Что такое повышающий и понижающий трансформатор

Понижающие и повышающие трансформаторы напряжения сухого и масляного исполнения

Что такое повышающий и понижающий трансформатор

Компания Матик-электро предлагает своим клиентам сухие и масляные понижающие и повышающие трансформаторы на напряжение ВН (по выской стороне) от 220/380 В до 10 кВ и напряжение НН (по низкой стороне) от 6 В до 660 В и мощностью от 1 кВА до 2500 кВА. Наши трансформаторы напряжения могут использоваться для бытовых целей и в коммунальном хозяйстве (серии ОСМ, ТСЗ, ТСЗИ, ТСЗПБ, КТПТО), на промышленных предприятиях (серии ТСЗ, ТСЗИ, НТС), для распределительных сетей 6 и 10 кВ (серии ТС, ТМ и ТМГ).

Сухие понижающие и повышающие трансформаторы напряжения

Сухие трансформаторы по сравнению с масляными обеспечивают более высокий уровень пожарной и взрывобезопасности, более экономичны и просты в эксплуатации, обслуживании и ремонте.

Трансформаторы напряжения сухого исполнения могут использоваться в электроустановках предприятий химической, нефтехимической, целюлозно-бумажной промышленности, в сетях электроснабжения общественных и жилых зданий, устанавливаться на транспортные средства, суда и плавсооружения.

Чаще всего сухие трансформаторы используются для понижения напряжения (понижающий трансформатор). Например, для подключения к промышленной электросети напряжением 380 В ручного электроинструмента может использоваться понижающий трансформатор 380/220 В марки ТСЗ или ТСЗИ.

В случае, если необходимо питание от одного источника потребителей, рассчитанных на разные напряжения, то для решения этой проблемы целесообразно использовать многообмоточный понижающий трансформатор.

Многообмоточный трансформатор, как правило, состоит из одной первичной обмотки и нескольких вторичных (конструктивно они могут быть выполнены как на одном сердечнике, так и каждая обмотка на своем собственном сердечнике). Например, возможно изготовление трансформатора понижающего напряжение с 220 В до 110 В, 24 В и 12 В.

Такой понижающий трансформатор напряжения может одновременно использоваться для питания инструмента, низковольтной сети освещения и приборов автоматики и сигнализации.

Но бывают случаи когда необходимо повышение напряжение – в частности, когда нужно запитать от сети 220 В оборудование предназначенное для сети 380 В. Данную проблему возможно решить используя сухой повышающий трансформатор напряжения. Повышающие трансформаторы также традиционно используются в местах генерации электроэнергии для сокращения ее потерь при передаче на большие расстояния.

– однофазные сухие трансформаторы многоцелевого назначения. Применяются в сетях местного освещения, для питания цепей управления, электроавтоматики, сигнализации и т.д.

Напряжение ВН – от 380/220 В до 10 кВ

Напряжение НН – от 6 В до 660 В

Мощность – от 1 до 63 кВА

Типовые варианты изготовления:

220/220 В 220/110 В

220/36 В 220/48 В

Могут изготавливаться на любые напряжения первичной и вторичной обмотки!

– трехфазные сухие трансформаторы. Могут изготавливаться как на низкое, так и высокое напряжение. Применяются в основном на промышленных предприятиях в цепях питания силового оборудования и инструмента в качестве понижающего трансформатора. Могут применяться в электроустановках жилых и общественных зданий, в цепях питания местного освещения, для подключения ручного электроинструмента. Силовые трансформаторы серии ТС могут применяться в распределительных сетях 6-10 кВ.

Исполнение – в кожухе и без кожуха

Напряжение ВН – от 380 В до 660 В

Напряжение НН – от 8 В до 220

Типовые варианты изготовления:

380/380 В 380/220 В

380/110 В 380/65 В

380/36 В

420/420 В 660/660 В

Могут изготавливаться на любые напряжения первичной и вторичной обмотки!

— трансформаторы силовые сухие с обмотками с литой изоляцией типа «Геафоль» (эпоксидный компаунд с кварцевым наполнителем). Этот материал не оказывает вредного влияния на окружающую среду и не выделяет токсичных газов даже при воздействии дуговых разрядов. Трансформаторы с изоляцией типа «Геафоль» можно использовать в электроустановках общественных и жилых зданий.

Напряжение ВН – 6 кВ, 10 кВ

Напряжение НН – 0,7 кВ

Мощность — от 100 кВА до 2500 кВА

— сварочный трансформатор. Предназначен для преобразования переменного напряжения сети 380 В в переменное напряжение 24; 36; 42; 220 В.

Мощность — от 1,6 кВА до 40 кВА.

— трансформатор прогрева бетона. Трехфазный, двухобмоточный понижающий сухой трансформатор с принудительным воздушным охлаждением защищенного исполнения. Предназначен для термообработки бетона и мерзлого грунта.

Напряжение — 380 В

Мощность — до 63 кВА

– станция прогрева бетона на основе масляного трехобмоточного понижающего трансформатора ТМТО с естественным охлаждением. Предназначена для подогрева бетона в зимнее время, с регулированием температуры в ручном и автоматическом режимах.

Напряжение первичное – 380 В .

Напряжение вторичное – 55-95 В

Мощность — 80 кВА

— трансформатор однофазный сухой водозащищенный. Трансформатор предназначен для электроустановок судов и плавсооружений морского и речного флота неограниченного района плавания.

Климатическое исполнение — ОМ5 (каплезащищенный)

Напряжение — до 660 В

Напряжение — до 660 В

Частота напряжения — 50 (60) Гц и 400 (500) Гц

— трансформатор понижающий трехфазный сухой для судов и плавсооружений. Трансформатор предназначен для питания пониженным напряжением различных цепей с частотой 50 (60)или 400 (500) Гц электроустановок общего и специального назначения.

Климатическое исполнение — ОМ5 (каплезащищенный)

Напряжение ВН – от 380 В до 0,7 кВ

Напряжение НН – от 130 В до 230 В

Мощность — от 6,3 до 1000 кВА

— трансформатор трехфазный сухой водозащищенный. Предназначен для электроустановок судов и плавсооружений морского и речного флота неограниченного района плавания.

Климатическое исполнение — ОМ5 (каплезащищенный)

Напряжение — до 660 В

Частота напряжения — 50 (60) Гц и 400 (500) Гц

— трансформаторы однофазные сухие промышленного и бытового назначения, водозащищенного исполнения. Трансформаторы ОСОВ применяются в шахтах, неопасных по газу и пыли, в других производствах для питания ламп местного освещения и электроинструмента.

