://www.promenergo-nn.ru/elektricheskij-dvigatel/

Короткозамкнутый асинхронный электродвигатель

Основными конструкционными деталями любого электродвигателя являются статор и ротор. Статор электродвигателя, как правило, содержит обмотку. А вот ротор электродвигателя может содержать такую обмотку либо быть без нее. Роторы, которые имеют обмотку, называются фазными, а роторы без обмотки – короткозамкнутыми. Такой короткозамкнутый электродвигатель относится к классу асинхронных электрических приводов.

Устройство короткозамкнутого ротора

  • Несмотря на кажущуюся простоту, ротор асинхронного электродвигателя представляет собой довольно сложную конструкцию.
  • Он состоит из вала, который изготавливается из специальной стали.
  • На этот вал набирается пакет листов, выполненных из электротехнической стали, которые имеют отверстия либо пазы.
  • Количество отверстий и пазов на подобном пакете зависит от того, с какой скоростью будет вращаться ротор.
  • Пазы или же отверстия предназначаются для создания витков, так называемой, клетки. Витки создаются путем заливки легкоплавкого металла. Таким образом, каждый виток короткозамкнутого ротора, является проводником.

Основные преимущества

Электродвигатели с короткозамкнутым ротором не имеют в своей конструкции подвижных контактов. Это приводит к более надежной и долгосрочной работы механизма. Простота и удобство в эксплуатации подобных электродвигателей принесла им достаточно большую популярность.

Среди довольно большого разнообразия этот тип электрических приводов используется наиболее часто. Такая популярность объясняется превосходством данного типа как по цене, так и по простоте и надежности. Кроме простоты и надежности они обладают следующими преимуществами:

  • Постоянная скорость вращения при разных нагрузках;
  • Простота и ремонтопригодность конструкции;
  • Простота запуска и возможность автоматизации;
  • Более высокий КПД, нежели у аналогов с фазным ротором.

Еще одним несомненным преимуществом короткозамкнутых асинхронных двигателей является возможность прямого включения. То есть, для того чтобы привести в действие данный механизм, не требуется применение пусковых устройств. Подключать подобные электродвигатели должны только специалисты, в противном случае электродвигатель может выйти из строя моментально. Соблюдая правила эксплуатации, Вы продлите срок службы электродвигателя.

Источник: https://www.rosdiler-electro.ru/korotkozamknutyj-jelektrodvigatel.html

Статор и ротор — что это такое?

  • 1. Виды преобразователей
  • 2. Асинхронные электродвигатели

Существует несколько классов электрических преобразователей, среди которых практическое применение нашли так называемые индуктивные аналоги. В них преобразование энергии происходит за счет преобразования индукции обмоток, являющиеся неотъемлемой частью самого агрегата. Обмотки располагаются на двух элементах – на статоре и роторе. Итак, чем отличаются статор и ротор (что это такое и каковы их функции?).

Самое простое определение двух частей преобразователя – это их функциональность. Здесь все просто: статор (электродвигателя или генератора) является неподвижной частью, ротор подвижной. В большинстве случаев последний располагается внутри первого, и между ними есть небольшой зазор. Есть так называемые агрегаты с внешним ротором, который представляет собой вращающееся кольцо, внутри которого располагается неподвижный статор.

Виды преобразователей

Почему так важно рассмотреть виды, чтобы понять, чем отличается статор электродвигателя от подвижной его части. Все дело в том, что конструктивных особенностей у электродвижков немало, то же самое касается и генераторов (это преобразователи механической энергии в электрическую, электродвигатели имеют обратную функциональность).

Итак, электрические двигатели делятся на аппараты переменного и постоянного тока. Первые в свою очередь разделяются на синхронные, асинхронные и коллекторные. У первых угловая скорость вращения статора и ротора равны. У вторых два эти показателя неравны.

У коллекторных видов в конструкции присутствует так называемый преобразователь частоты и количества фаз механического типа, который носит название коллектор. Отсюда и название агрегата. Именно он напрямую связан с обмотками ротора двигателя и его статора.

Машины постоянного тока на роторе имеют тот же коллектор. Но в случае с генераторами он выполняет функции преобразователя, а в случае с электродвигателями функции инвертора.

Если электрический агрегат – это машина, в которой вращается только ротор, то его название – одномерный. Если в нем вращаются в противоположные стороны сразу два элемента, то этот аппарат носит название двухмерный или биротативный.

