Падение напряжения: расчет, формула, как найти
Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.
Что означает падение напряжения
Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.
Мнемоническая диаграмма для закона Ома
Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.
Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.
Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.
Вам это будет интересно Как выбрать цветовую температуруЗакон Ома для участка цепи
Допустимое падение напряжение в кабеле
Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок.
Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %.
Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.
Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.
Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.
Падение напряжения на резисторе
Проверка кабеля по потере напряжения
Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.
Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:
- при освещении и сигнализации при напряжении более 50 вольт – 5 %;
- при освещении и сигнализации при напряжении 50 вольт – 10 %;
- при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
- при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
- при пуске двигателей – 25 %;
- при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
- при подаче электричества в генераторы и распределительный щит – 1 %.
Вам это будет интересно Особенности реактивного сопротивления
Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.
Пример калькулятора для автоматизации вычислений
Как найти падение напряжения и правильно рассчитать его потерю в кабеле
Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.
Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:
- определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
- определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
- определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
- определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).
Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.
Таблица значений индуктивных сопротивлений
В трехфазной сети
Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.
Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле
Формула расчета
Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.
Пример таблицы
Потери напряжения определены следующей формулой:
ΔU = ΔUтабл * Ма;
Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.
Вам это будет интересно Особенности закона Ома для переменного токаОднолинейная схема линии трехфазного тока
На участке цепи
Для того, чтобы провести замер потери напряжения на участке цепи, следует:
- Произвести замер в начале цепи.
- Выполнить замер напряжения на самом удаленном участке.
- Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.
Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.
Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).
Образец калькулятора для вычисления потерь
Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.
Источник: https://rusenergetics.ru/polezno-znat/padenie-napryazheniya
Расчёт резистора для светодиода, формулы и калькулятор
Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.
Расчет гасящего резистора для светодиода
Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.
Рис. 1. Схема подключения светодиода к источнику питания через резистор.
Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.
Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.
Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.
Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):
- красный — 1,82В;
- зеленый и желтый — 22,4В;
- белые и синие — 33,5В.
Допустим что мы будем использовать синий светодиод, падение напряжения на нем — 3В.
Производим расчет напряжения на гасящем резисторе:
Uгрез = Uпит — Uсвет = 5В — 3В = 2В.
Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.
Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:
R = U / I = 2В / 0,02А = 100 Ом.
В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:
P = U * I = 2В * 0,02А = 0,04 Вт.
Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).
Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).
Uгрез = Uпит — Uсвет = 5В — 2В = 3В.
R = U / I = 3В / 0,015А = 200 Ом.
P = U * I = 3В * 0,015А = 0,045 Вт.
Простой калькулятор для расчета гасящего резистора
Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:
Форму прислал Михаил Иванов.
Заключение
При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.
Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.
Источник: https://radiostorage.net/3811-raschyot-rezistora-dlya-svetodioda-formuly-i-kalkulyator.html
Упрощенные методы анализа схем с диодами с прямым смещением
В данной статье описываются два метода, которые мы используем для оценки токов и напряжений, присутствующих в цепи, которая включает в себя один или несколько диодов.
Что делает диодные схемы настолько сложными для анализа?
Мы уже обсуждали экспоненциальную зависимость тока от напряжения у диодов с прямым смещением. В этой статье мы узнаем, как использовать понимание этой связи тока и напряжения для выполнения простого анализа диодных схем.
Анализ диодных схем
Диоды усложняют анализ цепи, поскольку имеют нелинейную вольт-амперную характеристику. Другими словами, диод не имеет единственного числового значения, которое фиксирует математическую связь между током и напряжением.
Для резистора это единственное числовое значение является сопротивлением, и, следовательно, когда мы строим для резистора зависимость между током и напряжением, мы получаем прямую линию. С типовым кремниевым диодом, напротив, график нелинейной ВАХ выглядит как экспоненциальная кривая, показанная ниже.
Рисунок 1 – Вольт-амперная характеристика диода
Метод 1: Диод как ключ
Самый безболезненный (и наименее точный) способ анализа диодных цепей – сделать вид, что диод является ключом, управляемым напряжением, который работает для электрического тока как идеальный односторонний клапан. Если напряжение на этом «ключе» больше 0 В, ток течет свободно, без какого-либо сопротивления или падения напряжения. Если напряжение на «ключе» меньше или равно 0 В, ток не течет совсем.
Первым шагом в этом типе анализа является допущение, что диод находится в режиме проводимости или непроводимости. Любое предположение приведет к правильным результатам, поэтому просто сделайте свою лучшую догадку. Если предполагается, что диод находится в режиме проводимости, сохраните его на схеме, но обращайтесь с ним как куском провода. Если предполагается, что диод не проводит ток, замените его разрывом в цепи.
Теперь приступите к анализу и проверьте, что результаты имеют смысл. Если напряжение на предполагаемой разомкнутой цепи больше нуля, предположение было неверным – этот диод на самом деле проводит ток. Если ток, протекающий через проводящий диод, направляется от катода к аноду, то предположение было неверным – мы ограничиваем наш анализ диодами с прямой проводимостью, поэтому ток, протекающий от катода к аноду, указывает на то, что диод на самом деле не проводит ток.
Рисунок 2 – Схема вверху представляет исходную схему. В левом нижнем углу диод считается непроводящим и был заменен разрывом цепи. Справа внизу предполагается, что диод является проводящим и заменен на соединение с нулевым сопротивлением.
Этот метод может показаться довольно примитивным, но на самом деле это удобный способ выполнить быстрый предварительный анализ.
Это особенно полезно, когда в цепи присутствуют напряжения, которые достаточно велики по сравнению с обычными прямыми напряжениями диодов, или когда цепь содержит несколько диодов, и основной проблемой является определение, какие из них являются проводящими.
Метод 2: Подход с постоянным падением напряжения
Когда мы используем метод, описанный в предыдущем разделе, мы анализируем схему, как будто диоды идеальны, то есть они работают для тока как идеальные односторонние клапаны. Мы можем сделать этот метод намного более реалистичным, просто добавив идеальную батарею, которая представляет падение напряжения на диоде.