Напряжение ВН – 380 В

Напряжение НН – 110 В

Мощность – от 0,25 до 4 кВА

Масляные трансформаторы серии ТМ и ТМГ

Масляные силовые трансформаторы напряжения по сравнению с сухими обладают меньшими габаритами, они более надежны и долговечны. Компания Матик-электро поставляет масляные трансформаторы серий ТМ и ТМГ для распределительных четей 6-10 кВ. Трансформаторы ТМ и ТМГ могут эксплуатироваться как в условиях внутренней, так и наружной установки при температуре окружающей среды от +40 до -60 °С.

Трансформаторы серии ТМ конструктивно выполнены с расширительным масляным баком, а серии ТМГ выполняются герметичными, что значительно улучшает условия работы масла, исключает его увлажнение, окисление и шламообразование.

Источник: http://www.matic.ru/transformers/

Повышающий трансформатор: конструктивные особенности приборов, способных повышать и понижать напряжение

Что такое повышающий и понижающий трансформатор

Трансформатор преобразовывает мощность в сетях и установках, предназначенных для приема электричества и работы с ним. Повышающий трансформатор — это статический агрегат, получающий питание от источника напряжения для трансформирования высокой мощности в низкие показатели. Его применяют для обособления логических защитных контуров и измерительных линий от высокого напряжения.

Электромагнитное устройство с двумя или больше обмотками, связанными индукцией на магнитопроводе, называется трансформатором. Оно разработано для изменения напряжения переменного тока с сохранением частоты и используется при производстве, трансляции на расстояние и приемке электроэнергии.

Агрегат, повышающий напряжение, содержит проволочную катушку, охваченную магнитными линиями, располагающуюся на сердечнике для проведения потока. Материалом стержня служат ферромагнитные сплавы. Агрегат работает с большими мощностями, его применение обусловлено разными показателями напряжений городских линий (около 6,2 кВ), потребительского контура (0,4 кВ) и мощности, необходимой для функционирования электроприборов и машин (от единичных показаний до нескольких сотен киловольт).

Применение в сетях

Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.

В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.

Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.

Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.

Магнитная система

Магнитопровод представляет собой комплекс пластин или других элементов из электротехнической стали, составленных в выбранной геометрической конфигурации. В конструкции сосредоточены поля агрегата.

Магнитопровод в сборе вместе с узлами и соединительными элементами образует остов трансформатора. Деталь, на которую намотаны обмотки, является стержнем. Область системы, предназначенная для замыкания цепи и не несущая витков контура, называется ярмом.

Расположение в пространстве стержней служит для разделения системы на следующие виды:

  • плоская конструкция, в которой все сердечники располагаются на единой поверхности;
  • пространственный способ — продольные стержни или сердечники и ярма находятся в различных плоскостях;
  • симметричный порядок — стержни одной длины и формы располагаются так, что их пространственная установка одинаково относится ко всем элементам и сердечникам;
  • несимметричный строй предполагает разные по виду и размерам стержни, расположенные отлично от аналогичных деталей.

Обмотки агрегата

Обмотка состоит из отдельных витков, являющихся проводниками, или комплекса таких передатчиков (жилы из нескольких проводов). Оборот однократно обходит стержень, ток которого совместно с токами других сердечников и систем воспроизводит магнитное поле. В результате возникает электродвижущая сила (ЭДС).

Обмотка представляет собой упорядоченный комплекс витков. Она образует цепь, в которой складываются силы, наведенные в оборотах. Обмотка трехфазного агрегата состоит из нескольких объединенных обвивок трех фаз с одинаковым напряжением.

Стержни обмоток понижающего и повышающего трансформатора делают квадратной конфигурации для наилучшего использования пространства (повышения коэффициента наполнения в окне стержня). Если требуется увеличить поперечное сечение сердечника, то его делят на несколько проводников. Это применяется для уменьшения вихревых токов в обвивке. Проводник квадратного поперечного сечения называется жилой. По функционированию обмотки делят на несколько типов:

  • основные — обвивки, предназначенные для приема или отвода преобразуемой или трансформированной энергии переменного тока;
  • регулирующие — те, что предусматривают выводы для изменения коэффициента преобразования напряжения при небольшом токе обмотки и маленьком диапазоне нормализации;
  • вспомогательные витки обеспечивают питание собственных нужд, при этом используется малая мощность, гораздо меньшая, чем аналогичный номинальный показатель повышающего трансформатора.

Изоляцией жилы служит слой бумаги или эмалевый лак. Два параллельно проходящих защищенных провода, расположенные рядом, отгораживаются общей бумажной оберткой и называются транспонированным кабелем.

Его отдельный вид составляет непрерывное продолжение, складывающееся при перемещении жилы одного слоя к следующему пласту с одинаковым шагом в единой изоляции. Бумажная защита делается из тонких полос шириной 2—4 см, нанесенных вокруг кабеля.

Для получения требуемого пласта заданной толщины бумага накладывается в несколько слоёв. В зависимости от конструкции обмотка бывает:

  1. Рядовая. Обороты на сердечнике кладут в направлении оси по всей протяженности обвивки. Последующие витки располагают плотно один к другому, не допуская промежутка между ними.
  2. Винтовая. Является одним из вариантов многослойного нанесения. Между каждым заходом оборота оставляется расстояние.
  3. Дисковая. Последовательно объединяется ряд накопителей. В них обороты кладут в радиальном направлении по спиральной форме. На первичной прослойке обвивка ведется внутрь, а на соседних кругах делается наружу.
  4. Фольговая. Вместо прямоугольного кабеля ставят медные или алюминиевые пластины. Они широкие, их толщина составляет от 0,1 до 2,5 мм.

Охладительный резервуар

Является емкостью для масла и одновременно защищает активные компоненты агрегата от перегрева. В конструкции исполняет роль опоры для дополнительных и управляющих устройств. Перед наполнением из бака удаляют воздух, подвергающий разрушению изоляцию и уменьшающий ее защитные свойства. Из-за этого резервуар работает в условиях низкого атмосферного давления.

Для уменьшения шума от функционирования трансформатора должны совпадать звуковые частоты, воспроизводимые стержнем агрегата, и аналогичные показатели резонанса конструктивных элементов. Для сброса при увеличении объема жидкости в баке от нагревания устанавливается отдельно расположенная расширительная емкость.