Асинхронные электродвигатели

Чтобы разобраться в понятиях ротора двигателя и его статора, необходимо рассмотреть один из видов электрических преобразовательных машин. Так как асинхронные электродвижки используются чаще всего в производственном оборудовании и бытовой техники, то стоит рассмотреть именно их.

Итак, что собой представляет асинхронный электродвигатель? Это обычно чугунный корпус, в который запрессован магнитопровод. В нем сделаны специальные пазы, куда укладывается обмотка статора, собранная из медной проволоки. Пазы сдвинуты относительно друг друга на 120º, поэтому их всего три. Они же образуют три  фазы.

Ротор в свою очередь – это цилиндр, собранный из стальных листов (сталь штампованная электротехническая), и насажанный на стальной вал, который в свою очередь при сборке электрического движка устанавливается в подшипники. В зависимости от того, как собраны фазные обмотки агрегата, роторы двигателя могут быть фазными или короткозамкнутыми.

  • Фазный ротор – это цилиндр, на котором собраны катушки, сдвинутые относительно друг друга на 120º. При этом в его конструкцию установлены три контактных кольца, которые не соприкасаются ни с валом, ни между собой. К кольцам присоединены с одной стороны концы трех обмоток, а с другой графитовые щетки, которые относительно колец располагаются в скользящем контакте. Пример такой машины – это крановые электродвигатели с фазным ротором.
  • Короткозамкнутый ротор собирается из медных стержней, которые укладываются в пазы. При этом их соединяют специальным кольцом, изготовленном из меди.

Асинхронный электрический двигатель с фазным ротором является обладателем больших размеров и веса. Но у него отличные свойства, касающиеся пусковых и регулировочных моментов. Двигатели, у которых установлен короткозамкнутый ротор, считаются самыми надежными на сегодняшний день.

Они просты в конструкции, поэтому и являются дешевыми. Их единственный недостаток – это большой пусковой ток, с которым сегодня борются соединением обмоток статора со звезды на треугольник.

То есть, пуск производится при соединении звездой, после набора оборотов производится переключение на треугольник.

Источник: https://onlineelektrik.ru/eoborudovanie/edvigateli/stator-i-rotor-chto-eto-takoe.html

Крановый электродвигатель

Какие электродвигатели применяются для привода механизмов грузоподъемных кранов?

Для привода механизмов грузоподъемных кранов применяются в основном трехфазные асинхронные электродвигатели переменного тока как с фазным ротором (с контактными кольцами) серии MTF, так и с нероткозамкнутым ротором серии MTKF специального кранового исполнения с повышенной перегрузочной способностью и с большими пусковыми моментами. Эти электродвигатели предназначены для работы как в помещениях, так и на открытом воздухе. Поэтому их выполняют закрытыми, с наружным обдувом и противосыростной изоляцией.

Кроме двигателей серии MTF на кранах устанавливают электродвигатели серии МТН, которые отличаются от серии MTF температурой нагревостойкости. Если у электродвигателей серии MTF температура нагревостойкости 155°, то у электродвигателей серии МТН — 180 °С.

Рекламные предложения на основе ваших интересов:

Применяются ли для привода крановых механизмов электродвигатели постоянного тока?

Применяются, но редко.

Что представляет собой трехфазный асинхронный электрический двигатель переменного тока?

Трехфазный асинхронный электродвигатель переменного тока представляет собой электрическую машину, служащую для преобразования электрической энергии трехфазного тока в механическую.

Из каких частей состоит трехфазный асинхронный электродвигатель переменного тока?

Трехфазный асинхронный электродвигатель переменного тока (рис. 21) состоит в основном из двух главных частей — из неподвижного статора и вращающегося ротора. Статор электродвигателя состоит из корпуса 1, в котором вмонтирован сердечник 2 статора, представляющий собой полый цилиндр, на внутренней поверхности которого сделаны пазы, где уложена обмотка 3 статора.

ЭТО ИНТЕРЕСНО:  Чем соленоид отличается от катушки

Рис. 1. Трехфазный асинхронный электрический двигатель в разобранном виде: а — статор; б — короткрзамкнутая обмотка ротора; в — фазовый ротор; 1 — корпус; 2 — сердечник статора из стальных пластин; 3 — обмотка статора; 4 — вал короткозамкнутого ротора; 5 — сердечник короткозамкнутого ротора из стальных пластин; 6 — обмотка короткозамкнутого ротора; 7 — торцевые кольца; $ — вал фазового ротора; 9 — сердечник фазового ротора из стальных пластин; 10 — фазовая обмотка; 11 — контактные кольца

Для уменьшения потерь от вихревых токов и пере- магничивания сердечник статора делается из отдельных листов электротехнической стали толщиной 0,3— 0,5 мм, и каждый лист друг от друга изолируется изоляционным материалом.

