Что такое номинальная мощность электродвигателя

Максимальная и номинальная мощность генератора

Что такое номинальная мощность электродвигателя
˂ Назад

21 Мая 2019

При выборе модели дизель генератора Янмар, нужно ориентироваться на его возможности, которые должны соответствовать потребностям обслуживаемого объекта. Если агрегат приобретается для дома, значит, необходимо сложить мощность всех эксплуатируемых электроприборов (от ноутбука и освещения до бытовых инструментов). Полученный результат не должен превышать активную мощность ДГУ, прописанную в руководстве по эксплуатации.

Что означает номинальная и максимальная мощность? 

В технической документации к продукции Янмар указывается два типа мощности дизельного генератора:

  • полная (максимальная);
  • активная (номинальная) в кВт.

В пределах активной мощности генератор способен работать неограниченное время, пока не закончится его топливо.

Например, у модели YEG170DTLS номинальная мощность составляет 10,1 кВт и максимальная 11,1 кВт. До 10,1 кВт станция будет работать в постоянном режиме, а в пределах от 10,1 до 11,1 кВт – во временном. 

Запас мощности – для чего он необходим? 

При покупке автономной электростанции не бытового уровня, важно учитывать также условия эксплуатации (климат, температуру). При изменении этих параметров от заявленных производителем, производительность электростанции может уменьшаться. Потому, если планируется использовать агрегат на улице, нужно заложить запас мощности еще на стадии покупки ДГУ.

Запас мощности также необходим при подключении приборов с электродвигателями, к которым относятся холодильники, электрокосилки, насосы. Причина этого в том, что запуск двигателя требует мощности, которая выше номинальной в 3-3,5 раза. Если этого не предусмотреть, то не избежать обвального спада напряжения.

В таком случае подсчет нужно производить в следующем порядке:

  • Берем номинальную мощность самого производительного электроприбора и умножаем на три.
  • Если другие приборы с электродвигателями не будут включаться одновременно с первым, то прибавляем к этому значению их номинальные параметры.
  • Прибавляем также мощности всех прочих активных потребителей энергии, которые будут включены одновременно с первым прибором.
  • Увеличиваем полученный результат на 20-30% и получаем мощность генератора для дома с оптимальным запасом, которая подойдет под ваши нужды и обеспечит работу электропотребителей в отсутствие сетевой электроэнергии.

Источник: https://www.yanmarrus.ru/about/statyi-i-obzory/maksimalnaya-i-nominalnaya-moshchnost-generatora/

Мощность электродвигателя. Методы снижения энергопотребления

Что такое номинальная мощность электродвигателя

Мы часто сталкиваемся со спорными точками зрения на достаточно простые вещи, которые касаются физики, поэтому заранее просим прощения у специалистов за простой язык и «разжевывание». В этой статье мы детально разберем понятия мощности электродвигателя, методы нахождения потребляемой мощности из сети, а также попробуем понять как можно сэкономить на электроэнергии. Сразу оговоримся, что разбирать будем асинхронный тип электродвигателя как наиболее часто используемый.

Итак, любой электродвигатель имеет базовые характеристики, которые указывает завод-производитель на шильде каждого своего изделия.

Как видим, на шильде указаны:

1)      Тип электродвигателя и заводской номер

2)      Количество фаз 3, частота тока 50 Hz, подключение треугольник/звезда 220/380В, номинальные токи 2,7/1,6А

3)      Номинальная мощность электродвигателя на валу 0,55кВт, номинальная частота вращения вала 1360 об/мин, КПД 75%, косинус фи 0,71

4)      Режим работы S1 (постоянный), класс изоляции обмоток F, ГОСТ

5)      Степень защиты от пыли и влаги IP54, год выпуска

Как же определить какова потребляемая мощность электродвигателя от сети? Для начала разберемся в понятиях.

Номинальная мощность электродвигателя, которая указывается на шильдике электродвигателя это та мощность, которую электродвигатель выдает в установившемся номинальном режиме работы при условии сбалансированной оптимальной работы всего механизма, который приводят электродвигателем.

Каждый механизм имеет свою энергетическую характеристику и оптимальный режим работы с точки зрения энергопотребления. Таким образом, первая задача, которую стоит решить для достижения минимизации потребляемой энергии – это правильный подбор электродвигателя для привода того или иного механизма.

Потребляемая мощность электродвигателя от сети является динамической величиной и зависит от нагрузки на валу электродвигателя и потерь мощности на неполезной работе, такой как трение, нагрев и т.д.

Наилучший способ определения потребляемой из сети мощности – это эмпирический, поскольку любые расчетные методики дадут значительную погрешность, а погрешности в вопросах энергоэффективности недопустимы.

Таким образом, для максимально точного определения потребляемой мощности электродвигателя от сети рекомендуем «погонять» приводимый механизм в различных стандартных режимах работы, измеряя и фиксируя токи в каждом из режимов при помощи токосъемных инструментов. А еще лучше – воспользоваться цифровым счетчиком электрической энергии.

