Что такое трансформатор для чего он нужен

Трансформаторы напряжения. Всё, что о них нужно знать

Что такое трансформатор для чего он нужен

Что необходимо о них знать? Расскажем об этом в предлагаемой статье.

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.

Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.

Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

Устройство трансформатора напряжения

ТН состоят из двух главных элементов:

  • Стального магнитопровода.
  • Обособленных друг от друга, изолированных обмоток (первичной и вторичной).

На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.

Принцип работы

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

  • Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.
  • Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.
  • К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

  • Число фаз: одно- и трехфазные.
  • Количество обмоток – две или три.
  • Класс точности – диапазон допустимых параметров погрешности.
  • Тип охлаждения – масляные и сухие (воздушное охлаждение).
  • Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

  • Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.
  • Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.
  • Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.
  • Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.
  • Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.
  • Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Источник: https://www.ruselt.ru/articles/transformatory-napryazheniya-vsye-chto-o-nikh-nuzhno-znat/

ТСН‌ (трансформатор‌ собственных‌ нужд)‌ как‌ средство‌ жизнеобеспечения‌ электроустановки‌

Что такое трансформатор для чего он нужен

ТСН‌ (трансформатор‌ собственных‌ нужд)‌ как‌ средство‌ жизнеобеспечения‌ электроустановки‌

Трансформаторы собственных нужд или ТСН предназначены для питания нагрузки подстанций, КРУН, КРУ для обеспечения своих потребностей. 

ТСН обеспечивает работу электроустановки и функциональность подключенных потребителей нагрузки. 

Количественный состав и тип нагрузки собственных нужд электроустановки зависят от вида, мощности силовых тр-ров, предусмотрены или нет синхронные компенсаторы и от класса подключенного электрооборудования.

Рис. №1. Размещение и внешний вид трансформаторов собственных нужд на ПС 

Потребители, которые питаются от собственных нужд электроустановки

К нагрузке ТСН относятся: обогреватели релейных шкафов, ячеек приводов силовых выключателей нагрузки, а при использовании постоянного тока зарядных устройств аварийного и действующего освещения. 

ТСН обеспечивает действие релейных защит, систем пожаротушения, средств оперативной связи и телемеханики. 

К ТСН ПС класса напряжения до 220 кВ с трансформаторами с возможностью к повышенной нагрузке подключена форсированная система охлаждения высоковольтных трансформаторов и потребителей, отвечающих за жизнеспособность электроустановки. 

Перечень нагрузки для собственных нужд электроустановок:

  1. Электродвигатели для системы обдува и охлаждения трансформатора.

  2. Обогрев ячеек масляных вакуумных выключателей и шкафов управления с электрическими аппаратами и приборами контроля и измерения.

  3. Системы пожаротушения.

  4. Устройства обогрева.

  5. Сеть освещения электроустановки. 

  6. Электропитание приводов коммутирующих устройств.

Таб. №1. Классификация электроприемников СН в зависимости от ответственности и продолжительности работы

Выбор трансформатора собственных нужд

Для выборе трансформаторов, от которых питаются потребители учитывают наличие различных режимов нагрузки подстанции и способность к перегрузке. ТСН выбирается с резервным запасом мощности. 

Для повышения надежности все двухтрансформаторные ПС35/750 кВ должны иметь два ТСН, по одному на каждую секцию. Один трансформатор СН возможен только на подстанциях 35/220 кВ с постоянным оперативным током в период монтажа и начала работы. Второй трансформатор присоединяется в процессе работы электроустановки. 

При выборе ТСН руководствуютсянормами «Технического проектирования подстанций переменного тока с высшим напряжением 35 – 750 кВ», Пункт № 6. 1. Собственные нужды. 

Условия расчета мощности ТСН

Мощность ТСН для питания внутренних потребителей рассчитывают в зависимости от подключенной нагрузки с учетом коэффициентов одновременности максимумов нагрузки и коэффициента загрузки по активной мощности:

  • номинальное напряжение, которое является первичным рабочим напряжением ТСН;
  • нагрузка во вторичной обмотке;
  • коэффициенты загрузки и одновременности максимумов нагрузки.

Формула ориентировочной нагрузки ТСН:

Где: 

Kc – коэффициент одновременности и загрузки, принимаемый как 0,8;

Рнагруз. – активная мощность;

Qустав – реактивная мощность.

Кзагр = Sзагр / nтр x Sтсн  коэффициент загрузки должен быть меньше 0,7, что означает возможное беспрепятственное подключение других дополнительных потребителей. 