Из каких частей состоит обмотка статора трехфазного асинхронного электродвигателя переменного тока?

Обмотка статора трехфазного асинхронного электродвигателя переменного тока состоит из трех отдельных частей, называемых фазами.

Фазы между собой можно соединить и в звезду и в треугольник, благодаря чему один и тот же электродвигатель при соответствующей схеме соединения его обмоток может быть включен в сеть на любое указанное в паспорте напряжение. Обмотки двигателей средней и малой мощности изготовляют на напряжение 380/220 и 220/127 В, причем напряжение, указанное в числителе, соответствует соединению обмотки звездой, а в знаменателе — треугольником. Начало обмоток обозначают на схемах А, В, С; концы — X, V, Z.

Из какого материала изготовляется обмотка статора трехфазного асинхронного электродвигателя переменного тока?

Обмотка статора трехфазного асинхронного двигателя переменного тока изготовляется из изолированных медных проводов круглого или квадратного сечения.

Куда выводятся концы обмоток трехфазного асинхронного электродвигателя переменного тока?

По два конца от каждой обмотки выводят к контактным зажимам, расположенным на щитке корпуса статора. Причем к каждому зажиму щитка подключается определенный вывод обмотки. Зажимы, к которым подключают начало обмотки, обозначаются буквами C1, С2, СЗ; зажимы, к которым подключают концы обмоток,—С4, С5, С6.

Из каких частей состоит ротор трехфазного асинхронного электродвигателя переменного тока?

Ротор трехфазного асинхронного электродвигателя переменного тока состоит из сердечника и вала. Сердечник ротора представляет собой цилиндр, собранный также из отдельных листов электротехнической стали толщиной 0,3—0,5 мм, которые также между собой изолированы изоляционным материалом. Сердечник ротора имеет пазы, где уложена обмотка. Обмотки ротора бывают двух видов — корот- козамкнутая и фазная.

Короткозамкнутая обмотка состоит из стержней, расположенных в пазах, и замыкающих конец. Стержни присоединены к замыкающим кольцам, в результате чего обмотка называется корот- козамкнутой и двигатель с таким ротором называется тоже короткозамкнутым. Стержни и замыкающие кольца в одних двигателях делают из меди, а в других из алюминия. Алюминиевую обмотку выполняют нутем заливки в пазы жидкого алюминия.

Как выполняют фазную обмотку ротора трехфазного асинхронного двигателя переменного тока с фазовым ротором?

Фазную обмотку ротора трехфазного асинхронного электродвигателя переменного тока с фазовым ротором выполняют так же, как и обмотку статора, но она соединяется всегда только «в звезду». Начала фаз обмотки присоединяют к контактным кольцам, которые изготовляют из стали или латуни и располагают на валу двигателя. Кольца изолированы друг от друга, а также от вала двигателя.

К кольцам прижимаются пружинами медно-графитовые щетки, расположенные в неподвижных щеткодержателях. С помощью контактных колец и щеток в цепь ротора включается дополнительное сопротивление, которое является или пусковым (для увеличения пускового момента и одновременного уменьшения пускового тока), или регулировочным (для изменения скорости вращения ротора двигателя).

Вал ротора изготовляется из стали и вращается в шариковых или роликовых подшипниках, укрепленных в подшипниковых щитах, которые делаются из чугуна или стали и крепятся к корпусу статора болтами.

На чем основан принцип действия трехфазного асинхронного электродвигателя переменного тока?

Принцип действия трехфазного асинхронного электродвигателя переменного тока основан на применении магнитного потока, который, пересекая провода обмотки ротора, наводит в них электродвижущую силу (ЭДС), и в обмотке ротора возникает электрический ток.

Ток, взаимодействуя с вращающимся магнитным потоком, вызывает силу, увлекающую ротор вслед за вращающимся потоком. С увеличением частоты вращения уменьшается скорость, с которой магнитные силовые линии пересекают проводники ротора.