Легко заметить, что в нагруженных режимах работы таких как пуск, работа под нагрузкой, номинальный режим, торможение, токи в обмотках увеличиваются, повышаются ЭДС, крутящий момент на валу и т.д. Отсюда следует вторая задача, которую следует решить для снижения потребляемой мощности электродвигателя – задача снижения линейных токов в режимах высокого потребления электроэнергии.

Путем регулирования частоты тока
 

Этот метод получил пока наибольшее распространения ни смотря на высокие расходы на внедрение, частотное регулирование производится при помощи специальных частотных преобразователей, стоимость которых часто превышает в несколько раз стоимость самого электропривода. Очень безопасный и эффективный метод снижения мгновенной мощности электродвигателя.

Регулирование напряжения
 

Экономия электроэнергии путем регулирования  частоты вращения электродвигателя плавным изменением напряжения питания при помощи регулятора напряжения. Этот метод применим в некоторых случаях, однако опасен остановками электродвигателя из-за т.н.

опрокидывания, когда момент сопротивления механизма выше, чем мощность электродвигателя на валу вследствие непропорционального снижения питающего напряжения.

Также такой метод локально снизить мощность электродвигателя требует дополнительных средств контроля режимов работы электродвигателя, контроля температуры обмоток, контроля частоты вращения, мощности электродвигателя на валу.

Решение вопроса влияния несимметричности напряжения сети на мощность электродвигателя.
 

Качество напряжения сети непосредственно влияет на потребление электроэнергии. На симметричность напряжения влияют сами потребители электроэнергии неравномерной нагрузкой по фазам, используя устройства нелинейной нагрузки. Самые «весомые» создатели нелинейной нагрузки – подстанции электротранспорта. Из-за несимметричности напряжения в асинхронном двигателе создается эллиптическое магнитное поле и несколько крутящих моментов, один из которых тормозит систему и расходует энергию.

Реактивная мощность электродвигателя. Внедрение компенсаторов.
 

Как известно, потребляемая из сети электрооборудованием мощность состоит из ряда составляющий, главными из которых являются активная и реактивная мощность. Последние годы в мире динамично развивается направление по внедрению компенсаторов реактивной мощности, что позволяет экономить электроэнергию промышленным потребителям.

Микроконтроллеры

Также перспективным направлением по экономии электроэнергии при использовании асинхронных двигателей является внедрение микроконтроллеров, которые позволяют в режиме реального времени мониторить момент сопротивления приводимого оборудования и соотносить его с крутящим моментом электродвигателя. При снижении момента сопротивления, микроконтроллер передает команду регулятору напряжения. Такая компенсацию реализуется без изменения частоты вращения, поэтому применима только для оборудования, не требующего регулировки частоты.

Источник: https://all-electro.com.ua/a277301-moschnost-elektrodvigatelya-sekrety.html

Что такое номинальная мощность электродвигателя и как она расчитывается | Компания

Что такое номинальная мощность электродвигателя

Это мощность двигателя, с которой он мог бы работать в номинальном режиме — режиме эффективной работы на протяжении длительного времени (не менее нескольких часов). Номинальная мощность измеряется в Вт (кВт) или лошадиных силах (л.с.) и указывается на щитке электрической машины вместе с остальными основными характеристиками.

номинальная мощность электродвигателя

При нагрузках, меньших Pном, мощность двигателя развивается в полной мере. При загрузке двигателя до номинальной мощности на сравнительно короткий промежуток времени можно считать, что он не используется в полную силу. В такой ситуации бывает целесообразна его кратковременная перегрузка, предел которой определяется перегрузочной мощностью двигателя.

В паспорте электродвигателя заводом-изготовителем всегда указываются номинальные величины мощности Pном, напряжения Uном, коэффициента мощности cosϕном, номинальная угловая скорость двигателя ωном.

Метод эквивалентного тока

Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:

Pном ≥ Iэк ∙ Uном ∙cosϕном,

где Iэк – показатель эквивалентного тока,

Uном – номинальное напряжение,

cosϕном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки. Для большинства электродвигателей составляет 0,8-0,9.

Метод эквивалентного момента

Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент. Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток. Для синхронных и асинхронных машин переменного тока коэффициент мощности cosϕ приближенно принимается за постоянную величину:

Pном = Мвр ∙ ωном,

где Мвр – значение вращающего момента,

ωном – номинальная угловая скорость двигателя.

Определение номинальной мощности опытным путем

Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?

Помогут практические измерения и счетчик электроэнергии:

  1. Необходимо полностью отключить все прочие источники потребления электроэнергии: освещение, электроприборы и т.д.

  2. В случае использования электронного счетчика следует подключить двигатель под нагрузкой на 5-6 минут, на электронном дисплее отобразиться величина нагрузки в кВт.

Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины отнять из полученного значения записанные показания и умножить на 6. Полученное число и будет являться активной механической мощностью двигателя.

  1. Для маломощных двигателей можно подсчитать количество оборотов диска счетчика, для каждого из которых указана, чему равна величина полных оборотов в единицах мощности. Несложные расчеты помогут определить искомую величину мощности.
ЭТО ИНТЕРЕСНО:  Сколько киловатт в час берет телевизор

При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке определяемый показатель будет далек от номинальной мощности электродвигателя.

Всего доброго.

Источник: http://elektrik-orenburg.ru/node/chto-takoe-nominalnaya-moshchnost-elektrodvigatelya-i-kak-ona-raschityvaetsya

Номинальная мощность электродвигателя — советы электрика — Electro Genius

09.06.2019

Основной составной частью любого производственного механизма является электродвигатель. Правильный подбор этого устройства обеспечивает надежность и экономичность работы всей системы в целом. Простота управления электроприводом, а также его стоимость, зависят от технических характеристик электродвигателей.

Как правило, электропривод отвечает за значение таких характеристик движения как скорость, ускорение, пусковой и тормозной момент и другие.

При оценке электродвигателя учитываются следующие параметры:

  • Мощность;
  • КПД;
  • Вращающий момент;
  • Частота;
  • Линейная скорость;
  • Угловая скорость.

Значения этих параметров влияют на особенности проектирования и архитектуры промышленного оборудования.

Рассмотрим подробнее основные характеристики двигателей.

Номинальная механическая мощность

Этот параметр электродвигателя записывается в паспортную табличку и измеряется в киловаттах. На фото характеристик электродвигателей показан внешний вид паспортной таблички (шильдика).

Например, если на шильдике указана мощность 2200 ватт, это означает, что при оптимальной скорости работы устройство в секунду производит механическую работу, равную 2200 джоулей.

Номинальная активная электрическая мощность

Следующая характеристика двигателей переменного тока рассчитывается с помощью значения КПД, которое также указано на паспортной табличке. Чем больше КПД, тем больше мощности из сети переводится в механическую мощность движения вала. Допустим, если КПД равен 80%, то номинальная активная мощность равна 2200/0.8 = 2750 Вт.

Номинальная полная электрическая мощность

Для ее нахождения используется косинус фи, который прописан на шильдике электродвигателя. Полная электрическая мощность равна отношению активной мощности и косинуса фи. При косинусе фи равном 0,87 полная мощность равна 2750/0,87=3160 Вт.

Номинальная реактивная электрическая мощность

Механические характеристики электродвигателей также важны при выборе и покупке устройства. Рассмотрим правила, по которым они рассчитываются.

Частота вращения ротора

Для вычисления этого параметра электродвигателей нам понадобится частота переменного тока и количество оборотов в минуту при оптимальной нагрузке. Пусть в паспортной табличке указаны следующие данные: частота тока составляет 50 Гц, а количество оборотов – 2800.

Переменный ток создает магнитное поле, которое имеет частоту 50*60=3000 оборотов в секунду. Известно, что электродвигатель асинхронный, а это означает, что наблюдается отставание от номинальной частоты вращения на некоторую величину. Назовем ее скольжением и обозначим за s.

Величина скольжения определяется следующей формулой: s = ((3000 — 2800) / 3000) * 100% = 6,7%.

Угловая скорость

Следующей немаловажной характеристикой асинхронного электродвигателя является угловая скорость. Для того, чтобы ее вычислить, в первую очередь нужно перевести частоту вращения ротора в другие единицы измерения. Сначала посчитаем количество оборотов в секунду: 2800 / 60 = 46,7.

Далее нужно умножить полученное число на 2 Пи: 46,7 * 2 * 3,14 = 293,276 радиан в секунду. Полученная величина характеризует угловую скорость электродвигателя. Иногда, для удобства вычислений, угловую скорость переводят в градусы. Получаем: 46,7 * 360 = 16812 градусов в секунду.

Линейная скорость

Этот механический параметр характеризует оборудование, в устройстве которого используется данный асинхронный двигатель. Допустим, что к валу двигателя присоединен диск определенного радиуса R.

В этом случае величина линейной скорости может быть определена по следующей формуле:

  • Линейная скорость = Угловая скорость * R.
  • Рассчитаем линейную скорость для нашего примера. Возьмем R = 0.3 м.
  • Линейная скорость = 293,276 * 0,3 = 87,9828 м/c.

Номинальный вращающий момент

Существует также соотношение между вращающим моментом и радиусом шкива: Момент = Сила * Радиус.

Это равенство говорит о том, что меньшем радиусе вращения сила увеличивается, и наоборот. То есть при проектировании устройства с асинхронным двигателем следует учесть тот факт, что действующая сила увеличивается с приближением к оси вала. В некоторых случаях эта особенность может сыграть важную роль.