Батарея становится внутренней частью всего компонента диода, как показано на следующей схеме.
Рисунок 3 – Условное обозначение диода представляет идеальный диод, и батарея делает две вещи: она изменяет пороговое условие для проводимости и создает падение напряжения, которое присутствует, когда диод проводит ток.
Поскольку напряжение идеальной батареи является фиксированным и постоянным, этот метод анализа соответствует упрощенной модели диода, состоящей из двух дискретных состояний: если напряжение между анодом и катодом на диоде меньше 0,7 В, диод заперт и действует как разомкнутая цепь; если напряжение больше или равно 0,7 В, диод проводит ток с нулевым сопротивлением, но вызывает падение напряжения на 0,7 В (вам не обязательно использовать значение 0,7 В в качестве постоянного падения напряжения, но это стандартный выбор для типовых кремниевых диодов).
Понимание модели с постоянным падением напряжения
Если вам непонятно, как работает эта модель, обратите внимание, что полярность батареи противоположна направлению прямого тока, протекающего через диод.
Таким образом, ток не может течь от анода к катоду, пока прямое напряжение не превысит напряжение батареи, а это означает, что батарея создает пороговое условие для проводимости диода.
Также обратите внимание, что батарея не создает паразитный ток, который мешает нашему анализу схемы, потому что идеальный диод не позволяет току течь в направлении от катода к аноду.
После перехода в режим проводимости напряжение батареи становится обычным падением напряжения. Опять же, давайте рассмотрим полярность батареи.
Представьте себе резистор на месте батареи; мы представили бы падение напряжения на резисторе, нарисовав плюс слева и минус справа, и мы знаем, что эта ориентация указывает на падение напряжения при движении по пути прохождения тока.
Батарея имеет ту же ориентацию полярности, и, таким образом, она также представляет падение напряжения, в этом случае вызванное диодом, а не резистора.
Далее: более сложные методы анализа диодных схем
Мы рассмотрели экспоненциальную зависимость тока от напряжения у диода и два метода упрощения анализа схем, заменив эту экспоненциальную зависимость чем-то более простым. В следующей статье мы обсудим более сложные методы анализа.
Оригинал статьи:
Теги
Анализ цепейДиодПрямое смещение диода
Источник: https://radioprog.ru/post/811
Как рассчитать сопротивление для понижения напряжения: формула падения на резисторе, онлайн-калькулятор
Резистор является одним из самых распространённых элементов в электрической цепи. С его помощью ограничивается ток и изменяется напряжение. Конструируя схемы, часто может понадобится рассчитать сопротивление для понижения напряжения. Это актуально при построении делителей цифровых устройств или блоков питания, поэтому уметь выполнять такие вычисления должен каждый радиолюбитель.
Резистор — это элемент, использующийся в электрической цепи и не требующий для своей работы источника питания. Предназначен он для трансформирования силы тока в напряжение и обратно. Кроме этого, он может преобразовывать электрическую энергию в тепловую и ограничивать величину тока. Но перед расчётом падения напряжения на резисторе желательно разобраться в сути этого процесса.
Резистор — весьма распространённый элемент, характеризующийся рядом параметров. Основными из них являются:
- сопротивление;
- величина рассеиваемой энергии;
- рабочее напряжение;
- мощность;
- устойчивость к влиянию окружающей среды;
- паразитная составляющая.
Пассивный электрический элемент обозначается на схеме в виде прямоугольника с двумя выводами из середины его боковых сторон. В центре фигуры может указываться мощность римскими цифрами или чёрточками. Например, вертикальная полоска обозначает выдерживаемую мощность элемента, равную 1 Вт. Перечёркнутый прямоугольник в обозначениях на схеме указывает, что такой резистор является переменным.
Резисторы могут выпускаться с постоянным и переменным сопротивлением. Разновидностью вторых являются подстроечные элементы. Отличие их от переменных заключается лишь в способе установки нужного значения.
На схемах и в технической литературе устройство обозначается латинской буквой R, рядом с которой указывается порядковый номер и его номинал в соответствии с Международной системой единиц (СИ). Например, R12 5 кОм — резистор на пять килоом, расположенный в схеме под 12 номером.
При изготовлении элемента используется резистивный слой, который может быть плёночным или объёмным. Он наносится на диэлектрическое основание, а сверху покрывается защитной плёнкой.
Значение сопротивления
Сопротивление является фундаментальной величиной в электрических процессах. Его значение неизменно связано с током и напряжением. Их общая зависимость описывается с помощью закона Ома: сила тока, возникшая на участке цепи, прямо пропорциональна разности потенциалов между крайними точками этого участка и обратно пропорциональна его сопротивлению. Из этого закона находится сопротивление по следующей формуле:
R = U / I, где:
- R — сопротивление на участке цепи, Ом.
- I — сила тока, проходящая через этот участок, А.
- U — разность потенциалов на узлах части схемы, В.
Фактически же сопротивление элемента определяется его физической структурой и обусловлено колебаниями атомов в кристаллической решётке. Поэтому все материалы различаются на проводники, полупроводники и диэлектрики в зависимости от способности проводить электричество.
Ток — это направленное движение носителей заряда. Для его возникновения необходимо, чтобы вещество имело свободные электроны. Если к такому физическому телу приложить электрическое поле, то перемещаемые им заряды начнутся сталкиваться с неоднородностями структуры.
Эти дефекты образуются из-за различных примесей, нарушения периодичности решётки, тепловых флуктуаций. Ударяясь о них, электрон расходует энергию, которая преобразовывается в тепловую. В результате заряд теряет импульс, а величина разности потенциалов уменьшается.
Но закон Ома можно применить не для всех веществ. В электролитах, диэлектриках и полупроводниках линейная зависимость между тремя величинами наблюдается не всегда. Сопротивление таких веществ зависит от физических параметров проводника, а именно — его длины и площади поперечного сечения, при этом оно чувствительно к изменению температуры.
Эта зависимость описывается с помощью формулы R = p * l / S. То есть сопротивление прямо пропорционально длине и обратно пропорционально площади проводника. Величина p называется удельным сопротивлением и определяется типом материала. Его значение берётся из справочника.