Расчет мощности в зависимости от времени года и ремонтных работ 

Сейчас большинство подстанций работают без дежурных, поэтому важное значение в подборе ТСН играет степень загруженности в теплое и холодное время. Например, включение постоянно работающего обогрева. 

Значит, S расчет = S зим

На выбор ТСН также влияет подключение дополнительного электрического оборудования в периоды ремонтных работ. Это сварочные аппараты, компрессоры, воздуходувки и прочее дополнительное освещение.

Мощность трансформатора без дежурных электриков и с одним тр-ром выбирают как Sm ≥Sрасч

В случае наличия двух трансформаторов и с постоянным обслуживающим персоналом принимается:

Источник: https://www.kesch.ru/info/articles/tsn-transformator-sobstvennykh-nuzhd-kak-sredstvo-zhizneobespecheniya-elektroustanovki-/

Что такое трансформатор?

Что такое трансформатор для чего он нужен

Приветствую, друзья!

Мы с вами уже знакомились с тем, как работают некоторые «кирпичики», из которых состоит современный компьютер.

Вы уже знаете, как работают диоды, а также полевые и биполярные транзисторы.

Сегодня мы с вами узнаем, как устроен еще один такой «кирпичик» — трансформатор.

Он не просто жужжит или гудит, но выполняет очень важные функции!

Если бы не изобрели эту штуку, у нас не было бы ничего – не телевидения, ни радио, ни компьютеров, ни электрического света в домах.

Мы не будем рассматривать подробно всё многообразие трансформаторов (их много), но ограничимся тем, что имеет отношения к компьютеру и периферийным устройствам.

Слово «трансформатор» происходит от латинского transformo (преобразовывать). Мы рассмотрим трансформаторы — преобразователи напряжения, как наиболее нас интересующие.

Бывают еще другие трансформаторы, например, тока.

Трансформатор напряжения позволяет получить напряжение одной величины из напряжения другой величины. Все вы видели высоковольтные линии с высокими опорами, по которым передается высокое напряжение 6000, 35 000, 110 000, 220 000 или 500 000 Вольт.

В домашней же электрической сети и присутствует напряжения 220 вольт (В). Преобразование высокого напряжения в 220 В осуществляется с помощью здоровенных трансформаторов в тонны весом, которые находятся в трансформаторных подстанциях.

Из напряжения 220 В мы можем получить дома более низкое напряжение нужной величины с помощью небольшого трансформатора. Удобно, не правда ли?

Как устроен трансформатор

Низкочастотный трансформатор содержит в себе сердечник из сплава на основе железа и размещенные на нем обмотки из провода. В упрощенном виде трансформатор содержит две обмотки — первичную и вторичную. Они изолированы друг от друга и не имеют электрического контакта.

На первичную обмотку подается преобразуемое напряжение, со вторичной снимается напряжение, нужное нам.

Это и отражено в символическом изображении трансформатора в электрических схемах. Обмотки изображают в виде волнистых линий с отводами, сердечник — одной (или несколькими, зависит от стандарта) прямой линией.

При подаче переменного тока в первичную обмотку в ней возникает переменное магнитное поле.

Магнитное поле характеризуется такой числовой величиной, как магнитный поток.

Чем больше ток в первичной обмотке и чем больше там витков, тем сильнее возникающий магнитный поток.

Это магнитный поток наводит (генерирует) переменное напряжение во вторичной обмотке.

Если подключить к вторичной обмотке нагрузку, по ней потечет переменный ток. Следует отметить, что частота переменного напряжение во вторичной обмотке будет равна частоте напряжения в первичной обмотке.

Что будет, если первичную обмотку подключить к источнику постоянного напряжения? Появится ли постоянное напряжение на вторичной обмотке, ведь при протекании тока в первичной обмотке в ней генерируется магнитный поток?

Нет, не появится! Напряжение во вторичной обмотке находится только при переменном магнитном потоке, а при постоянном токе он постоянен.

Роль сердечника заключается в том, что он почти полностью концентрирует в себе магнитный поток.

Без сердечника магнитная связь обмоток было бы слабее.

И мощность, отдаваемая вторичной обмоткой в нагрузку, было бы гораздо меньше.

Полная теория трансформатора довольно сложна.

Чтобы исчерпывающим образом описать его работу, необходимо применять математический аппарат с интегралами, производными и прочими сложными понятиями.

Мы не будем здесь этого делать, но приведем несколько базовых соотношений, имеющих практическую пользу.

Габаритная мощность и КПД трансформатора

Для начала отметим, что, чем больше поперечное сечение сердечника (или магнитопровода) трансформатора, тем большую мощность можно получить на вторичных обмотках.