Таким образом, для расчета всех необходимых электрических и механических характеристик электродвигателя достаточно знать данные, которые указаны на паспортной табличке или, другими словами, шильдике. Простые формулы помогут правильно настроить работу электрооборудования и оптимально использовать производственные ресурсы.

Фото основных характеристик электродвигателей

Источник: https://orenburgelectro.ru/montazh/nominalnaya-moshhnost-elektrodvigatelya-sovety-elektrika.html

Основные параметры электродвигателя

Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.

Механическая мощность

Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.

  • где P – мощность, Вт,
  • A – работа, Дж,
  • t — время, с

Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы.

Для вращательного движения

  • где ω – углавая частота, рад/с,

Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя

Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.

  • где n — частота вращения электродвигателя, об/мин

Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси

  • где J – момент инерции, кг∙м2,
  • m — масса, кг

Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)

1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)

Момент инерции связан с моментом силы следующим соотношением

  • где ε – угловое ускорение, с-2

Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86

Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.

  • где η – коэффициент полезного действия электродвигателя,
  • P1 — подведенная мощность (электрическая), Вт,
  • P2 — полезная мощность (механическая), Вт

потери в электродвигатели

     обусловлены:
  • электрическими потерями — в виде тепла в результате нагрева проводников с током;
  • магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
  • механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
  • дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.

КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.

Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.

Номинальное напряжение

Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики.

Электрическая постоянная времени

Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.

  • где  – постоянная времени, с

Момент электродвигателя

Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.

  • где M – вращающий момент, Нм;
  • F – сила, Н;
  • r – радиус-вектор, м

Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле

  • где Pном – номинальная мощность двигателя, Вт,
  • nном — номинальная частота вращения, мин-1

Начальный пусковой момент — момент электродвигателя при пуске.

Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)

1 oz = 1/16 lb = 0,2780139 N (Н)
1 lb = 4,448222 N (Н)

момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)

1 oz∙in = 0,007062 Nm (Нм)
1 lb∙in = 0,112985 Nm (Нм)

Механическая характеристика

Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.

Области применения электродвигателей

Электродвигатели являются крупнейшими потребителями электроэнергии в мире, на них приходится около 45% от всей потребляемой электроэнергии.

    Электродвигатели используются повсеместно, основные области применения:
  • промышленность: насосы, вентиляторы, компрессоры, конвейеры, движущая сила для других машин и др.
  • строительство: насосы, вентиляторы, конвейеры, лифты, системы отопления, вентиляции и кондиционирование воздуха и др.
  • потребительские устройства: холодильники, кондиционеры, персональные компьютеры и ноутбуки (жесткие диски, вентиляторы), пылесосы, стиральные машинки, миксеры и др.
ЭД1ФункцииОбласти примененияВращающиеся электродвигателиНасосы Вентиляторы Компрессоры Вращение, смешивание, движение Транспорт Угловые перемещения (шаговые двигатели, серводвигатели) Линейные электродвигателиОткрыть/закрыть Сортировка Хватать и перемещать
Системы водоснабжения и водоотведения
Системы перекачки охлажденной или нагретой воды, системы отопления, ОВК2, системы полива
Системы канализации
Перекачка нефтепродуктов
Приточно-вытяжная вентиляция, ОВК2, вентиляторы
Системы вентиляции, холодильные и морозильные установки, ОВК2
Накопление и распределение сжатого воздуха, пневматические системы
Системы сжижения газа, системы перекачки природного газа
Прокатный стан, станки: обработка металла, камня, пластика
Прессовое оборудование: обработка алюминия, пластиков
Обработка текстиля: ткачество, стирка, сушка
Смешивание, взбалтывание: еда, краски, пластики
Пассажирские лифты, эскалаторы, конвейеры
Грузовые лифты, подъемные краны, подъемники, конвейеры, лебедки
Транспортные средства: поезда, трамваи, троллейбусы, автомобили, электромобили, автобусы, мотоциклы, велосипеды, зубчатая железная дорога, канатная дорога
Вентили (открыть/закрыть)
Серво (установка положения)
Вентили
Производство
Роботы

Примечание:

  1. ЭД — электродвигатель
  2. ОВК — системы отопления, вентиляции и кондиционирование воздуха

Источник: https://agregat.me/information/elektrodvigateli/osnovnye-parametry-elektrodvigatelya

Выбор мощности электродвигателя | мтомд.инфо

От правильного выбора мощности электродвигателя зависят технико-экономические показатели электропривода (себестоимость, габариты, экономичность, надежность в эксплуатации и другие). Если нагрузка на электродвигатель стабильная, то определение его мощности ограничивается лишь выбором по каталогу:

Рн ≥ Рнагр,

где Рн — мощность выбираемого двигателя,
Рнагр — мощность нагрузки.