Если бы ротор асинхронного электродвигателя достиг той же частоты вращения, что и магнитный поток статора, то пересечения проводников не происходило бы и ток в роторе дошел бы до нуля и электродвигатель не стал бы работать, так как вращающий момент асинхронного двигателя зависит как от величины магнитного потока статора, так и от величины тока в обмотке ротора.

Следовательно, при наличии тормозного момента магнитный поток и ротор не могут вращаться с одинаковой частотой (синхронно). Частота вращения ротора всегда меньше. Поэтому электродвигатели, работающие по этому принципу, называются асинхронными.

Каким образом осуществляется пуск асинхронного трехфазного короткозамкнутого двигателя переменного тока?

Пуск асинхронного трехфазного короткозамкнутого двигателя переменного тока в большинстве случаев осуществляется при помощи рубильников и магнитных пускателей. При этом следует учесть, что в момент пуска сила тока в обмотке статора увеличивается в 4—8 раз по сравнению с номинальным значением.

Каким образом осуществляется пуск асинхронного трехфазного электродвигателя переменного тока с фазовым ротором?

Пуск асинхронного трехфазного электродвигателя переменного тока с фазовым ротором осуществляется при помощи контроллеров или универсальных переключателей, которые управляют пусковым сопротивлением, включенным в цепь ротора электродвигателя.

Вводя сопротивление в цепь ротора, увеличивают ее сопротивление и, следовательно, уменьшают пусковой ток в роторе.

При включении контроллера в первое положение в обмотке статора двигателя появится электрический ток, создающий вращающий магнитный поток, который, пересекая провода обмотки ротора, наводит на них электродвижущую силу (ЭДС) и в проводах возникает ток, но ток будет небольшой силы, так как при первом положении контроллера или универсального переключателя в цепь ротора включается наибольшее сопротивление, вследствие чего ротор начнет вращаться с наименьшей частотой. При переключении контроллера или универсального переключателя с первого положения на последующее сопротивление в цепи ротора уменьшится, а ток в обмотке ротора увеличится, благодаря чему двигатель увеличит частоту вращения.

При последнем положении контроллера пусковое сопротивление выключается полностью и двигатель начинает работать как двигатель с короткозамкнутым ротором.

Следует помнить, что перед пуском любого электродвигателя нужно убедиться, что контроллер или другие пусковые приспособления находятся в нулевом положении. Если контроллер или другое пусковое приспособление не находится в нулевом положении, пускать двигатель в работу нельзя.

Каким образом можно изменить направление вращения асинхронного двигателя?
Изменить направление вращения асинхронного двигателя можно только путем изменения вращения магнитного потока статора. Для этого необходимо переключить любую пару проводов, идущих к статору двигателя, т. е.

поменять их местами.

Каким образом производится пуск электродвигателя постоянного тока?

Пуск электродвигателя постоянного тока осуществляется с помощью реостата, включаемого в цепь якоря двигателя. Если производить пуск двигателя постоянного тока без пускового реостата, то начальный пусковой ток будет ограничиваться лишь небольшим сопротивлением якоря, имеющим очень малое сопротивление.

Расчеты показывают, что если пустить электродвигатель без пускового реостата, то пусковой ток для двигателей от 5 до 100 кВт окажется почти в 10— 30 раз больше номинального.

Такой ток, конечно, недопустим прежде всего по условиям коммутации двигателя, потому что при этом щетки двигателя будут сильно искрить.

Кроме того, большой ток может вывести из строя изоляцию обмоток или развить слишком большой начальный пусковой момент, который может привести к поломке механизмов.

Когда нужно вывести полностью пусковой реостат при пуске электродвигателя постоянного тока?

Пусковой реостат нужно вывести полностью только тогда, когда двигатель приобретет нормальную частоту вращения.

Следует помнить, что пускать в ход двигатель постоянного тока без пускового реостата запрещается.

Рекламные предложения:

Читать далее: Неисправности трехфазных асинхронных двигателей переменного тока

Категория: — Крановщикам и стропальщикам

→ Справочник → Статьи → Форум

Источник: http://stroy-technics.ru/article/kranovyi-elektrodvigatel

Трехфазный асинхронный электродвигатель

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°) Вращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.

На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.

Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор Магнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Источник: https://agregat.me/information/elektrodvigateli/trekhfaznyj-asinkhronnyj-elektrodvigatel

Из чего состоит статор электродвигателя?