Повышение номинальных значений мощности увеличивает скорость движения электронов снаружи и внутри трансформатора, что разрушает конструкцию. Аналогично действует рассеивающее магнитное течение в баке. Применяют вкладыши из материала, не подверженного намагничиванию.

Их располагают вокруг изоляторов сильного потока, что уменьшает риск нагревания. Внутреннюю отделку бака выполняют так, чтобы она не пропускала магнитный поток через ограждения емкости.

Материал с малым сопротивлением магнетизму поглощает течение перед его проникновением через наружные стенки.

Количество полуокружностей почти соответствует числу оборотов обвивки. С увеличением витков делается больше дуг, но строгая пропорциональность отсутствует. Возле выхода жирной точкой указывают начало обмоток (на двух катушках и больше). Ставят обозначения мгновенно возникающей ЭДС, они на выходах обычно одинаковы.

Такой подход используется при показе промежуточности агрегатов в преобразовательных цепочках для наметки синхронности или противофазности. Обозначение актуально и при нескольких катушках, если для их эффективного функционирования требуется соблюдать полярность. Отсутствие явного обозначения обвивок говорит о том, что они идут в одном направлении, то есть конец предыдущей соответствует началу последующей.

Особенности эксплуатации

Для определения времени службы используют понятие экономического и технического срока работы. Экономический отрезок заканчивается, когда цена трансформации мощности с помощью искомого трансформатора превышает удельную стоимость таких же услуг в соответствующей рыночной нише. Технический срок службы прекращается с выходом из строя большого числа элементов, требующих капитального ремонта агрегата.

Использование в параллельном режиме

Такой регламент применяется из-за того, что при небольшой нагрузке силовой понижающий агрегат допускает значительные потери на холостом ходу. Для исправления ситуации он заменяется группой устройств небольшой мощности, которые при необходимости отключают поодиночке. Требования к такому подсоединению:

  • к параллельному использованию допускаются агрегаты с равной угловой погрешностью между вторичным и первичным показателем напряжения;
  • параллельно связываются одинаково полярные полюса из областей низкой и высокой мощности;
  • объединяемые устройства должны показывать аналогичный коэффициент передачи по напряжению;
  • сопротивление при коротком замыкании должно отличаться в сторону уменьшения или увеличения не более 10%;
  • соотношение мощности задействованных трансформаторов не должно превышать 1:3.

Агрегаты, входящие в группу, используют с одинаковыми техническими параметрами.

Частота и регулирование мощности

В случаях равного напряжения на первичных обмотках агрегаты с определенной частотой могут эксплуатироваться при увеличенных показателях сети с рекомендованной заменой навесного оборудования. При частоте меньше номинальной индукция повышает значения в магнитном приводе, что ведет к скачку тока при холостой работе и изменению его вида.

Регулирование напряжения трансформатора применяется в сети из-за того, что нормальная работа потребителей возможна только при мощности определенных параметров и минимальных от них отклонениях.

Изоляция и перенапряжение

Специалисты проводят регулярные испытания и ремонты защитного слоя трансформатора, так как он теряет свои свойства от высоких температур. Это касается агрегатного масла в охладительном баке и изоляции активных элементов. После проверки сведения о состоянии защитных материалов вписываются в паспорт агрегата.

Иногда устройства работают в условиях повышенной мощности. Перенапряжение подразделяется на два вида:

  • кратковременное действие сильного фактора продолжается от одной секунды до 2—4 часов;
  • переходное перенапряжение длится от 2—5 наносекунд до 3—5 миллисекунд, оно бывает колебательным или неколебательным, но всегда имеет одинаковое направление.

Иногда при перегрузке комбинируются оба вида перенапряжения. Причинами их возникновения могут быть грозовые разряды, при этом токовый показатель импульса зависит от расстояния между трансформатором и местом удара. Второй причиной являются изменения условий работы, сформированные внутри системы. Они заключаются в поломках, нарушениях проводимости, коротких замыканиях, возгораниях, частых подключениях и отключениях.

При контроле качества в заводских условиях агрегаты проверяют и выдают сведения о возможности бесперебойной работы в соответствии со стандартами.

Источник: https://220v.guru/elementy-elektriki/transformatory/rabota-transformatora-povyshayuschego-ili-ponizhayuschego-napryazhenie.html

Как из понижающего трансформатора сделать повышающий

Что такое повышающий и понижающий трансформатор

Вы должны быть пользователем, чтобы оставить

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Повышающие трансформаторы напряжения представляют собой устройства, которые применяются в электрических цепях для изменения показателей напряжения электроэнергии в сторону их повышения.

В основе любого трансформатора напряжения лежит принцип работы на основе электромагнитной индукции. Железное ядро находится в изоляционных маслах, которые не пропускают электричество. В конструкции находится две катушки с различным количеством обмоток. В первой катушке данных витков будет больше, чем во второй.

Устройство и принцип работы

Повышающий трансформатор напряжения включает в себя несколько составных частей, обеспечивающих работу устройства. В основе конструкции располагается железное ядро, на которое намотано две катушки.

Через первую катушку проходит воздействие напряжения переменного тока, в результате чего образуется магнитное поле, осуществляющее выполнение принципа электромагнитной индукции.

Согласно формуле dФ/dt, сила магнитного поля может увеличиваться путем увеличения показателей тока до необходимых значений.

Здесь не стоит забывать о прямой зависимости показателей напряжения магнитного поля от определенного количества обмоток, которые расположены в железном ядре. Соответственно, чем меньше витков — тем меньше напряженность.

Следовательно, когда магнитный поток проходит через линию обмоток второй катушки, то там и будет возникать напряжение. Данные показатели будут рассчитываться по формуле: NФ/dt, где N — это число витков самой катушки. Это, так называемый, Закон Фарадея, согласно которому напряжение будет той же частоты, что и на первой катушке.