Импеданс резистора
Закон Ома применим для идеального резистора, не обладающего паразитными сопротивлениями. Полное сопротивление (импеданс) определяется исходя из эквивалентной схемы. Точный расчёт сопротивления для понижения напряжения необходимо проводить по другим формулам. Эквивалентная схема резистора, кроме активного импеданса, содержит также ёмкостное и индуктивное сопротивление.
Первое приводит к медленному накоплению заряда, который рассеивается при изменении направления тока. Чем больше паразитная ёмкость, тем дольше она заряжается. Соответственно, чем быстрее ток изменяет своё направление, тем меньше его ёмкостное сопротивление. Второе же характеризуется магнитным полем, чье появление мешает току изменять направление, поэтому, чем быстрее ток изменяет своё движение, тем больше становится индуктивное сопротивление.
Импеданс вычисляется по формуле: I = U/Z, где Z = (R2+(Xc-Xl)2)½. Где:
- R — активное значение, R = p*l/s.
- Xc — ёмкостная величина, Хс = 1/w*C.
- Xl — индуктивная величина, Хl = w*C.
- w- циклическая частота, w = 2πƒ.
Зная полное сопротивление резистора, можно точнее рассчитать падение напряжения в нём. Но для измерения паразитных составляющих понадобится использовать узкоспециализированные приборы. В обычных расчётах сопротивление вычисляют, учитывая только его активное значение, а паразитные величины принимают за ничтожно малые.
Параллельное соединение
В электрических схемах на участках цепи используется как параллельное, так и последовательное соединение. Первое представляет собой цепь, в которой каждый её элемент подключён к другому обоими контактами, но при этом между собственными его выводами нет прямой электрической связи. Т. е. существует две точки (электрические узлы), к которым присоединено несколько резисторов.
При таком включении ток, проходя через узел, начинает разделяться, и через каждый элемент потечёт разное его значение. Величина тока на каждом элементе будет прямо пропорциональна сопротивлению резистора, поэтому общая проводимость на этом участке увеличится, а её импеданс уменьшится.
Формула, с помощью которой можно рассчитать общую проводимость, выглядит так: G = 1/ Rобщ = 1/ R1 + 1/ R2 ++ 1/ Rn, где n — обозначает порядковый номер резистора в цепи.
Преобразовав эту формулу, получится выражение вида: R общ = 1/G = (R1*R2** Rn) / (R1*R2 + R2*Rn ++ R1*Rn. Проанализировав его, можно сделать вывод, что при параллельном соединении импеданс всегда будет меньше самого маленького значения отдельного резистора.
При таком соединении напряжение между узлами одновременно является общей разностью потенциалов для всего участка и на каждом отдельно взятом резисторе. Поэтому если рассчитать падение напряжения на одном приборе, то оно будет таким же на любом параллельно подключённом элементе: U общ = U 1 = U 2 == U n.
А вот электрический ток, проходящий через отдельный элемент, исходя из закона Ома будет равен: I Rn = U Rn / R n.
Последовательное включение
Так называется объединение в один участок цепи двух или более резисторов, в котором их соединение между собой происходит только в одной точке. Импеданс при последовательном включении определяется как сумма сопротивлений каждого отдельного элемента: Rобщ = R1+R2++Rn.
Следовательно, ток, протекающий через такую цепочку, будет становиться всё меньше после прохождения через последовательно включённый резистор. Чем будет больше элементов в цепи, тем труднее ему будет пройти их всех. Таким образом, его общее значение определяется как Iобщ = U / (R1+R2++Rn).
Поэтому можно утверждать, что в последовательном соединении существует только один путь для протекания тока. Чем будет больше количество резисторов в линии, тем меньше будет ток на этом участке.
Падение разности потенциалов при таком типе соединения на каждом элементе будет иметь своё значение. Оно определяется формулой URn = IRn*Rn, и чем больше будет импеданс элемента, тем больше энергии в нём начнёт выделяться.
Расчёт делителя напряжения
Резистивный делитель напряжения представляет элементарную схему для понижения напряжения. Состоять он может из двух или более элементов. Простейший делитель можно представить в виде двух участков цепи, которые называют плечами. Одно из них, которое располагается между положительной точкой потенциала и нулевой, — верхнее, а другое, между отрицательной и минусовой, — нижнее.
Такая схема используется для снижения напряжения как в постоянных, так и переменных цепях. Суть процесса заключается в следующем.
- На резистивную схему от источника питания подаётся напряжение U.
- Через резисторы последовательного участка цепи, образованного резисторами R1 и R2, начинает протекать ток.
- В результате на каждом из них выделяется какое-то количество энергии, т. е. возникает падение напряжения.
Сумма напряжений на всём размахе линии равняется значению разности потенциалов источника питания. В соответствии с формулой: U = I*R падение напряжения прямо пропорционально силе тока и величине сопротивления. Учитывая, что ток, протекающий через резисторы, одинаковый, справедливыми будут формулы U1 = I*R1 и U2= I*R2.
Тогда общее падение напряжение на участке будет равно U = I *(R1+ R2). Исходя из этого можно найти силу тока: I = U /(R1+ R2). Используя эти два выражения, можно получить окончательные формулы для расчёта падения напряжения на каждом элементе:
- U1 = R1*U/(R1+R2);
- U2 = R2*U/(R1+R2).
Практическое применение такого делителя очень распространено из-за несложности реализации понижения напряжения. Например, пусть источник питания выдаёт 12 В, а на нагрузку необходимо подать 6 В, при этом её сопротивление составляет 10 кОм.
Для решения такой задачи рекомендуется использовать резисторы, сопротивление которых в десять раз меньше нагрузочного значения, поэтому, приняв R 1 = 1 кОм и подставив все известные значения в формулу напряжения на резисторе, получится, что 6 = R 2*12 (1000+ R 2) отсюда R 2 = 1 кОм.