Именно поэтому большие трансформаторы, установленные в трансформаторных подстанциях и питающие несколько многоэтажек, имеют большой вес и габариты.

Маломощные трансформаторы, отдающие мощность в несколько Ватт (Вт), умещаются на ладони.

Трансформатор характеризуется габаритный мощностью, т.е. суммарной мощностью, отдаваемой всеми вторичными обмотками.

Как известно, мощность Р2 = U2 * I2, где U2, I2 – соответственно, напряжение и ток вторичной обмотки трансформатора.

Отметим, что не вся мощность, потребляемая первичной обмоткой от источника передается во вторичную. Часть мощности идет на нагрев проводов и сердечника. Кроме того, некоторая часть магнитного потока, создаваемого первичной обмоткой, рассеивается в пространстве и не участвуют в наведении напряжения во вторичных обмотках.

Именно поэтому, КПД (коэффициент полезного действия) трансформатора, т.е. отношение мощности вторичной обмотки P2 к мощности первичной обмотки P1 меньше 100%.

КПД: η = P2 / P1

В общем случае, чем больше габаритная мощность трансформатора, тем больше его КПД.

КПД маломощных трансформаторов может составлять величину 60 – 80%. КПД мощных трансформаторов в распределительных подстанциях может иметь величину 99% .

Провода в обмотках нагреваются потому, что они имеют не нулевое сопротивление. Прохождения тока по проводнику, обладающему сопротивлением, вызывает, по закону Джоуля-Ленца, его нагрев.

Именно поэтому обмотки трансформатора выполняют из меди, как материала, обладающего низким удельным сопротивлением.

Количество витков на вольт и сечение магнитопровода трансформатора

Напряжение на вторичной обмотке пропорционально количеству витков провода в ней. Чем больше витков, тем больше напряжение на ней.

Маломощный трансформатор характеризуется такой вспомогательной величиной, как количество витков на вольт.

Она связана достаточно сложной зависимостью с сечением магнитопровода трансформатора.

Для маломощных однофазных трансформаторов c сердечником из отдельных пластин приближённая формула имеет вид:

w = 50/S, где S — сечение магнитопровода в кв. сантиметрах, w – количество витков на вольт.

Таким образом, если сечение магнитопровода имеют величину, скажем 4 кв. см, то для него w = 50/4 = 12,5.

Если первичная обмотка рассчитана на напряжение 220 вольт количество витков в ней должно быть: w1 = 220*12,5 = 2750. А если нам надо, например, иметь 15 вольт на вторичной обмотке, надо намотать w2 = 15*12,5 = 188 витков.

В заключение первой части рассмотрим, что такое коэффициент трансформации.

Коэффициент трансформации трансформатора

Трансформатор характеризуется ещё такой величиной, как коэффициент трансформации. Коэффициент трансформации k — это отношение напряжения вторичной обмотки к напряжению первичной обмотки: k = U2/U1. Если имеется несколько вторичных обмоток разными напряжениями, то для каждой будет свой коэффициент трансформации.

Из вышесказанного видно, что коэффициент трансформации определяется соотношением витков вторичной и первичной обмоток: k = w2/w1.

Для приведенных выше цифр в примере k = 15/220 = 188/2750 = 0,068

Для понижающего трансформатора коэффициент трансформации будет меньше единицы, для повышающего – больше.

Бывают трансформаторы с коэффициентом трансформации, равным единице.

В этом случае трансформатор служит для гальванической развязки разных частей схемы.

Во второй части мы продолжим знакомство с этой интересной штуковиной.

Можно еще почитать:

Как устроен компьютерный блок питания. Часть 1.

Как устроен компьютерный блок питания. Окончание.

Источник: https://vsbot.ru/lektronika/chto-takoe-transformator.html

Трансформаторы тока и напряжения

Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:

  • понижающими, выдающие на выходе меньшее напряжение, чем на входе;
  • повышающими, выполняющие противоположное преобразование;
  • разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.

Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.

С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.

Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.

ЭТО ИНТЕРЕСНО:  Как рассчитать коэффициент трансформации силового трансформатора

Зачем нужны измерительные трансформаторы напряжения

В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:

  • при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
  • изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.

Трансформатор напряжения НОЛ

Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В.

Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более.

Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз.

Трехфазный трансформатор напряжения НАМИ

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета, имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.

Трансформатор напряжения НОМ-10

Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.

Три однофазных трансформатора ЗНОЛ, собранные вместе

А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации.

Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением.

Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Зачем нужны трансформаторы тока

Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.

Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:

  • максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
  • включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
  • вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
  • Заменить амперметр прямого подключения можно, только отключив нагрузку.