Если же нагрузка на электродвигатель переменная, то, чтобы провести выбор мощности электродвигателя, необходимо иметь график нагрузки I = f(t). Плавную кривую заменяют ступенчатой линией, полагая, что за время t1 в двигателе течет ток I1, за время t2 — ток I2 и так далее.

График нагрузки электродвигателя

Изменяющийся ток заменяют эквивалентным ему током Iэ, который за время одного цикла работы tц производит одинаковое, тепловое действие с током, изменяющимся ступенями. Тогда:

Номинальный ток электродвигателя должен быть равным или больше эквивалентного, то есть Iн ≥ Iэ.

ЭТО ИНТЕРЕСНО:  Как узнать о зарядке аккумулятора

Поскольку почти у всех двигателей вращающий момент прямо пропорционален току нагрузки М ~ Iн, то можно записать и выражение для эквивалентного вращающего момента:

Учитывая, что мощность Р = Мw, выбор мощности электродвигателя может также производиться по эквивалентной мощности:

При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время перерыва в работе не охлаждается до температуры окружающей среды.

График повторно-кратковременной нагрузки электродвигателя

Для этого режима вводится понятие относительной продолжительности включения (ПВ). Она равна отношению суммы рабочего времени ко времени цикла tц, состоящего из времени работы и времени паузы tо:

Чем больше ПВ, тем меньше номинальная мощность при, равных габаритах. Следовательно, двигатель, рассчитанный на работу в течение 25% времени цикла при номинальной мощности, нельзя оставлять под нагрузкой 60% времени цикла при той же мощности.

Электродвигатели строятся для стандартных ПВ — 15, 25, 40, 60%, причем ПВ — 25% принимается за номинальную. Двигатель рассчитывается на повторно кратковременный режим, если продолжительность цикла не превышает 10 мин.

Если расчетные значения ПВ отличаются от стандартных, то при выборе мощности двигателя Рэ следует вносить поправку:

Источник: http://www.mtomd.info/archives/2731

Обозначение мощности электродвигателя и прочих данных

Перед использованием электродвигателя необходимо в обязательном порядке ознакомиться с его заводскими данными, которые обычно указываются на щитке, крепящемся к корпусу. В частности, указываются следующие параметры:

  • Номинальное напряжение (В), при этом обозначается схема соединения обмоток.
  • Сила тока (А) для данной схемы соединения.
  • Номинальная мощность на валу (кВт).
  • Частота тока в сети (гц).
  • Номинальная частота вращения (об/мин).
  • Коэффициент полезного действия или к.п.д. (%).
  • Коэффициент мощности (cosf).
  • Класс изоляции.
  • Масса (кг) и тип электродвигателя.

Следует учесть, что обозначение мощности электродвигателя согласно его паспортным данным – это номинальная активная мощность, которая потребляется из сети при номинальной нагрузке на валу.

Однако довольно часто в процессе эксплуатации данные на табличке становятся нечитабельны (например, если двигатель подвергался окрашиванию), в таком случае параметры двигателя определяются методами измерений. В частности, мощность измеряется путем подключения электросчетчика (в режиме работы двигателя со штатной нагрузкой), для измерения потребляемого тока используются токоизмерительные клещи, мультиметр или амперметр и т.д.

Виды асинхронных электродвигателей по их конструктивному исполнению

В зависимости от степени защищенности электродвигатели делятся на:

  • Открытые. Они не очень распространены, т.к. не имеют специальных приспособлений, предотвращающих возможность прикосновения к токоведущим и вращающимся механизмам, а также попадания посторонних предметов внутрь агрегата.
  • Защищенные. Имеют вышеуказанные приспособления.
  • Каплезащищенные. Комплектуются элементами, позволяющими предотвратить попадание внутрь капель воды (при их вертикальном падении).
  • Закрытые. Внутренняя полость отделяется особой оболочкой, не позволяющей пыли проникнуть внутрь.
  • Взрывозащищенные. Имеют высшую степень защиты и поэтому могут применяться даже во взрывоопасных помещениях.

Кроме того, электродвигатели различаются по типу монтажа: вертикальные, фланцевые, интегрированные и пр.

Как обозначаются электродвигатели различных конструкций

Обычно используются следующие обозначения:

  • М101 – устанавливается горизонтально и фиксируется на лапах, приваренных к станине либо составляющих с ней единое целое.
  • М201 – также горизонтальная установка, но двигатель подвешивается на лапах, размещенных сверху на станине.
  • М301 – фланцевый двигатель с горизонтальной установкой; кольцевой фланец с центрирующей заточкой и отверстиями для болтов расположен на щите подшипника.
  • М302 – двигатель устанавливается вертикально (рабочий конец вала располагается в нижней части); закрепляется на подшипниковом щите с помощью фланца.
  • М303 – тип установки как у М302, но рабочий конец вала располагается наверху.
  • М102 – как М302, но закрепление производится на лапах.
  • М103 – как М102, но при установке рабочий конец вала находится сверху.
  • М202 – как М302, но закрепление осуществляется фланцем на щите и лапами на станине.
  • М203 – как М202, но конец рабочего вала находится в верхней части.