Теперь, зная все величины, можно проверить верность расчёта. Падение разности потенциалов на первом элементе высчитывается как U 1 = 1000*12/(1000+1000) = 6 В, а общее напряжение — Uобщ = U 1+ U 2 = 12 В, что соответствует значению источника питания.
Следует отметить, что использование резисторов для понижения используется только при маломощных нагрузках, так как часть энергии превращается в тепло, а коэффициент полезного действия (КПД) очень низкий.
Вычисления онлайн
С помощью языков программирования (Java, Python, PHP) создаются приложения, позволяющие проводить онлайн-расчёт необходимых параметров резистора для снятия с него нужной величины напряжения. Написанные ими скрипты содержат все необходимые формулы и алгоритмы вычислений. Поэтому, введя исходные данные, буквально через секунду можно будет получить результат.
Обычно предлагаемы онлайн-калькуляторы содержат для наглядности графическое изображение схемы. Предлагаемыми для ввода характеристиками обычно являются:
- входное напряжение, В;
- пониженное напряжение, В;
- сопротивление Rn, Ом.
Необходимо обратить внимание, что все величины вводятся в соответствии с СИ.
После внесения данных и нажатия кнопки «Рассчитать», кроме непосредственного определения нужного сопротивления, программы чаще всего выдают и минимальное значение необходимой мощности элементов.
Таким образом, рассчитать падение напряжения на резистивном элементе не так уж и сложно. Для этого необходимо знать особенности параллельного и последовательного подключения, а также закон Ома. А если в цепи много элементов, то можно воспользоваться онлайн-калькуляторами.
Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/formuly-pozvolyayuschie-rasschitat-soprotivlenie-dlya-ponizheniya-napryazheniya.html
Как рассчитать падение напряжения по длине кабеля по формуле и таблице
При передаче электрического тока возможна неравномерная работа потребителей на различных участках цепи. Причин такого явления может быть несколько, и основной из них является падение напряжения.
Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.
Через силу тока и сопротивление
Значение | Формула |
Базовый расчёт напряжения на участке цепи | U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах |
Определение напряжения в цепи переменного тока | U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи |
Закон Ома имеет исключения для применения:
- При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
- При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
- Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
- При нахождении под воздействием высокого напряжения проводников или диэлектриков.
- Во время процессов, проходящих в устройствах на основе полупроводников.
- При работе светодиодов.
Через мощность и силу тока
При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.
При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.
При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.
Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.
Через работу и заряд
Методика расчёта используется в лабораторных задачах и на практике не применяется.
Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.
Расчёт сопротивления
При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.
Значение | Формула |
Расчет сопротивления одного элемента | R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах |
Расчет для однородного проводника | R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2) |
Последовательное подключение
При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2++Rn, где R=R1+R2++Rn — значения сопротивления элементов в Омах.
Параллельное подключение
Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.
Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2++1/Rn.
В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.
Потери напряжения
Потеря напряжения представляет собой расход электрической энергии на преодоление сопротивления и нагревание проводов.
Падение напряжения происходит при работе различных электронных компонентов, например, диодов. Складывается оно из суммы порогового напряжения p-n перехода и проходящего через диод тока, умноженного на сопротивление.
При прохождении тока через резистор также наблюдается падение напряжения. Этот эффект используется для снижения напряжения на отдельных участках цепей. Например, для использования приборов рассчитанных на низкое напряжение в цепях с высоким значением напряжения.
Последовательное включение сопротивления
На схеме приведен пример последовательного включения резистора, который вызывает падение напряжения на лампе с 12 до 7 Вольт. На этом принципе построены регуляторы интенсивности освещения (диммеры).
При эксплуатации проводки с длиной до 10 метров потерями напряжения можно пренебречь.
Потеря напряжения на резисторе и способы замера показаны в видео от канала «Радиолюбитель TV».
К чему приводит потеря напряжения
Потери напряжения в кабельной системе являются причинами ряда негативных явлений:
- неполноценная и некорректная работа потребителей;
- повреждение и выход из строя оборудования;
- понижение мощности и крутящего момента электродвигателей (особенно заметное в момент пуска);
- неравномерное распределение тока между потребителями на начальном участке и в конце цепи;
- из-за работы ламп на неполном накале происходит неполное использование мощности тока, что ведет к потерям электроэнергии.
От чего зависит потеря
Потеря напряжения в цепях переменного и постоянного напряжения имеет зависимость от силы тока и сопротивления проводника. При увеличении указанных параметров потери напряжения возрастают. Кроме того, на потерю оказывает влияние конструкция кабелей. Плотность прижатия и степень изоляции проводников в кабеле превращают его в конденсатор, который формирует заряд с ёмкостным сопротивлением.
Потеря напряжения на диодах зависит от типа материала. При использовании германия значение лежит в пределах 0,5-0,7 вольта, на более дешевых кремниевых значение увеличивается и достигает 0,7-1,2 вольта. При этом падение не зависит от напряжения в цепи, а зависит только от силы тока.
К основным причинам потерь тока в магистралях относят:
- При прохождении тока происходит нагрев проводника и дополнительное формирование ёмкостного сопротивления, являющегося частью реактивного. При возникновении реактивной нагрузки возникает эффект неполной реализации энергии, частичного отражения от нагрузки и возникновения циркулирующих паразитных токов.
- При больших реактивных сопротивлениях возникают скачки напряжения и силы тока, а также дополнительный разогрев проводки.
- Индуктивная мощность, возникающая при работе обмоток трансформаторов.
Ещё одной причиной падения напряжения на линиях является воровство электроэнергии.
В бытовых условиях потери напряжения зависят от ряда факторов:
- затраты энергии на нагрев проводки из-за повышенного потребления;
- плохой контакт на соединениях;
- емкостный и индуктивный характер нагрузки;
- применение устаревших потребителей.
Причины снижения напряжения изложены в видео от канала ElectronicsClub.
Допустимые значения
Значение потери напряжения относится к регламентированным значениям и нормируется несколькими правилами и инструкциями ПУЭ (Правила устройства электроустановок).
Источник: https://razvodka.net/wiring/napryazhenie-formula-7232/
Расчет резистора для понижения напряжения. Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор
Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.