Подробнее про устройство на видео

Типы трансформаторов

Рассмотрим каждый тип данного устройства более подробно:

  • Автотрансформатор имеет в своем наличии только одну обмотку с парой концевых клемм. Как правило, это трансформаторы однофазного типа, в которых присутствуют первичные и вторичные катушки.
  • Трансформаторы тока обладают большим количеством обмоток, по сравнению с предыдущим типом. Кроме того, в конструкции подобных устройств используется магнитный сердечник, резисторы и датчики оптического типа, ответственные за регулировку частоты напряжения.
  • Агрегат силового типа представляет собой специальный прибор, передающий ток между контурами через процесс электромагнитной индукции.
  • Агрегат антирезонансного типа представляет собой литой прибор, которые обладает практически полностью закрытой структурой. В продаже имеются как трехфазные, так и однофазные устройства. Во многом, данные устройства схожи с силовыми агрегатами, но обладают более компактными габаритами.
  • Заземляемые устройства отличаются от других специальной структурой обмоток, которые соединяются между собой зигзагом или звездой.
  • Пик-трансформаторы используются для отделения постоянного и переменного тока. Данные устройства получили достаточно широкое распространение в компьютерных технологиях и средствах радиосвязи.
  • Домашние устройства разделительного типа применяются в качестве передатчика электричества от источника переменного тока к самому прибору. Бытовые устройства, обладающие мощностью 220 вольт, применяются в качестве защитной меры от воздействия электрического тока и предотвращения помех в работе различных устройствах.

Обслуживание и ремонт

Единственное, что может быть выполнено своими руками — это перемотка обмоток устройства.

Рассмотрим в качестве примера тот тип, в котором используется многократная обмотка. В данном агрегате располагается магнитный сердечник, который является общим для всех трех катушек индуктивности. Как правило, одна катушка является понижающей, а вторая повышающей в данном устройстве.

Не лишним будет узнать порядок проверки трансформаторов, что позволит избежать вероятных проблем в дальнейшем. Рассмотрим всю процедуру поэтапно:

  1. Сперва необходимо осмотреть весь блок. Как правило, перегрев системы провоцирует появление некоторых выпуклостей или неровностей, которые говорят о деформации некоторых деталей.
  2. Определяем вход и выход устройства. Первый контур должен быть подключен к первой катушке устройства, где формируется само магнитное поле. Вторая часть, которая выступают в роли получателя энергии от магнитного поля, должна быть состыкована со вторичной обмоткой.
  3. Затем нужно определить фильтрацию выходного сигнала. Примечательно, что она является идентичной для диодов и конденсаторов на второй катушке устройства.
  4. Далее нужно снять некоторые части корпуса, чтобы был полный доступ к микросхемам устройства. Это нужно для того, чтобы можно было определить показатели напряжения при помощи мультиметра.
  5. Если полученные показатели оказываются существенно меньше ожидаемых (менее 80% от оптимальных), то вероятная причина поломки кроется во всей цепи, которая соединяется вокруг первичной обмотки. Для исправления причин, следует отсоединить первую катушку от подачи на нее электричества.
  6. Далее нужно проверить вторичный выход. Если фильтрация отсутствует, то нужно использовать питание от мультиметра. Если вы заметили, что оптимальное напряжение не достигается, то причина может быть в самом трансформаторе, либо в выходных клеммах.

Источник: https://crast.ru/instrumenty/kak-iz-ponizhajushhego-transformatora-sdelat

Трансформатор своими руками: пошаговая инструкция

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи.

Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы.

Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Рис. 1: принципиальная схема трансформатора

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, 

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P2 / U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводник Алюминиевый проводник
Сечение жил, мм2 Ток, А Сечение  жил. мм2 Ток, А
0,5 11
0,75 15
1 17
1.5 19 2,5 22
2.5 27 4 28
4 38 6 36
6 46 10 50
10 70 16 60
16 80 25 85
25 115 35 100
35 135 50 135
50 175 70 165
70 215 95 200
95 265 120 230
120 300

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея.Рис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы.Рис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку.Рис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания.Рис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке.Рис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек.Рис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации.Рис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

инструкции

Источник: https://www.asutpp.ru/transformator-svoimi-rukami.html

Трансформаторы напряжения (понижающие)

Советы/информация

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность обусловлена многофункциональностью, простотой устройства, высоким качеством работы (КПД — 90%), а также долговечной эксплуатацией.

Трансформаторы напряжения (сокр. ТН)— это одна из разновидностей трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы.

Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов.

Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие трансформаторы. При необходимости используют повышающие аналоги.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

ТН состоят из 2-х главных элементов:

  • Стальной магнитопровод;
  • Обособленные друг от друга, изолированные обмотки (первичная и вторичная). На первичную подается ток, а со вторичной он идет к объекту потребления.

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

  • Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.
  • Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.
  • К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Все трансформаторы напряжения делятся на виды по определенным группам:

  • Число фаз: однофазные и трехфазные;
  • Количество обмоток: две или три;
  • Класс точности: диапазон допустимых параметров погрешности;
  • Тип охлаждения: масляные и сухие (воздушное охлаждение);
  • Способ размещения: внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

  • Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.
  • Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.
  • Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.
  • Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.
  • Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.
  • Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Источник: https://www.virage24.ru/shop/elektrotovary/transformatory-preobrazovateli/transformatory-napryazheniya/

Понижающий трансформатор

Понижающий трансформатор — это обычный трансформатор который работает по тем же принципам и только нужен для преобразования определенное переменного напряжения с большого значения в меньшее. То есть если определенному устройству необходимо напряжение 12 Вольт, а с розетки подается стандартно 220 Вольт, нужно использовать понижающий трансформатор. Используется понижающий трансформатор так же в различных отраслях энергетики, электротехники.

схема понижающего трансформатора с 220 В на 12 В

ТН включается параллельно нагрузке. Его задача состоит в изменении входного напряжения с заданным коэффициентом.

Как определить этот коэффициент?

В простейшем случае он численно равен отношению количества витков в обмотках.

Говорят о понижающем трансформаторе, когда количество витков первичной (сетевой) обмотки меньше, чем у вторичной. Тогда на выходе напряжение также будет меньше. У повышающего, наоборот, количество витков вторичной (нагрузочной) обмотки превосходит количество первичной.

Обратите внимание!

В более общем случае устройство может иметь не две, а более обмоток. Для каждой из обмоток будет иметься свой коэффициент трансформации, причем часть обмоток будут понижающими, а часть –повышающими.

Любой трансформатор напряжения обратим, то есть, подав на любую из вторичных обмоток переменное напряжение, получим его и на выходе первичной, с тем же коэффициентом преобразования (трансформации).

Определение коэффициента трансформации производится по формуле: N=U1/U2.

Как уже говорилось, коэффициент трансформации определяется отношением количества витков. Это справедливо только для режимов холостого хода, когда сопротивления проводов обмоток не вносят потерь.

Ток, который протекает в обмотках, создает на их сопротивлении падение напряжения, которое вычитается из ЭДС ненагруженного преобразователя. Таким образом, при увеличении нагрузки коэффициент трансформации падает.