Статором электродвигателя называется неподвижный узел электрооборудования, взаимодействующий с динамической его частью — ротором. Статоры являются важной частью синхронных и асинхронных двигателей. В первом типе электродвигателей на неподвижный механизм наматывается обмотка, а на асинхронных образцах располагается индуктор.

Статор состоит из двух основных деталей — основания и сердечника. Основание представляет собой отлитый или сварочный корпус, изготовленный с помощью чугунных или алюминиевых сплавов.

Сердечник выполнен в виде вала из специальной стали толщиной от 0,35 до 0,5 мм, прошедшей дополнительный обжиг. В нем имеются специальные пазы для крепления перемотки электродвигателя, состоящей из жильных проводов, скрученных между собой параллельным способом. Данное соединение позволяет ослабить токи вихревого свойства.

Принципы перемотки статора

Электромагнитное поле статора создается с помощью трехфазной перемотки. В пазах электродвигателя крепятся определенное количество катушек, соединенных друг с другом.

Варианты перемоток неподвижной части электродвигателей зависят от вида изоляции, выбор которой обусловлен следующими параметрами:

  • показатель максимального напряжения;
  • значение допустимой температуры перемотки;
  • габариты и тип паза;
  • вид обмотки.

В зависимости от способа размещения катушек в пазах статора перемотка двигателя осуществляется в один или два слоя. В качестве материала обмотки используют кабель из меди.

Проведение ремонта

Любому электрооборудованию, с течением времени, свойственны отказы в его работе. Причины поломок могут быть от банального загрязнения до воздействия внешних факторов.

В случае нарушения работы, ремонт электродвигателя начинайте с чистки или продувки элементов статора. Затем, после удаления грязи и пыли, приступите к съему корпуса изделия для замены обмотки. На токарном станке, либо с помощью стамески срезается лицевая часть перемотки статора.

Для размягчения изолирующего материала статор следует разогнать до температуры около 200 градусов, после которой снимается обмотка, извлекается катушка и прочищаются пазы. После разборки электродвигателя новая обмотка статора устанавливается с помощью готовых шаблонов.

После установки катушки, её покрывают лаком, с последующей сушкой при температуре 150 градусов по Цельсию не менее двух часов.

Проверка электродвигателя на сопротивление между корпусом и обмоткой производится после высыхания всех частей статора. Регулировка оборудования под необходимые параметры возможна с помощью подбора кабеля для перемотки.

Теплоизоляция статора

В ходе эксплуатации не исключены случаи перегрева деталей и узлов при сбоях в работе двигателя. Повышение температуры перемотки статора связано с изменением значения потребляемого тока. Данный сбой происходит по причине размыкания электрической цепи, путем пропадания электрического сигнала одного из фазных проводов.

ЭТО ИНТЕРЕСНО:  Какие инертные газы применяют для сварки металлов

Другой причиной изменения температуры может являться механический износ подшипников. В этом случае страдает изоляция обмотки двигателя, приводя его в нерабочее состояние.

В наши дни защита от перегрева используется практически на всех электрических приборах. Она срабатывает в следующих случаях:

  • при сбоях во время запуска или замедления статора;
  • при больших перегрузках;
  • при резких скачках напряжения;
  • при выходе из строя фазных проводов;
  • при работе двигателя с заклинившим ротором;
  • при сбоях приводных устройств.

Защита статора с помощью теплового реле

Суть такой защиты состоит в применении реле с пластиной из биметалла. Металлическая полоса, под действием электрического тока, начинает работать на изгиб. По достижению определенной температуры пластина, под действием пружины, расцепляется со специальной защелкой и разъединяет всю электрическую схему.

В исходное положение пластина приходит при помощи ручного нажатия кнопки. Конструкция теплоизоляции статоров различна, исходя из области применения, показателей тока и устройства реле.

В настоящее время реле производятся как в составе сборочных единиц, так и самостоятельных деталей. В зависимости от предназначения, отличаются ручным и автоматическим принципом действия.

Для приборов, рассчитанных на узкий диапазон величины потребляемого тока, выбор защиты требует более ответственного подхода. С включением электродвигателя в сеть происходит нагрев металлической полосы путем прохождения заряда по намотанной спиралевидной проволоке.

Источник: https://v-mireauto.ru/iz-chego-sostoit-stator-elektrodvigatelya/

Электродвигатель перемотка своими руками

Необходимо, частично разобрав двигатель, произвести очистку всех составных частей и определить, в чем собственно дело.