Пример 2
Общий ток цепи, содержащей два соединенных параллельно резистораR 1 =70 Ом иR 2 =90 Ом, равен 500 мА. Определить токи в каждом из резисторов.
Два последовательно соединенных резистора ничто иное, как делитель тока . Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.
Токи в резисторах
В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.
Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала
Выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи , создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.
Помимо номинального сопротивления, одним из наиболее важных параметров резистора является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность — это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.
Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А),
- P(Вт) — мощность,
- U(В) — напряжение,
- I(А) — ток.
Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт — 0,5 Ватт в данном случае — минимум.
Мощность резистора может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:
- 0.125 Вт
- 0.25 Вт
- 0.5 Вт
- Более 2 Вт
Рассмотрим на примере: номинальное сопротивление нашего резистора тока — 100 Ом. Через него течет ток 0,1 Ампер. Чтобы , на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом),
- P(Вт) — мощность,
- R(Ом) — сопротивление цепи (в данном случае резистора),
- I(А) — ток, протекающий через резистор.
Внимание! При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А. Это же касается и других величин.
Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)
Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор с мощностью в 1,5 — 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.
Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:
Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.
Например, нам необходимо произвести замену резистора тока сопротивлением 100 Ом. Ток, протекающий через него — 0,1 Ампер. Соответственно, его мощность — 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом — 0,2 Вт, мощность резистора на 80 Ом — 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:
R2 — 80 Ом (1 Вт)
Из всего вышесказанного можно сделать вывод, что разное сопротивление резисторов гарантирует их разную выделяемую мощность, так как она распределяется между резисторами разных номиналов. Если не учитывать это обстоятельство, то можно столкнуться с большим количеством трудностей. Если один из резисторов выбран неправильно — второй работает в тяжелом температурном режиме. Также присутствует угроза возгорания резистора из-за несоблюдения правил мощности.
Для того, чтобы сэкономить время и не рассчитывать мощность каждого отдельного резистора тока нужно запомнить одно простое правило: мощность заменяемого резистора должна быть равна мощности каждого резистора, составляющего параллельную или последовательную цепь. То есть при замене резистора мощностью 0,5 Вт надо следить за тем, чтобы каждый из резисторов для замены имел мощность не менее 0,5 Вт.
При параллельном соединение резисторов важно помнить, что чем меньше сопротивление резистора, тем больший ток через него протекает, а значит на нем будет рассеяна большая мощность.
Понятия и формулы
На каждом сопротивлении r при прохождении тока I возникает напряжение U=I∙r, которое называется обычно падением напряжения на этом сопротивлении.
Если в электрической цепи только одно сопротивление r, все напряжение источника Uист падает на этом сопротивлении.
Если в цепи имеются два сопротивления r1 и r2, соединенные последовательно, то сумма напряжений на сопротивлениях U1=I∙r1 и U2=I∙r2 т. е. падений напряжения, равна напряжению источника: Uист=U1+U2.
Напряжение источника питания равно сумме падений напряжения в цепи (2-й закон Кирхгофа).
Примеры
1. Какое падение напряжения возникает на нити лампы сопротивлением r=15 Ом при прохождении тока I=0,3 А (рис. 1)?
Рис. 1.
Падение напряжения подсчитывается : U=I∙r=0,3∙15=4,5 В.
Напряжение между точками 1 и 2 лампочки (см. схему) составляет 4,5 В. Лампочка светит нормально, если через нее проходит номинальный ток или если между точками 1 и 2 номинальное напряжение (номинальные ток и напряжение указываются на лампочке).
2. Две одинаковые лампочки на напряжение 2,5 В и ток 0,3 А соединены последовательно и подключены к карманной батарее с напряжением 4,5 В. Какое падение напряжения создается на зажимах отдельных лампочек (рис. 2)?
Рис. 2.
Одинаковые лампочки имеют равные сопротивления r. При последовательном включении через них проходит один и тот же ток I. Из этого следует, что на них будут одинаковые падения напряжения, сумма этих напряжений должна быть равна напряжению источника U=4,5 В. На каждую лампочку приходится напряжение 4,5:2=2,25 В.
Можно решить эту задачу и последовательным расчетом. Сопротивление лампочки рассчитываем по данным: rл=2,5/0,3=8,33 Ом.
Ток в цепи I = U/(2rл)=4,5/16,66=0,27 А.
Падение напряжения на лампочке U=Irл=0,27∙8,33=2,25 В.
3. Напряжение между рельсом и контактным проводом трамвайной линии равно 500 В. Для освещения используются четыре одинаковые лампы, соединенные последовательно. На какое напряжение должна быть выбрана каждая лампа (рис. 3)?
Рис. 3.
Одинаковые лампы имеют равные сопротивления, через которые проходит один и тот же ток. Падения напряжения на лампах будут тоже одинаковыми. Значит, на каждую лампу будет приходиться 500:4=125 В.
4. Две лампы мощностью 40 и 60 Вт с номинальным напряжением 220 В соединены последовательно и включены в сеть с напряжением 220 В. Какое падение напряжения возникает на каждой из них (рис. 4)?
Рис. 4.
Первая лампа имеет сопротивление r1=1210 Ом, а вторая r2=806,6 Ом (в нагретом состоянии). Ток, проходящий через лампы, I=U/(r1+r2)=220/2016,6=0,109 А.
Падение напряжения на первой лампе U1=I∙r1=0,109∙1210=132 В.
Падение напряжения на второй лампе U2=I∙r2=0,109∙806,6=88 В.
На лампе с большим сопротивлением большее падение напряжения, и наоборот. Накал нитей обеих ламп очень слаб, однако у лампы 40 Вт он несколько сильнее, чем у лампы 60 Вт.
5. Чтобы напряжение на электродвигателе Д (рис. 5) было равно 220 В, напряжение в начале длинной линии (на электростанции) должно быть больше 220 В на величину на линии. Чем больше сопротивление линии и ток в ней, тем больше падение напряжения на линии.
Рис. 5.