Расшифровка обозначений двигателей серии 4А

4 – серийный номер.

А – асинхронный двигатель.

2-я буква после А – способ защиты двигателя.

3-я буква после А – материал, из которого изготовлена станина и щиты.

2 или 3 числа – высота оси вращения в миллиметрах (50-355).

Буквы S, M, L – установочные размеры по длине станины (маленькая, средняя, длинная).

Цифры 2, 4, 6, 8, 10, 12 – число полюсов.

Конечные буквы и числа – климатическое выполнение и категория размещения.

Источник: https://www.szemo.ru/press-tsentr/article/oboznachenie-moshchnosti-elektrodvigatelya-i-prochikh-dannykh/

Онлайн расчет характеристик трехфазных электродвигателей

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Расчет мощности трехфазного электродвигателя

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

где:

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет тока трехфазного электродвигателя

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

где:

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

где:

  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет коэффициента мощности трехфазного электродвигателя

Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:

cosφ=P/√3UIη

где:

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет КПД трехфазного электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

где:

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросыНапишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник: https://elektroshkola.ru/kalkulyatory/onlajn-raschet-xarakteristik-trexfaznyx-elektrodvigatelej/

Ток, КПД и другие данные с шильдика электродвигателя

Электродвигатели встречаются в промышленности и быту повсеместно. Если Вы не обращали внимание, то я приведу парочку фото примеров:

Порой возникает необходимость, рожденная будничным любопытством, либо производственной необходимостью в определении мощности электродвигателя по внешнему виду.

Тут возможен вариант, что с него содрана табличка, на которой написаны номинальные параметры, либо же шильдик в таком состоянии, что различить ничего невозможно. Как же быть в такой ситуации

Одно дело, если Вы всю жизнь работали на производстве движков, и можете определить мощность на глаз. В иных случаях, определить поможет линейка (рулетка) и таблицы с габаритами механизмов.

Если Ваша деятельность больше лежит в теоретических изысканиях, нежели практических, то пригодится формула определения мощности ЭД или таблицы с номинальным данными, именно про это и не только в этой статье.

Бирка (шильдик) электродвигателя

Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.

Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны какой-то дрянью. Но, нам повезло. Пойдем по-порядку.

Первая строчка — число фаз и тип тока (3~), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции

Вторая строчка — тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения

Третья строчка — возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).

Четвертая строчка — номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.

Рассмотрим отдельные параметры более подробно.

Полная и активная мощность электродвигателя

Формула мощности трехфазного асинхронного двигателя:

Источник: https://pomegerim.ru/elektricheskie-mashiny/parametry-dvigateley-na-tabli4ke.php

Что следует учитывать при выборе асинхронного электродвигателя

При выборе асинхронных электродвигателей переменного тока часто не учитываются требования к конструкции, которые связаны с их применением в составе того или иного оборудования.

ЭТО ИНТЕРЕСНО:  Как узнать что аккумулятор полностью заряжен

Также обычно имеет место подход, основанный на универсальности электродвигателя, и тогда выбор зависит только от его напряжения, мощности и скорости вращения ротора.

Тем не менее есть еще целый ряд дополнительных аспектов для рассмотрения, таких как диапазон напряжения питания, сохранение номинальной мощности при изменении скорости вращения и область применения. Все это в итоге сводится к решению следующих вопросов: какова цель применения электродвигателя, как сделать все быстрее и эффективнее?

Базовые принципы выбора электродвигателя

Отправными точками для выбора асинхронного двигателя являются напряжение питания обмоток статора, создающего магнитное поле, а также номинальная мощность и скорость вращения ротора, которые соответствуют требованиям конкретного применения. Еще один, не менее важный момент — это необходимый вариант установки двигателя в приводе.

Должен ли двигатель иметь крепление на основании, или он будет помещен на фланец на конце привода, или же должен предоставлять обе возможности? Кроме того, необходимо учитывать характеристики окружающей среды, в которой будет эксплуатироваться двигатель.

При этом для выбора двигателя необходимо знать, потребуется ли ему работать под дождем и имеется ли вообще риск попадания на него воды, а также оценить уровень загрязнения и наличия пыли. Для эксплуатации в жестких условиях хорошо подходят электродвигатели закрытого типа с вентиляторным охлаждением (англ. totally enclosed fan cooled, TEFC) или электродвигатели закрытого типа без охлаждения (англ.

totally enclosed non-vented, TENV). Если среда, в которой будет использоваться двигатель, не загрязнена и он будет эксплуатироваться без риска попадания на него воды, то в этом случае может быть достаточно применения каплезащищенного электродвигателя открытого исполнения (англ. open drip proof, ODP).