Аналогичная ситуация возникает для обмоток, выполненных проводами различного сечения.

Например.

Имеем понижающий трансформатор с коэффициентом трансформации, равным 10, на двух вторичных обмотках, но одна из которых выполнена проводом, сечением в два раза меньше. При одинаковых нагрузках напряжение на той обмотке, где использовался более тонкий провод, будет ниже на величину падения напряжения на сопротивлении обмоточного провода.

Существуют различные типы понижающих трансформаторов. Они могут быть одно-, двух- или трехфазными, что позволяет использовать их в различных областях энергетики. Конструкция этих устройств включает в себя две обмотки и шихтованный сердечник, для изготовления которого используется электротехническая сталь. 

У трансформатора может быть и одна обмотка. В таком случае он называется автотрансформатором. Обмотка в таком случае имеет как минимум три вывода. К одной из пары выводов подключается входное напряжение. Выходное напряжение снимается с одного из входных и оставшегося свободным. Автотрансформатор также может быть повышающим и понижающим.

автотрансформатор

В чем различие между повышающим и понижающим трансформатором

При наличии огромного количества электроприборов и электроники нередко возникает необходимость использования электрического трансформатора.

Это электромагнитное устройство позволяет изменить значение тока благодаря явлению самоиндукции. Корень «трансформ», собственно, и означает «изменение».

Использование трансформаторов в быту и в производстве связано с особенностями оборудования. Обычно это устройства иностранного производства, например, произведенные в Азии и Америке, где стандартная электросеть выдает отличные от российских стандартов значения тока. Трансформатор позволяет защитить электрооборудования от выхода из строя или просто обеспечить необходимое питание для его эффективной работы.

Понижающими называются трансформаторы, преобразующие ток с больших значений на меньшие – например, с 220 до 110 В.

Повышающими трансформаторами называют устройства с обратным эффектом: протекающий по ним ток за счет индукции в катушках изменяется с меньших на большие значения. Например, повысить напряжение с 35 кВольт на 110 кВ для передачи электроэнергии на большие расстояния.

Таким образом, становится понятно, какой трансформатор нужно выбирать для тех или иных целей. Отдельно можно рассматривать регулируемые модели, в которых доступна функция быстрого переключения с повышения на повышение вольтажа. Универсальные трансформирующие приборы несколько дороже по цене, но и удобнее.

Понижающий трансформаторы часто применяют трехфазные трансформаторы для снабжения электроэнергией промышленные предприятия и жилые дома.

Маркировка понижающих трансформаторов зависит от его свойств

Основными свойствами понижающих трансформаторов являются:

  • Мощность.
  • Напряжение выхода.
  • Частота.
  • Габаритные размеры.
  • Масса.

Частота тока для разных моделей трансформаторов будет одинаковой, в отличие от других перечисленных характеристик. Габаритные размеры и масса будут больше при повышении мощности модели. Максимальная величина мощности у промышленных образцов понижающих трансформаторов, так же как габаритные размеры и масса.

Напряжение на выходе вторичных обмоток может быть различным, и зависит от назначения прибора. Модели трансформаторов для бытовых нужд имеют малые габариты и вес. Их легко устанавливать и перевозить.

Обмотки трансформатора

Обмотки находятся на магнитопроводе прибора. Ближе к сердечнику как правило, располагают низковольтную обмотку, так как ее легче изолировать. Между обмотками укладывают изоляционные прокладки и другие диэлектрики, например электротехнический картон.

Первичная обмотка соединяется с сетью питания переменного напряжения. Вторичная обмотка выдает низкое напряжение и подключается к потребителям электроэнергии.  К одному трансформатору можно подключать сразу несколько бытовых устройств.

Для намотки катушек применяют изолированные провода, с изоляцией каждого слоя кабельной бумагой

Проводники бывают различных форм сечения:

  • Круглая.
  • Прямоугольная (шина).

По способу намотки обмотки делят:

  • Концентрические, на стержне.
  • Дисковые, намотанные чередованием.

Применение понижающих трансформаторов заключается в их достоинствах:

  • необходимостью уменьшения рабочего напряжения до 12 вольт для создания безопасности человека.
  • Другой причиной применения низкого напряжения является нетребовательность трансформаторов к значению входного напряжения, так как они могут функционировать, например, при 110 В, при этом обеспечивая стабильное напряжение на выходе.
  • Компактные размеры.
  • Малая масса.
  • Удобство транспортировки и монтажа.
  • Отсутствие помех.
  • Плавная регулировка напряжения.
  • Незначительный нагрев.

Недостатки

  • Недолгий срок службы.
  • Незначительная мощность.
  • Высокая цена.

Как выбрать понижающие трансформаторы

Торговая сеть электротехнических изделий предлагает модели бытовых понижающих трансформаторов на все случаи жизни. При выборе конкретного устройства, рекомендуется воспользоваться следующими критериями выбора:

  • Величина напряжения на входе. На корпусе устройства обычно есть маркировка входного напряжения 220, либо 380 вольт. Для бытовой сети подходит модель на 220 В.
  • Величина напряжения выхода. Зависит от назначения и применения устройства. Обычно это 12 или 36 вольт, о чем также должна быть маркировка.
  • Мощность устройства. Чтобы правильно подобрать стабилизатор по мощности, нужно сложить мощности всех планируемых к подключению потребителей, и добавить резервное значение 20%.

Эксплуатация и ремонт

Основным условием правильной и надежной эксплуатации понижающего трансформатора является специально оборудованное место для его монтажа и функционирования.

Понижающие трансформаторы необходимо содержать в чистоте, сухом виде, защищать от пыли и влаги. В домашних бытовых условиях для трансформатора используют специальный шкаф или металлический корпус.

Заземление для понижающего трансформатора является обязательным условием.

Трансформатор требует периодического обслуживания и ухода, в зависимости от выполняемых им задач и условий эксплуатации.

Чаще всего обслуживание включает в себя следующие работы:

  • Наружный осмотр, очистка от пыли и грязи.
  • Осмотр деталей уплотнения, колец, прокладок, подтяжка клемм.
  • Проверка изоляции на пробой.

В трансформаторе могут появиться неисправности и повреждения обмоток в виде трещин секций катушек. При этом не требуется демонтировать трансформатор. На поврежденную изоляцию накладывают лакоткань.

При серьезных неисправностях, связанных с обрывом или коротким замыканием, осуществляют снятие трансформатора и его ремонт в электромастерской.