В нашем примере падение напряжения в каждом проводе линии равно 5 В. Тогда напряжение на шинах электростанции должно быть равно 230 В.
6. От аккумулятора напряжением 80 В потребитель питается током 30 А. Для нормальной работы потребителя допустимо 3% падения напряжения в проводах из алюминия с сечением 16 мм2. Каким может быть максимальное расстояние от аккумулятора до потребителя?
Допустимое падение напряжения в линии U=3/100∙80=2,4 В.
Сопротивление проводов ограничивается допустимым падением напряжения rпр=U/I=2,4/30=0,08 Ом.
По формуле для определения сопротивления подсчитаем длину проводов: r=ρ∙l/S, откуда l=(r∙S)/ρ=(0,08∙16)/0,029=44,1 м.
Если потребитель будет отдален от аккумулятора на 22 м, то напряжение на нем будет меньше 80 В на 3%, т.е. равным 77,6 В.
7. Телеграфная линия длиной 20 км выполнена из стального провода диаметром 3,5 мм. Обратная линия заменена заземлением через металлические шины. Переходное сопротивление между шиной и землей rз=50 Ом. Каким должно быть напряжение батареи в начале линии, если сопротивление реле на конце линии rр=300 Ом, а ток реле I=5 мА?
Рис. 6.
Схема включения показана на рис. 6. При нажатии телеграфного ключа в месте посылки сигнала реле в месте приема на конце линии притягивает якорь К, который в свою очередь включает своим контактом катушку записывающего аппарата. Напряжение источника должно компенсировать падение напряжения в линии, принимающем реле и переходных сопротивлениях заземляющих шин: U=I∙rл+I∙rр+I∙2∙rз; U=I∙(rл+rр+2∙rз).
Напряжение источника равно произведению тока на общее сопротивление цепи.
Сечение провода S=(π∙d2)/4=(π∙3,52)/4=9,6 мм2.
Сопротивление линии rл=ρ∙l/S=0,11∙20000/9,6=229,2 Ом.
Результирующее сопротивление r=229,2+300+2∙50=629,2 Ом.
Напряжение источника U=I∙r=0,005∙629,2=3,146 В; U≈3,2 В.
Падение напряжения в линии при прохождении тока I=0,005 А будет: Uл=I∙rл=0,005∙229,2=1,146 В.
Сравнительно малое падение напряжения в линии достигается благодаря малой величине тока (5 мА). Поэтому в месте приема должно быть чувствительное реле (усилитель), которое включается от слабого импульса 5 мА и своим контактом включает другое, более мощное реле.
8. Как велико напряжение на лампах в схеме на рис. 28, когда: а) двигатель не включен; б) двигатель запускается; в) двигатель в работе.
Двигатель и 20 ламп включены в сеть с напряжением 110 В. Лампы рассчитаны на напряжение 110 В и мощность 40 Вт. Пусковой ток двигателя Iп=50 А, а его номинальный ток Iн=30 А.
Подводящий медный провод имеет сечение 16 мм2 и длину 40 м.
Из рис. 7 и условия задачи видно, что ток двигателя и ламп вызывает в линии падение напряжения, поэтому напряжение на нагрузке будет меньше 110 В.
Рис. 7.
U=2∙Uл+Uламп.
Отсюда напряжение на лампах Uламп=U-2∙Uл.
Надо определить падение напряжения в линии при различных токах: Uл=I∙rл.
Сопротивление всей линии
2∙rл=ρ∙(2∙l)/S=0,0178∙(2∙40)/16=0,089 Ом.
Ток, проходящий через все лампы,
20∙Iламп=20∙40/110=7,27 А.
Падение напряжения в линии, когда включены только лампы (без двигателя),
2∙Uл=Iламп∙2∙rл=7,27∙0,089=0,65 В.
Напряжение на лампах в этом случае равно:
Uламп=U-2∙Uл=110-0,65=109,35 В.
При пуске двигателя лампы будут светить слабее, так как падение напряжения в линии больше:
2∙Uл=(Iламп+Iдв)∙2∙rл=(7,27+50)∙0,089=57,27∙0,089=5,1 В.
Минимальное напряжение на лампах при пуске двигателя будет:
Uламп=Uс-2∙Uл=110-5,1=104,9 В.
Когда двигатель работает, падение напряжения в линии меньше, чем при пуске двигателя, но больше, чем при выключенном двигателе:
2∙Uл=(Iламп+Iном)∙2∙rл=(7,27+30)∙0,089=37,27∙0,089=3,32 В.
Напряжение на лампах при нормальной работе двигателя равно:
Uламп=110-3,32=106,68 В.
Даже небольшое снижение напряжения на лампах относительно номинального сильно влияет на яркость освещения.
- Карта сайта
- Обратная связь
Источник: https://svetvtebe.ru/calculation-of-the-resistor-to-lower-the-voltage-voltage-divider-on-resistors/
Падение напряжения
Для того чтобы понять, что такое падение напряжения, нужно вспомнить, какие бывают напряжения в электрической цепи. Всего их существует два вида. Напряжение источника питания относится к первому виду, источник должен быть подключен к контуру. Вторым видом является само снижение напряжения, оно может быть рассмотрено как отдельный элемент или в отношении всего контура.
Если взять лампу накаливания, установит в патрон и подключить провода от него в сетевую розетку, то напряжение, приложенное к цепи, составит 220В. Но если замерить вольтметром его значение на лампе, то станет понятно, что оно менее 220В. Это происходит потому, что появляется на электрическом сопротивлении снижение напряжения, которое имеет лампа. Это постепенное уменьшение напряжения в проводнике, по которому протекает ток, оно обусловлено тем, что проводник имеет активное сопротивление.
Также под уменьшением напряжения подразумевают величину при переходе из одной точки в другую (в цепи). Расчет падения напряжения можно просчитать по формуле: U=IR, где R – это сопротивление, I – это сила тока.
Роль электрической энергии
Электрическая энергия – это движение отрицательно заряженных электронов по проводнику. В выше приведенном примере спираль лампы имеет высокое сопротивление, значительно замедляет движущиеся электроны. Благодаря чему появляется свечение, но при этом энергия потока электронов снижается.