Выбор инвертора

Благодаря усилиям лоббистов местных энергетических компаний в сочетании с преимуществами, получаемыми при возможности регулирования скорости вращения ротора двигателей, все более распространенными становятся частотно-регулируемые приводы (ЧРП, англ. variable frequency drive, VFD).

При их использовании особое внимание следует уделять генерации электромагнитных помех, которая характерна для таких приводов исходя из самой их природы.

Для того чтобы электродвигатель мог использоваться с ЧРП, необходимо учитывать несколько технических особенностей, которым должен удовлетворять подходящий по остальным характеристикам электродвигатель. Среди них можно выделить две главные:

Максимально допустимое напряжение изоляции обмоточных проводов статора электродвигателя.

Электрическая прочность изоляции провода, из которого выполнена обмотка статора асинхронного электродвигателя, находится в пределах 1000–1600 В, но, как правило, в документации указывается значение прочности изоляции, равное 1200 В. Однако чем больше воздушный зазор между приводом и двигателем, тем, естественно, бо́льшим скачкам переходного напряжения, воздействующим на двигатель, он может противостоять.

Электродвигатель, в котором для обмотки статора используется провод с электрической прочностью изоляции провода, равной 1600 В, может иметь ссылку на стандарт Национальной ассоциации производителей электрооборудования (NEMA, США) NEMA MG-1 2003, раздел 4, параграф 31, в котором говорится, что двигатель должен выдерживать без повреждений начальное напряжение коронного разряда (англ.

corona inception voltage, CIV) уровнем до 1600 В.

Коэффициент сохранения постоянного крутящего момента (CT) двигателя, часто упоминается как «xx: 1 CT».

Этот показатель дает представление о диапазоне регулирования скорости. По нему можно узнать, насколько может быть снижена скорость вращения ротора двигателя, при которой он будет работать с сохранением того же крутящего момента (англ. CT — constant torque, постоянный крутящий момент), что и при номинальной скорости. Ниже этого значения крутящего момента производительность асинхронного электродвигателя снижается.

Например, возьмем электродвигатель мощностью 10 л. с. с начальной скоростью 1800 об/мин. При номинальной скорости (около 1800 об/мин), как указано, он имеет крутящий момент 29 фунтов на фут.

Если в спецификации на электродвигатель написано, что коэффициент сохранения номинальной мощности составляет 10:1 CT, это означает, что такой электродвигатель может обеспечить номинальный крутящий момент до скорости 180 об/мин.

Если же указано, что электродвигатель имеет коэффициент сохранения номинальной мощности 1000:1 CT, то имеется в виду, что крутящий момент сможет сохранять номинальное значение до скорости 1,8 об/мин.

При этом необходимо учитывать еще один нюанс, который связан с охлаждением электродвигателя. Нужно обязательно уточнить у поставщика, будет ли электродвигатель перегреваться при длительной работе на малых оборотах.

Дело в том, что если двигатель охлаждается за счет крыльчатки, закрепленной на его валу, то на малых скоростях вы столкнетесь с низкой скоростью охлаждающего двигатель потока воздуха.

Если асинхронный электродвигатель работает на низкой скорости и в течение длительного времени используется с большим крутящим моментом, то он будет выделять много тепла — при таких условиях, возможно, придется остановить свой выбор на двигателе с иным методом охлаждения.

Например, для организации принудительного охлаждения можно применить воздуходувное устройство, имеющее собственный, отдельно управляемый двигатель. Производительность такого устройства не связана с системой управления электропривода. В этом случае воздушный поток, который обдувает мощный электродвигатель, будет постоянным и достаточным для его охлаждения при низкой или даже при нулевой скорости.

Связь мощности и крутящего момента

При выборе асинхронного электродвигателя еще одним важным аспектом является номинальная, или основная, скорость двигателя. Обычно используются двухполюсные (3600 об/мин) и четырехполюсные (1800 об/мин) электродвигатели.

Однако имеются и коммерчески доступные 6-, 8- и 12-полюсные асинхронные электродвигатели со скоростью вращения ротора 1200, 900
и 600 об/мин соответственно.

Номинальная скорость асинхронного электродвигателя напрямую связана с числом полюсов, которые такой двигатель конструктивно содержит (табл.), и определяется по следующей формуле:

Об/мин = (120 × частота) / N (число полюсов)

В качестве примечания необходимо отметить, что, хотя прямой связи здесь нет, но, как правило, с увеличением количества полюсов возрастают и размеры, а также стоимость электропривода.

https://www.youtube.com/watch?v=QihRrkIr3Ig

Кроме того, пользователям электроприводов, в зависимости от области применения данных устройств, может понадобиться обеспечить необходимый крутящий момент путем изменения скорости. В целом по мере увеличения скорости двигателя крутящий момент уменьшается, что также относится к редукторам и цепным приводам. Это соотношение объясняется следующим уравнением:

мощность (л. с.) = (крутящий момент × × номинальная скорость) / 5252

Крутящий момент, в соответствии с заданной целью, может быть достигнут путем выбора электродвигателя с необходимой мощностью и номинальной скоростью и реализован через любую цепную, ременную передачу или редуктор. Такой подход снижает стоимость привода, его габаритные размеры и время, уходящее на замену его подвижных заменяемых частей в ходе выполнения ремонта или технического обслуживания.