Понижающий трансформатор 220-110В 1500Вт . Как выбрать понижающий трансформатор

Источник: https://transformator220.ru/harakteristiki/setevye/ponizhayushhij-transformator.html

Трансформаторы силовые распределительные | СМВ Урал

Силовой трансформатор – это устройство, преобразующее одни параметры напряжения и силы переменного тока электроцепи в другие (более высокие или низкие) с сохранением частоты (в России это 50 Гц) и транспортируемой мощности.

В практике силовые трансформаторы предназначены для уменьшения потерь при передаче электроэнергии на дальние расстояния. При передаче электроэнергии от источника – генератор на ТЭС, ГЭС, АЭС высокий ток в сети вызывает повышенное сопротивление, преобразующее электрическую энергию в тепловую, что приводит к ее высоким потерям.

Для понижения силы тока, следует увеличить напряжение. Для этого на станциях, где вырабатывается электроэнергия и отправляется, используется повышающий трансформатор. На подстанциях, которые получают и выполняют функцию дальнейшего распределения по конечным потребителям, используются понижающий трансформатор, доводящий ток и напряжение до значений, пригодных для промышленного и бытового использования.

Разумеется, что режимы нагрузки сети потребления постоянно колеблются – в зависимости от времени суток, сезона, рабочих, выходных, праздничных дней и других факторов.

В связи с этим расчетная мощность трансформатора и подстанции (КТП, БКТП, КТПБ, КТПН) должны учитывать эти скачки и подбор необходимого агрегата (трансформатора тока) должен подбираться с запасом необходимой мощности. С учетом возникновения различных непредвиденных, аварийных ситуаций, вся потребляемая мощность трансформатора, рассчитываемая не в киловаттах (кВт), а киловольтамперах (кВА), должна быть на 25-30% выше номинальной.

Виды силовых электроустановок

На рынке преобразователей электроэнергии, само собой разумеется, большим спросом пользуются понижающий трансформатор 6/0,4 кВ и 10/0,4 кВ, поскольку источников электроэнергии тысячи, а потребителей миллионы.

Виды силовых трансформаторов? Как уже сказано раннее, повышающие и понижающие трансформаторы. Повышающие вырабатывают более высокое напряжение на вторичной обмотке, состоящей из большего числа витков (выход).

Понижающие, наоборот, за счет меньшего количества витков на «вторичке» (вход) доводят параметры тока и напряжения до потребительских значений.

Существуют и другие характеристики трансформаторов, разделяющие их по видам, в зависимости от:

• Количества фаз (бывают однофазный силовой трансформатор и трехфазный трансформатор);• Количества обмоток (двух- и трехобмоточные);• Типа охлаждения силовой электроустановки: сухие (воздушного охлаждения ТС) и масляные трансформаторы (ТМГ);

• Места установки (внешние и внутренние).

Устройства любого вида могут быть различной расчетной мощности. Всего существует шесть групп – от 1-й мощностью до 100 кВА до 6-й (более 100000 кВА).

Наиболее востребованный в применении вариант – трансформатор силовой трехфазный масляный ТМГ. Этот вид наиболее популярен по большому ряду причин.

Во-первых, его обмотка защищена от воздействия внешней среды, то есть регламент профилактических работ не такой строгий, как в случае с сухими электроустановками.

Во-вторых, т. к. конструкция герметична, практически исключается возможность протечек, масло не окисляется.

В-третьих, легко устраняется одна из основных причин выхода из строя этого оборудования – перегрев и ослабление выводных контактов шин. В масляных установках достаточно заменить изоляторы. «Сухая» конструкция потребует более сложного ремонта.

Где купить трансформатор?

Компания ООО «СМВ Урал» лучший поставщик в Уральском регионе.

Мы готовы предложить вам купить трехфазный масляный трансформатор в Екатеринбурге из наличия с собственного склада. Наша компания может произвести доставку и установку трансформаторов и электроподстанций в любую часть России и ближнего зарубежья.

В наличии:

• Масляные трансформаторы ТМГ номинальной мощностью от 25-2500 кВА и уровнем напряжения 6/0,4 – 10/69 кВ; (тмг 25, тмг 40, тмг 63, тмг 100, тмг 160, тмг 250, тмг 400, тмг 630, тмг 1000, тмг 1250, тмг 1600, тмг 2500)• Масляные трансформаторы ТМ мощностью от 25 до 2500 кВА и уровнями напряжения 6/0,4 – 10/69 кВ; (тм 10, тм 100, тм 1000, тм 1600, тм 2500)

• ТС (сухие трансформаторы), мощность 25-3200 кВА, 6/0,4 – 10/69 кВ;

Источник: http://smvural.ru/products/transformatory-silovie

Что такое повышающий и понижающий трансформатор

Преобразование напряжения присутствует повсеместно в любой области нашей жизни и деятельности. Вырабатываемое на электростанции напряжение повышается до нескольких киловольт, чтобы быть переданным с наименьшими потерями через линии электропередач на многие тысячи километров. А потом оно снова понижается на трансформаторных подстанциях до привычных нам значений в 380/220 вольт.

Самые простые и понятные примеры для простого человека: сетевое зарядное устройство для автомобильного аккумулятора, блок питания в компьютерной и другой технике, инвертор для автономного электроснабжения 220 вольт от низковольтных источников питания, понижающие трансформаторы 220-115 и т.д.

В общем, есть много устройств, в которых установлен трансформатор напряжения. Рассмотрим его немного подробнее, не погружаясь в излишние сложности.

Трансформатор напряжения

Все обмотки намотаны на общем сердечнике (магнитопроводе). Если число витков у вторичной обмотки больше, чем у первичной, то это повышающий трансформатор, если меньше — понижающий.

Мощность трансформатора напряжения зависит от сечения проводов обмоток, а габариты и вес — от типа сердечника и материала проводов (медь или технический алюминий). По исполнению он может быть одно- и трёхфазным. Самым компактным и лёгким является автотрансформатор, в котором всего одна обмотка.

Повышающий трансформатор

Первая мысль, которая приходит на ум, когда напряжение в сети всё чаще и чаще становится низким, поставить повышающий трансформатор. На первый взгляд кажется, что это — простое и отличное решение, и теперь, наконец-то, будет нормальное напряжение, яркое освещение и стабильно работающие электроприборы.

Но не всё так просто в сказочном королевстве, и прежде чем купить повышающий трансформатор напряжения, цена на который уж очень привлекательна, задумайтесь об одной особенности его работы: он имеет постоянный коэффициент повышения напряжения (коэффициент трансформации). Рассмотрим это на примере.