С уменьшением тока снижается и напряжение, поэтому замеры на лампе и розетки отличаются. Такая разница и будет являться снижением напряжения. Такая величина постоянно учитывается для того, чтобы предотвратить большое уменьшение напряжения.
Напряжение на резисторе
Снижение напряжения на резисторе напрямую зависит от силы тока и от его внутреннего сопротивления. Также свое влияние оказывают характеристики тока и температура. Если в цепь подключить амперметр, то падение определяют умножением сопротивления лампы на значения тока.
Стоит помнить о том, что не всегда удается с помощью простой формулы и измерительного устройства произвести расчет снижения напряжения. Если сопротивления параллельно подключены, то выявление величины усложнится. Приходится учитывать дополнительно на переменном токе реактивную составляющую.
Общие сведения о падении напряжения в цепи
Снижение напряжения осуществляется при переносе нагрузки, оно происходит на всем участке электроцепи (от начала кабеля до самой нагрузки). Работа нагрузки напрямую зависит от напряжения в его узлах. При определении сечения проводника необходимо учитывать, что оно должно быть такое, чтобы во время нагрузки напряжение поддерживалось в соответствующих границах, которых нужно придерживаться для правильного выполнения работы.
Также не следует пренебрегать сопротивлением проводов в цепи, конечно, оно низкое, но его влияние ощутимо. Во время передачи тока наблюдается уменьшение напряжения. Чтобы цепь освещения или двигатель правильно работали, необходимо постоянное поддержание напряжения на определенном уровне. Поэтому нужно рассчитать провода цепи таким образом, чтобы напряжение на зажимах нагрузки было в необходимых пределах.
Допустимые пределы напряжения в разных странах различны, что также не стоит забывать. Если снижение напряжения превышает значения, которые характерны для определенной страны, нужно применять провода с большим сечением для того, чтобы исправить сложившуюся ситуацию.
Но если напряжение уменьшить на 8%, то это приведет к нестабильной работе двигателя. К примеру, для нормальной работы двигателя нужно, чтобы напряжение от номинального значения было в пределах +5% в установившемся режиме работы. Также пусковой ток двигателя может превышать значение тока при полной нагрузке в 5- 8 раз, а иногда даже больше.
Источник: http://solo-project.com/articles/10/padenie-napryazheniya.html
Как рассчитать падение напряжения на резисторе?
При передаче электрического тока возможна неравномерная работа потребителей на различных участках цепи. Причин такого явления может быть несколько, и основной из них является падение напряжения.
Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.
Делитель напряжения
Такие устройства применяют для создания нужного напряжения в определенном узле электрической схемы. Это необходимо для обеспечения функциональности регуляторов, фильтров, датчиков. С помощью представленных ниже сведений можно узнать, как рассчитать падение напряжения на резисторе самостоятельно и с применением автоматизированных калькуляторов. Наглядные примеры и квалифицированные рекомендации пригодятся на практике.
Схемы делителей напряжения
Резистивный делитель напряжения
В общем случае устройства этого типа выполняют преобразование по формуле Uвых=Uвх*К, где:
- Uвх (вых) – напряжения на входе и выходе, соответственно;
- К – корректирующий множитель, обозначающий передающие способности узла.
Если взять первый пример из рис. выше, для уточнения сути процессов подойдет второй закон Кирхгофа. В соответствии с этим правилом, общее значение напряжений на последовательно соединенных резисторах будет равно сумме ЭДС на каждом элементе. Так как ток не изменяется в замкнутом контуре, для расчета можно использовать закон Ома:
U (напряжение) = I (ток) * R (электрическое сопротивление)
Нижнюю часть схемы (плечо) используют для получения необходимого изменения входного параметра.
Виды и принцип действия
В данной публикации подробно рассмотрен резистивный делитель напряжения. Подразумевается линейность характеристики цепи. В таких схемах упрощен расчет сопротивления для понижения напряжения до необходимого уровня. При подключении источника постоянного тока происходит деление напряжений прямо пропорционально значениям электрических сопротивлений нижнего и верхнего плеча.
Цепи с реактивными характеристиками Что такое электрическое сопротивление
Если составить аналогичную схему с конденсаторами, то на вход для поддержания нормальной функциональности придется подать синусоиду. В этом случае также будет выполнено распределение напряжений на элементах с емкостными характеристиками. Однако этот процесс надо рассматривать в динамике, с учетом частоты и соответствующего изменения амплитуды. Аналогичную методику применяют при работе с индуктивными компонентами.
Значения реактивных сопротивлений:
- Rc=1/(2*f*π*C);
- RL=2*f*π*C.
По формулам видно, что сопротивление конденсатора/ катушки обратно (прямо) пропорционально емкости/ индуктивности. Соответственно выбирают значения элементов для деления напряжения.
В представленных примерах принимают бесконечно большим внутреннее сопротивление нагрузки. Для реальных расчетов пользуются более сложными формулами с поправочными коэффициентами. Учитывают действительные комплексные характеристики цепей.
К сведению. В стабилизаторах напряжения и некоторых иных устройствах сопротивление плеча делителя обладает нелинейными параметрами.
Схема делителя напряжения на резисторах
Подключение светодиода через резистор и его расчет
Такие схемы используют для уменьшения выходного напряжения до нужного значения. Деление выполняют в пропорциях, которые предусмотрены конструкторским проектом. Необходимо учитывать реальное влияние нагрузки. Уточняют мощность потребления, чтобы подобрать подходящий резистор нижнего плеча.
Расчет делителя напряжения на резисторах
Удельное сопротивление меди
В простейшей схеме применяют два резистора. При необходимости количество компонентов увеличивают для обеспечения ступенчатой регулировки. Чтобы рассчитать делитель напряжения, калькулятор онлайн использовать не обязательно. Приведенная ниже подробная инструкция поможет получить точный результат собственными силами за несколько минут.
Формула делителя напряжения
Для примера взяты определенные значения:
- Входного постоянного напряжения (Uвх) – 20 Вольт;
- Сопротивления резисторов R1 и R2 – 20 и 50 кОм, соответственно.