Таблица. Связь между числом полюсов, скоростью (об/мин) и крутящим моментом асинхронного электродвигателя
Число полюсов, N Скорость, об/мин Крутящий момент, л. с. / фут-фунт
2 3600 1,46
4 1800 2,92
6 1200 4,38
8 900 5,84
10 720 7,29
12 600 8,75

Примечание. Как правило, увеличение числа полюсов приводит к увеличению габаритов, а следовательно, и к повышению стоимости привода на основе асинхронного электродвигателя

Источник: https://controlengrussia.com/e-lektroprivod/vybor-asinhronnogo-jelektrodvigatelja/

Потребляемая, номинальная и гидравлическая мощность насоса

ОБЕСПЕЧИВАЕМ ПОЛНЫЙ ЦИКЛ РАБОТ: ВЫБОР ОБОРУДОВАНИЯ-МОНТАЖ-ГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ.

Номинальный ток электрического насоса

Информационные таблички центробежных электронасосов содержат техническую информацию о потребляемой мощности, номинальном токе, номинальной мощности электродвигателя и полезной гидравлической мощности насоса, представленной на усмотрение производителя максимальным напором и производительностью или рабочими полями.

От корректности выбора электронасоса по мощности напрямую зависит надежность и эффективность его работы. Давайте попробуем разобраться, что в случае электронасоса понимается под понятием мощности.

В целом понятие мощности для электронасоса равноправно охватывает как мощность, потребляемую электродвигателем из сети, так и механическую мощность, переданную валу электродвигателя и полученную гидравликой насоса. Одни производители указывают в информационной табличке насоса две мощности – потребляемую электрическую (P1) и номинальную механическую (P2).

Другие указывают только потребляемую мощность или только номинальную мощность. Нужно учесть , что номинальная мощность электродвигателя всегда меньше от потребляемой мощности и отличается на величину, определяемую характеристиками двигателя (КПД двигателя).

Потребляемой мощностью электродвигателя насоса называется электрическая мощность, потребляемая из источника питания. Потребляемая (электрическая) мощность обозначается на информационной табличке электронасоса Р1 или Pabs и измеряется в единицах мощности — Вт.

В соответствии с международными стандартами мощность двигателей переменного тока принято определяется номинальной мощностью на валу. Номинальными характеристиками производитель оборудования называет значения характеристик, полученные при предусмотренных расчетных параметрах без учета внешних корректирующих факторов.

Номинальной мощностью электроприбора принято называть мощность, для работы с которой в номинальном режиме оборудование предназначено изготовителем. Номинальная мощность электродвигателя насоса соответствует механической мощности при расчетных значениях температуры, напряжения, частоты, и силы тока, переданной валу и потребленной насосом.

Номинальная (механическая) мощность обозначается Р2 или Рном и измеряется в единицах механической мощности — Вт или лошадиных силах (международное обозначение л.с. – НP (horse power), 1 HP ≈ 750 Вт).

Номинальным током Iном электродвигателя называется ток, потребляемый электродвигателем при номинальном напряжении, частоте и механической мощности на валу, потребляемой насосом.

Нужно помнить, что номинальная мощность и номинальный ток характеризуют одну конкретно определенную точку – номинальную рабочую точку электронасоса.

Фактическая мощность и ток, потребляемый электродвигателем, напрямую зависят от фактической рабочей точки электронасоса — чем больше производительность центробежного электронасоса, тем больше потребляемая мощность и сила тока.

Из условия предотвращения перегрева электродвигателя и развития кавитационных явлений важным требованием есть использование насоса исключительно в пределах рабочего поля и характеристик, рекомендованных производителем. Соблюдение этого фундаментального требования гарантирует надежность работы и длительный срок службы насоса.

Определить полезную гидравлическую мощность, переданную насосом жидкости, можно по формуле:

Рhyd = g x ρ x Q x H, Вт, где

g – ускорение свободного падения, м/с2;

ρ – плотность жидкости, кг/м3;

Q – объемная скорость потока (производительность), м3/с;

Н – напор, м.

Гидравлическая мощность насоса всегда меньше номинальной (механической мощности на валу) мощности электродвигателя на значение, определяемое характеристиками и коэффициентом полезного действия насоса.

Заказать насос у менеджера

Мы рады предложить вам оборудование следующих брендов:

Источник: http://reinolds.com.ua/news/O-nasosah/moscnost-tok-nasosa.php

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как различить провода по цвету

Закрыть
Для любых предложений по сайту: [email protected]