Предположим, что у вас сетевое напряжение порядка 170 вольт. Чтобы повысить его до 220, нужен трансформатор с коэффициентом трансформации 1.29 (220/170). Вроде бы всё хорошо и логично получается, за исключением одного: если напряжение в сети станет нормальным 220 вольт, то на выходе трансформатора будет уже очень высокое напряжение 285 вольт (220*1.29)! Не все электрические приборы способны выдержать такое перенапряжение в течение даже небольшого времени. Так и до пожара недалеко!

Как вариант, можно приобрести регулируемый автотрансформатор, т.н. ЛАТР, в котором предусмотрен ручной регулятор выходного напряжения. Но и он не будет являться надёжным решением, т.к.

придётся постоянно контролировать значение выходного напряжения по индикатору и корректировать его вручную, особенно во время максимальной нагрузки электросети со стороны соседей.

Если вовремя этого не делать, то при первом же скачке в электросети напряжение на выходе ЛАТРа тоже резко повысится, и подключенные электроприборы вполне могут перегореть.

Поэтому повышающие трансформаторы напряжения применимы лишь тогда, когда в сети ВСЕГДА существенно меньше 220 вольт, а такого практически никогда и не бывает.

Заключение

Задачу автоматического поддержания напряжения на постоянном уровне решает

но прежде нужно в обязательном порядке выявить истинную причину низкого напряжения в сети, а затем уже принимать какие-либо решения.

Трансформаторы — электромагнитные статические преобразователи электрической энергии. Трансформаторами называются электромагнитные аппараты, служащие для преобразования переменного тока одного напряжения в переменный ток другого напряжения при той же частоте и для передачи электрической энергии электромагнитным путем из одной цепи в другую.

Основное назначение трансформаторов — изменять напряжение переменного тока. Трансформаторы применяются также для преобразования числа фаз и частоты.

Трансформаторами тока называются аппараты, предназначенные для преобразования тока любой величины в ток, допустимый для измерений нормальными приборами, а также для питания различных реле и обмоток электромагнитов. Число витков вторичной обмотки трансформатора тока w2 > w1.

Особенностью трансформаторов тока является их работа в режиме, близком к короткому замыканию, так как их вторичная обмотка всегда замкнута на небольшое сопротивление.

Трансформаторами напряжения называются аппараты, предназначенные для преобразования переменного тока высшего напряжения в переменный ток низшего напряжения и питания параллельных катушек измерительных приборов и реле. Принцип действия и устройства трансформаторов напряжения аналогичен принципу работы силовых трансформаторов. Число витков вторичной обмотки w2

Источник: https://ostwest.su/instrumenty/chto-takoe-povyshajushhij-i-ponizhajushhij.php/

Повышающий и понижающий трансформатор

В быту и на производстве используется огромное количество различных электронных устройств, приборов и оборудования. Довольно часто для их нормальной эксплуатации требуется повышающий и понижающий трансформатор. Каждый из них работает на основе самоиндукции, позволяющей изменять ток в ту или иную сторону.

Само название трансформатора означает изменение или преобразование. Они применяются в основном совместно с электроникой зарубежного производства, рассчитанной на токи, отличающиеся от отечественных стандартов.

Кроме того, трансформаторы обеспечивают защиту электрооборудования и оптимизируют его питание, делая работу максимально эффективной.

Функции и работа трансформаторов

В электронике трансформаторы являются незаменимыми устройствами. Однако, для их наиболее эффективной работы, необходимо хорошо представлять себе, что понижает или повышает трансформатор. В зависимости от потребностей, они повышают или, наоборот, понижают величину потенциала в цепочках с переменным током.

С появлением отличающихся трансформаторных устройств стала возможной доставка электричества на значительные дистанции. Заметно снижаются потери на проводах ЛЭП, когда переменное напряжение повышается, а ток – понижается. Это происходит на всей протяженности проводников, соединяющих электростанцию с подключенными потребителями. На каждом конце таких линий напряжения снижаются до безопасного уровня, облегчая работу используемого оборудования.

Какой трансформатор называют повышающим, а какой понижающим, и какая между ними разница

Если отвечать коротко, то прибор выдающий более высокий потенциал, в сравнении со входом, считается повышающим. Если же происходит обратный процесс, и потенциал на выходе меньше, чем на входе, такое устройство будет понижающим. В первом случае вторичная обмотка обладает большим количеством витков, чем на первичная, а во втором, наоборот, в работе применяется вторичная обмотка с меньшим количеством витков. Этим они кардинально отличаются друг от друга.

Параллельная работа трансформаторов

Можно ли понижающий трансформатор использовать как повышающий

Да, можно. Поскольку для перемены функций достаточно изменить схему соединения обмоток с источником потенциала и нагрузкой. Соответственно, изменится и функциональность понижающего трансформатора.

На практике, с целью повышения эффективности устройства, индуктивность всех обмоток рассчитывается для точных рабочих значений тока и напряжения. Эти показатели должны обязательно сохраняться в исходном состоянии, когда повышающий и понижающий трансформатор изменяют свои функции на противоположные.

Как определить принадлежность той или иной обмотки

Конструктивно, трансформаторы выполнены по такому принципу, что невозможно сразу определить их различия, то есть, какие провода называется и фактически являются первичной, а которые из них – вторичной обмоткой. Поэтому, чтобы не запутаться, применяется маркировка. Для высоковольтной обмотки предусмотрен символ «Н», в понижающих устройствах она служит первичной, а в повышающих – вторичной обмоткой. Обмотка с низким вольтажом маркируется символом «Х».

Для того чтобы понять особенности, отличие и принцип действия каждого из этих устройств, их следует рассмотреть более подробно.

Общее устройство и функционирование трансформаторов понижающего типа

Трансформаторы выполняют преобразование более высокого входящего напряжения в низкую характеристику напряжения на выходе, то есть позволяют понизить большие токи до требуемых значений. При необходимости такой прибор может использоваться как повышающий.

Принцип действия этих приборов определяется законом электромагнитной индукции. Стандартная конструкция состоит из двух обмоток и сердечника. Первичная обмотка соединяется с источником питания, после чего вокруг сердечника происходит генерация магнитного поля. Под его воздействием во вторичной обмотке возникает электрический ток с определенными заданными параметрами напряжения.