Самостоятельный расчет резистивного делителя онлайн
Уменьшение входного напряжения в два раза получится при равных значениях сопротивлений резисторов. Для настоящего примера придется рассчитать пропорцию, пользуясь формулой закона Ома:
I=Uвх/ (R1+R2)
Подставив исходные значения, несложно узнать силу тока, протекающего по данной последовательной цепи:
20/ (20 000 + 50 000) = 0,000286 А
На отдельных элементах падения напряжения составят:
- UR1 = 0,000286 * 20 000 = 5,72 V;
- UR2 = 0,000286 * 50 000 = 14,3 V.
Для непосредственного расчета напряжения на рабочем плече можно пользоваться формулой:
UR2 = Uвх * R2/ (R1+R2)
Расчет делителя напряжения калькулятором онлайн
Соответствующие программы предлагают посетителям «Паяльник» и другие специализированные сайты бесплатно и без регистрации. В стандартной форме заполняют «окошки» с напряжением на входе и выходе. После подтверждения автоматически выполняется расчет с отображением значений электрических сопротивлений резисторов и рассеиваемых мощностей.
Как понятно из примера, основные формулы не отличаются повышенной сложностью. Однако автоматизированный расчет делителя напряжения на резисторах онлайн (online) позволяет выполнять многократные теоретические эксперименты с минимальными затратами времени. Такой инструмент пригодится для точного определения основных параметров делителя.
Таблица расчетов
R1 | R2 | R1 | R2 | ||
12 | 1000 | 2000 | 0,016 | 0,032 | 8 |
12 | 50000 | 4545 | 0,00242 | 0,00022 | 1 |
12 | 50000 | 550000 | 0,00002 | 0,00022 | 11,5 |
12 | 100 | 200 | 0,16 | 0,32 | 8 |
Приведенные цифры демонстрируют, что для существенного уменьшения Uвых сопротивление R1 должно быть значительно больше R2. Обратные пропорции применяют для примерного равенства напряжений на входе и выходе.
Совокупные потери в цепи определяют по рассеиваемой мощности. Чем меньше сопротивление, тем сильнее ток. Для самостоятельных расчетов пользуются формулой:
P=I2*R.
Применение
Использование такой схемотехники на практике демонстрируют следующие примеры. Для расчетов электрических параметров без учета сопротивления нагрузки подойдут рассмотренные выше ручные и автоматизированные методики.
Потенциометры
Если резистор оснастить ползунком и соответствующим приводом, сопротивления можно будет менять плавно. Это решение позволяет точнее менять напряжения на выходе, по сравнению с дискретными схемами. Главный недостаток – усложнение конструкции, что, кроме удорожания, снижает надежность. Приходится обеспечивать герметичность рабочей зоны для исключения загрязнения и предотвращения коррозийных процессов.
Принципиальная схема потенциометра
Резистивные датчики
В этом варианте пользуются способностью некоторых материалов увеличивать/ уменьшать электрическое сопротивление под воздействием температуры, светового потока, других внешних воздействий. Созданный на основе этих принципов датчик устанавливают в плечо делителя. По уровню напряжения на выходе контролируют изменение соответствующих параметров.
Цепи обратной связи в усилителях
Таким решением обеспечивают необходимый коэффициент усиления. На представленной ниже схеме этот параметр не будет никогда ниже единицы. Для повышения уровня преобразования увеличивают значение сопротивления R2 по отношению к R1.
Делитель напряжения в цепи обратной связи
Простейшие электрические фильтры
Для фильтрации заменяют конденсатором резисторы R1 или R2. В первом варианте устройство беспрепятственно пропускает высокочастотные составляющие. При снижении частоты до определенного уровня реактивное сопротивление увеличивается, препятствует прохождению тока. Аналогичным образом делают изменения в нижнем плече делителя с целью отсечения низких частот.
Усилитель напряжения
Переменным резистором изменяют уровень сигнала для получения необходимой громкости звучания. В таких устройствах применяют элементы с логарифмической характеристикой изменения сопротивления, что хорошо соответствует естественному механизму восприятия человеческими органами слуха.
Параметрический стабилизатор напряжения
В таких схемах нижнее плечо делителя можно создать с применением стабилитрона. Его вольтамперные характеристики выбирают таким образом, чтобы выходное напряжение сохраняло нужное значение при изменении входных параметров.
Ограничения в применении
Из приведенных в таблице примеров расчетов хорошо видно, как значительно увеличиваются потери при уменьшении сопротивления цепи. Энергия расходуется впустую для нагрева окружающей среды. При большой мощности рассеивания приходится использовать принудительные системы охлаждения, пассивные радиаторы.
В приведенных расчетах не учитывалась нагрузка. Если добавить соответствующее реальным условиям сопротивление, образуются дополнительные потери в параллельной цепи.
Влияние сопротивления нагрузки
На первой части рисунка изображен типовой делитель, обеспечивающий выходное напряжение 5 V. При потреблении тока 0,01 А сопротивление нагрузки составит 0,5 кОм. Пользуясь формулой расчета для параллельной цепи, несложно выяснить суммарное значение R = 1/(1/R2 + 1/Rнагрузки) = 0,25 кОм. Это добавление уменьшит плановое значение Uвых до 3,46 V.
Уменьшением R2 можно снизить вредное влияние на выходное напряжение (4,75 V). Однако такой способ, приведенный на второй части рисунка, сопровождается значительными потерями энергии. Ток будет проходить по участку с меньшим сопротивлением, не выполняя полезные функции. В данном примере необходимо выбрать R1, рассчитанный на мощность не менее 2 Вт, чтобы обеспечить надежную работу устройства.
Нормативно-техническая документация
Изучить стандарты по данной теме можно в ГОСТе 11282-93. Стандарт действует с 1 января 1996 г. Последние изменения сделаны 12 сентября 2018 г.
В документе приведены сведения о допустимых погрешностях, допусках и других нормативах.
Источник: https://amperof.ru/elektropribory/delitel-napryazheniya.html