Определение параметров провода

Можно попробовать найти соответствующую информацию в интернете (намоточные данные). Часто люди делятся личным опытом, как они ремонтировали эл/дрель, фен своей жене, насосную станцию на даче и так далее. Но нужно понимать, что это должна быть ТОЧНО ТАКАЯ ЖЕ модель, иначе не факт, что после ремонта ваша станет работать.

На практике же обычно приходится все вопросы выяснять непосредственно при осмотре. Даже если двигатель выгорел довольно сильно, то всегда можно найти участок, на котором обмотка более-менее сохранилась. В этом месте нужно все тщательно очистить для того, чтобы можно было пересчитать все проводки в «укладке». Все, что нам нужно – определить количество витков и сечение провода.

Заботиться о целостности провода, естественно, смысла нет. Поэтому подойдет все, что поможет удалить нагар и частицы расплавленного лака – бензин, спиртосодержащие жидкости и тому подобное. Как вариант – произвести обжиг (горелка, костер и так далее). Главное – результат.

Обмотка выступает за габариты «железа». На той ее части, которая цела и пригодна к осмотру, срезается (срубается, спиливается) верхушка. Подходящий инструмент подбирается в зависимости от толщины провода, но нужно иметь в виду, что он довольно мягкий (медь). Наша задача – добиться того, чтобы одну часть намотки можно было «распушить». Тогда и число проводков посчитать несложно, и сечение их замерить.

Подготовка «железа»

Основой и ротора, и статора служит специальная сталь. При внешнем осмотре на них иногда можно обнаружить небольшие вмятины или заусеницы. Такие места необходимо аккуратно обработать или «мягким» надфилем, или мелкой «наждачкой», не повреждая металл. Все пазы, в которые укладывается обмотка, нужно полностью вычистить, «до блеска». Иначе при укладке изоляции и обмоток возникнут сложности.

Подбор провода

В идеале он должен быть точно таким же. Но это не всегда получается. Следовательно, придется использовать материал с другим сечением, который занимает в соответствующей таблице соседнюю позицию. При этом нужно вспомнить закон Ома и учесть, что с уменьшением диаметра провода его сопротивление возрастает.

Значит, нужно будет изменить и число витков, например, вместо 350 наматывать 400 или 320. Возможно, такое решение – «на глазок» – приведет к некоторому снижению мощности. Тем, для кого это принципиально, придется произвести точные расчеты, тем более что все исходные данные есть – номинал напряжения питания (220 В), сечение имеющегося провода, габариты «железа», на которое он будет наматываться (значит, общая длина проводника).

Но при этом нельзя забывать, что неправильный результат вычислений может привести к повышенному нагреву двигателя (если не к критическому перегреву и поломке). Как результат – расплавление лака и в перспективе короткое замыкание между обмотками или межвитковое замыкание.

Изготовление обмотки

Это делается при помощи шаблона. Его несложно изготовить самостоятельно, из плотного картона или фанеры. Главное – правильно снять все размеры с «железа». Намотку провода лучше делать на специальном станке (распространенное недорогое оборудование). Такое приспособление можно смастерить и самому, из подручного материала:

Если делать намотку вручную, на это уйдет времени значительно больше, да и есть вероятность того, что можно ошибиться в количестве витков. Кроме того, работая с тонким проводом, его легко порвать, а с толстым – уложить неплотно, что вызовет трудности при постановке обмотки на место из-за увеличения ее габаритов.

Установка обмотки

Ничего сложного в этом нет, необходимо лишь соблюдать аккуратность. После укладки изоляции в пазы по месту «сажается» изготовленная «катушка» (такие «гильзы» изготавливаются из диэлектрических материалов). Как они ставятся, понятно из рисунка.

Следует избегать любого повреждения не только провода, но и его внешней изоляции (лаковое покрытие). В некоторых случаях целесообразно использовать специальное приспособление – «трамбовку». С ее помощью обмотка «уплотняется» в посадочных пазах. Все фазные катушки надежно изолируются друг от друга.

Внимание! Необходимо проверить, не торчат ли из пазов частички изоляции. Излишки следует срезать. Иначе после сборки и включения двигателя они будут задевать за ротор. Чем это закончится, неизвестно.

Пропитка

Она делается с целью изоляции всех токоведущих частей. Рекомендовать какой-то конкретный состав смысла нет, так как в продаже имеется большой ассортимент соответствующей продукции. Но вот кое-что посоветовать стоит.