Выходная мощность определяется по количественному соотношению витков в каждой катушке. Изменяя этот показатель можно управлять характеристиками выходного напряжения и получать требуемый ток для бытового и промышленного оборудования.

Как рассчитать мощность трансформатора

С помощью лишь одних трансформаторов невозможно изменить частоту электрического тока. Для этого конструкция понижающего аппарата дополняется выпрямителем, изменяющим частоту тока в диапазоне требуемых значений.

Современные приборы дополняются полупроводниками и интегральными схемами с конденсаторами, резисторами, микросхемами и другими компонентами.

В результате, получается устройство с незначительными размерами и массой, но достаточно высоким уровнем КПД, работающее на понижение напряжения.

Такие трансформаторы функционируют очень тихо и не подвержены сильному нагреву. Мощность выходного тока может выставляться путем регулировок и отличаться в каждом случае. Все устройства нового типа оборудованы защитой от коротких замыканий.

Понижающий трансформатор отличается простой и надежной схемой, широко применяются на подстанциях между отрезками линий электропередачи. Они выполняют понижение сетевого тока с 380 до 220 вольт. Подобные устройства относятся к промышленным. Используемые в быту, отличаются более низкими мощностями.

Принимая на первичную обмотку входа 220 В, они затем выдают пониженное напряжение от 12 до 42 вольт в соответствии с подключенными потребителями. Коэффициент трансформации понижающих устройств всегда ниже единицы.

Для того чтобы его определить, нужно знать соотношение между количеством витков в первичной и вторичной обмотке.

Особенности повышающего трансформатора

Повышающие трансформаторные устройства, как их называют специалисты, также используются в быту и на производстве. В основном их назначение – работа по своему профилю на проходных электростанциях.

Они должны повысить ток в соответствии с нормативными показателями, поскольку в процессе транспортировки происходит постепенное снижение высокого напряжения в ЛЭП.

В конце пути следования электростанция с помощью повышающего трансформатора напряжение поднимается до нормативных 220 В и поставляется в бытовые сети, а 380 В – в промышленные.

Заземление нейтрали трансформатора

Работа трансформатора повышающего типа осуществляется по следующей схеме, включающей в себя несколько этапов:

  • Вначале на электростанции производится электрический ток напряжением 12 киловольт (кВ).
  • Далее по ЛЭП оно поступает на повышающую подстанцию и попадает в повышающий трансформатор, преобразующий это напряжение до 400 кВ. Отсюда ток поступает в высоковольтную ЛЭП и уже по ней приходит на понижающую подстанцию, где его напряжение вновь становится 12 кВ.
  • На последнем этапе ток оказывается в низковольтной линии, в конце которой установлен еще один трансформатор понижающего действия. Здесь напряжение окончательно принимает рабочее значение 220 или 380 В и в таком виде поступает в бытовую или промышленную сеть.

Принцип работы повышающего трансформатора также основан на электромагнитной индукции. Основная конструкция состоит их двух катушек с разным количеством витков и изолированного сердечника.

Низкое переменное напряжение поступает в первичную обмотку и вызывает появление магнитного поля, возрастающего при оптимально подобранном соотношении обмоток. Под его влиянием во вторичной обмотке образуется электрический ток с повышенными показателями – 220 В и более. В случае необходимости изменения частоты, в цепочку дополнительно устанавливается преобразователь, способный выдавать постоянный ток для определенных видов оборудования.

В процессе работы трансформаторы нагреваются, поэтому им требуется использовать охлаждение, которое может быть масляным или сухим. Трансформаторные масла относятся к пожароопасным веществам, поэтому такие системы оборудуются дополнительной защитой. Сухие трансформаторы заполняются специальными негорючими веществами. Они безопасны в эксплуатации, но стоят значительно дороже.

Источник: https://electric-220.ru/news/povyshajushhij_i_ponizhajushhij_transformator/2019-07-23-1720

Бытовой трансформатор для частного дома 220

В быту и на производстве используется огромное количество различных электронных устройств, приборов и оборудования. Довольно часто для их нормальной эксплуатации требуется повышающий и понижающий трансформатор. Каждый из них работает на основе самоиндукции, позволяющей изменять ток в ту или иную сторону.

Само название трансформатора означает изменение или преобразование. Они применяются в основном совместно с электроникой зарубежного производства, рассчитанной на токи, отличающиеся от отечественных стандартов.

Кроме того, трансформаторы обеспечивают защиту электрооборудования и оптимизируют его питание, делая работу максимально эффективной.

Чтобы понять, что такое трансформаторы повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.

Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается.

Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В.

Промышленные сети обеспечиваются до 380 В.

Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.

От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ.

Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры и т. д.

Трансформаторы напряжения

Трансформатором напряжения называется статический (неподвижный) электромагнитный прибор, меняющий значения переменного напряжения. По назначению такие устройства разделяют на несколько видов:

  • силовые – используются в электроснабжении как для повышения (для передачи его на дальние расстояния), так и для понижения (до рабочих значений устройств-потребителей) напряжения;
  • технологические – устройства повышенных мощностей, применяются с технологическими целями (сварочными, печными и другими);
  • маломощные – питают теле- радиоаппаратуру, бытовую технику, а также применяются в схемах различной электроники;
  • измерительные – применяются с целью расширения границ измерения приборов.

Применяются трансформаторы напряжения как для его измерения, так и для контроля параметров мощности. Эффективно питают электрические цепи автоматики, сигнализационные устройства, а также используются при защите линий электропередач.

Принцип устройства

Рассматривая, как работает трансформатор повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции. Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.

Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.

При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.

Проблемы в электрических сетях

Изначально электричество подаётся через линии электропередач от повышающих трансформаторов поставщика и может проходить до нескольких сотен километров до отдельного дома. При установке понижающего агрегата на несколько домов-потребителей нагрузки будут подразделяться между всеми подключенными домами.

Гораздо выгоднее, хотя и дороже, установить индивидуальный трансформатор для дома – таким образом внутренняя электрическая сеть будет получать уже пониженный до 220В ток.

В случаях, когда в электрической сети наблюдается регулярная просадка напряжения, при которой приборы не в состоянии функционировать в полную силу, решить проблему можно установкой повышающего трансформатора.

Источник: https://instanko.ru/elektrichestvo/transformator-povyshayushchij-napryazhenie.html

ЭТО ИНТЕРЕСНО:  Как правильно подключить сварочный аппарат
Понравилась статья? Поделиться с друзьями:
Электро Дело
Какая частота тока в электрической сети

Закрыть