Все лаки делятся на 2 категории. Одни не требует температурного воздействия, так как просыхают естественным путем. Для других необходима термическая обработка. На производстве с этим проблем нет, так как используются специальные печи. А вот как просушить лак в домашних условиях, придется подумать.

Проверка эл/двигателя

После того, как просушка закончена, нужно убедиться в том, что двигатель готов к включению. Для этого необходимо «прозвонить» все обмотки, по очереди, чтобы выяснить, нет ли где обрыва или «неконтакта» в местах соединений. Кроме того, нужно замерить сопротивление между обмотками и на корпусом (удостовериться в отсутствии КЗ). И только после этого можно проверять двигатель в работе.

Включение

Для проверки работоспособности двигатель не следует сразу же запитывать от источника с номинальным рабочим напряжением (220 В или 380В). Сначала нужно проверить его работоспособность через понижающий трансформатор. Если ротор, хоть и «вяло», но крутится и эл/двигатель не греется, не дымит, значит, все сделано правильно.

После включения в сеть целесообразно замерить потребляемый устройством ток. В паспорте на изделие такие данные есть. В случае чрезмерного отклонения измеренной величины от «номинала» необходимо разбираться с вероятной причиной.

Практические советы

  • В процессе намотки провода на шаблон нужно укладывать его равномерно, «виток к витку». Наложения проводков друг на друга, с «перехлестом», следует избегать. Иначе полученная катушка просто не поместится в месте установки из-за увеличенных габаритов.
  • Еще в процессе разборки эл/двигателя необходимо обратить внимание, как и чем выполнена изоляция внутренних частей (например, фазных катушек), по какой схеме они соединены («треугольник», «звезда») и так далее. Это поможет произвести правильную сборку, так как ее придется делать «один в один». Не стоит надеяться на память. Надежнее все это «зарисовать», с указанием всех особенностей инженерного решения.
  • Если пришлось сдать «движок» в ремонт, то следует поинтересоваться, какие в мастерской применяются пропиточные составы и есть ли соответствующее оборудование для просушки обмоток.

Напоследок приведем несколько видеозаписей наглядно показывающих описанную выше технологию:

Перемотка статора асинхронного электродвигателя (автор sannidog1206)

Перемотка статора коллекторного двигателя (автор Viktor Tarasow):

Связанное оборудование (products tags):

Источник: http://vibromotors.ru/articles/21/177/

Трехфазный асинхронный двигатель

Дмитрий Левкин

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Перемотка статора электродвигателя

Специалисты ООО «ВЭР» работают в сфере перемотки статоров электродвигателей не один год. На все виды работ распространяется гарантия.

Асинхронные двигатели состоят из двух основных частей. Первая – вращающийся по оси ротор. Вторая – статор, представляющий собой катушку, создающую электрическое поле. Обмотки ротора и статоры не соединены друг с другом. В статорных катушках создаётся вращающееся магнитное поле, воздействующее на ротор и заставляющее его вращаться. Причём скорости вращения поля и роторы не равны – последний вращается медленнее. Именно поэтому такие двигатели получили название асинхронных.

Основа асинхронного двигателя – обмотка, на которую подаётся переменный ток. От постоянного тока такие двигатели не работают. Она создаёт мощное вращающееся магнитное поле, увлекающее за собой ротор.

В зависимости от конструкции ротора, двигатели подразделяются на короткозамкнутые и фазные – последние включают обмотку, подключаемую к источнику переменного тока через щётки. Такие двигатели обладают регулируемой скоростью вращения. Статор двигателя представляет собой катушку особой конструкции, намотанную на неподвижный сердечник.

Намотка осуществляется медным проводом, диаметр которого зависит от мощности двигателя. Также от мощности зависит диаметр провода.

Обмотка статора – самое слабое место двигателя. Она может выйти из строя в силу самых разных причин:

  • в результате повышенной нагрузки на ротор – несоответствие нагрузки приводит к перегреву статорной катушки;
  • межвитковое короткое замыкание – приводит к перегреву статора, появлению дыма, посторонних шумов, натужного гудения, потере мощности;
  • короткое замыкание на корпус – в рабочем состояние сопротивление между статором и корпусом стремится к бесконечности. При наличии КЗ сопротивление падает, катушки перегреваются, прикосновение к корпусу двигателя вызывает удар током;
  • обрыв – одна из самых распространённых причин выхода из строя обмотки статора. Проявляется в виде серьёзной потери мощности или полного отсутствия вращения ротора электродвигателя.

Аналогичные поломки возможны в роторе электродвигателя.

Диагностика перед перемоткой статора электродвигателя

Перемотка статора электродвигателя – трудоёмкая процедура, требующая использования специального оборудования. Именно такое оборудование присутствует в ООО «ВЭР», оказывающем услуги по профессиональному ремонту электродвигателей. Мы осуществляем:

Также мы выполняем балансировку электродвигателей и лазерную центровку их валов. Наши преимущества:

  • низкие цены на ремонт двигателей;
  • профессиональный подход;
  • работа с любыми моделями;
  • большой опыт работы в сфере ремонтных услуг.

Перемотка статора двигателя начинается с диагностики. Повреждённый электродвигатель проверяется с помощью измерительного оборудования и визуально. Ведь нужно не только перемотать сгоревшую обмотку, но и устранить причину её повреждения. Для этого специалисты проверяют:

  • текущее состояние электрической изоляции обмоток;
  • текущее состояние подшипников – их затруднённое вращение вызывает повышение нагрузки на статор, что приводит к повреждению обмоток;
  • наличие вибрации – тоже приводит к повреждению статора и электрической изоляции.

Традиционные признаки неисправности статора:

  • повышенная температура обмоток;
  • появление вибрации и посторонних шумов;
  • появление неприятного запаха (тлеет и горит изоляция);
  • в двигателе видны искры, которых здесь быть не должно.

Визуальный осмотр – она из важнейших процедур, предшествующая перемотке. Аналогичным образом осматривается состояние кожных покровов у человека при обращении к врачу. Потемневшая изоляция – явный признак неисправности. Если она уже начала выгорать, значит, присутствует межвитковое замыкание или имеется перегрузка на одном из подшипников. При наличии следов горения необходимо проверить подшипники, проконтролировать параметры обмоток на их соответствие номинальным.

Проверка параметров статора осуществляется с помощью измерительного оборудования. Здесь используется омметр, позволяющий оценить сопротивление обмоток. Этот же прибор используется для определения наличия замыкания на корпус. Также омметр способен определить обрыв обмоток – их сопротивление будет стремиться к бесконечности.

Используя измерительное оборудование, сотрудники ООО «ВЭР» проверяют соответствие сопротивление обмоток номиналу, сопротивление между обмотками и корпусом двигателя. Слишком низкое сопротивление обмоток указывает на наличие межвиткового замыкания – на это же указывает перегревание статора. Наличие сопротивления между обмотками статора, им самим и корпусом двигателя – явный признак повреждения изоляции, что требует перемотки.

Отсутствие сопротивления указывает на обрыв – двигатель не запускается или работает в пониженной мощностью.

Как производится перемотка статора асинхронного двигателя

Перемотка статоров в ООО «ВЭР» производится силами опытных специалистов, хорошо знакомых с их устройством. Они работают с бытовыми и промышленными двигателями, а также с электродвигателями специального назначения.

Перемотка осуществляется вручную и с помощью специального оборудования. Одновременно с этим проверяется и меняется изоляция, отделяющая обмотки от корпуса статора – повреждённая изоляция подлежит обязательной замене.

Далее специалисты наматывают обмотки, используя провод заданного диаметра (подбирается в зависимости от марки электродвигателя).

На следующем этапе обмотки размещаются на штатных местах в определённой последовательности. Далее они соединяются и спаиваются между собой согласно схеме двигателя.

На завершающем этапе производится контроль электрических параметров, они должны соответствовать номиналу – это определённое сопротивление каждой обмотки, бесконечное сопротивление между корпусом и обмотками.

Завершающая процедура после сборки и инструментального контроля – проверка работоспособности двигателя, в том числе под нагрузкой.

Специалисты ООО «ВЭР» работают в сфере перемотки статоров электродвигателей не один год. Наши преимущества:

  • профессиональный подход к каждой ремонтной операции;
  • наличие специального оборудования для автоматизации перемотки;
  • контроль качества перемотки на каждом этапе ремонта электродвигателей;
  • низкие цены на перемотку статоров электродвигателей.

На все виды работ распространяется гарантия.

Источник: http://ver34.ru/articles/peremotka_statora_elektrodvigatelya/

Понравилась статья? Поделиться с друзьями:
Электро Дело
В каком случае происходит короткое замыкание

Закрыть