Принцип действия и конструкция трансформаторов тока

Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.

Варианты конструктивного исполнения трансформаторов тока до 1000 В

Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.

Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.

Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего.

И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.

Установка трансформаторов тока в ячейке выше 1000 В

Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой.

Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика.

А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.

Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения.

Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).

про трансформаторы тока

Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.

Источник: http://electric-tolk.ru/transformatory-toka-i-napryazheniya/

Зачем нужен трансформатор напряжения? — Металлы, оборудование, инструкции

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений.

Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения.

Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН.

Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе.

Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем.

Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его.

Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Цикл работы элегазовых выключателей

Принцип действия ОПН

Источник: https://spb-metalloobrabotka.com/zachem-nuzhen-transformator-napryazheniya/

Назначение измерительных трансформаторов тока

При использовании различных энергетических систем возникает необходимость в преобразовании определенных величин в аналоги с пропорционально измененными значениями.

Такая операция позволяет воссоздавать процессы в электронных устройствах, гарантируя безопасные учет их потребления. Для этого используется специальное оборудование — трансформатор тока наружной установки.

Когда нужны трансформаторы тока?

Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

  1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
  2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
  3. Используются для учета электроэнергии с помощью счетчика.

На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

Классификация и расчет

Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

  1. Для измерения показателя счетчика.
  2. Для защиты электрооборудования.

Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:

  • предназначенные для работы на открытом воздухе;
  • функционирующие в закрытом помещении;
  • используемые в качестве встроенных элементов электрооборудования;
  • накладные, предназначенные для для проходного изолятора;
  • переносные, дают возможность осуществлять расчет в любом месте;

Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

  • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
  • бумажно-масляную;
  • газонаполненную;
  • залитую компаундом;

Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

  • номинальное напряжение сети;
  • параметр номинального тока первичной и вторичной обмотки;
  • коэффициент трансформации;
  • класс точности;
  • особенности конструкции;

При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.

Подключение счетчика через трансформаторы тока представлено на это фото

Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

Как осуществляется подключение измерительного ТТ тока для счетчика?

Обозначение на схеме

ЭТО ИНТЕРЕСНО:  Для чего применяется конденсатор

Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

Источник: http://infoelectrik.ru/elektrotexnicheskie-ustrojstva/naznachenie-izmeritelnyx-transformatorov-toka.html

Автотрансформаторы | Устройство и принцип действия

Автотрансформатор — это устройство для изменения напряжения переменного тока при сохранении его частоты, основанное на эффекте электромагнитной индукции, которое имеет одну общую обмотку на магнитопроводе и не менее трёх выводов от неё.

Если простыми словами, то автотрансформаторы – это разновидность обычных трансформаторов напряжения, в которых есть всего одна обмотка, часть витков которой выполняют функцию первичной обмотки, а часть вторичной.

Для лучшего понимания, давайте рассмотрим устройство наиболее распространенного типа автотрансформаторов.

Устройство автотрансформатора

Чаще всего стандартный автотрансформатор представляет собой тороидальный магнитопровод – сердечник, сделанный из электротехнической стали в виде кольца, на который намотана медная проволока – называемая обмоткой.

Кроме того, чтобы эта конструкция служила именно автотрансформатором, у неё есть дополнительная «отпайка» — отвод от этой обмотки, всего контактов получается, как минимум три.

Устройство автотрансформатора достаточно наглядно показано на изображении ниже:

В данном примере, вы можете видеть автотрансформатор, к крайним контактам которого подключается источник напряжения переменного тока, к A – фаза, к X – ноль. Все витки проволоки между этими точками считаются первичной обмоткой.

Нагрузка, какой-нибудь электроприбор, которому для работы требуется меньшее напряжение, чем поступает из сети, подключается к выводам a2 и X – витки между этими контактами – это уже вторичная обмотка.

Как видите, у автотрансформатора есть всего одна обмотка, но при этом напряжение, если замерять в различных точках подключения, будет разным, почему оно меняется и как определить насколько (коэффициент трансформации) мы рассмотрим ниже.

Обозначение автотрансформатора на схемах

Кстати, вы довольно легко на любой схеме определите автотрансформатор и отличите его от обычного трансформатора, чаще всего он обозначается вот так:

Как видите, схематически у автотрансформатора показаны все его основные элементы: прямая линия — это стальной сердечник, с одной стороны которого расположена единственная обмотка – в виде волнистой линии, от которой идёт несколько отводов.

Перепутать с обычным трансформатором не получится, ведь у него на схеме будет как минимум две обмотки по сторонам от сердечника.

Более подробно о принципиальных различиях автотрансформатора и обычного трансформатора напряжения, я расскажу во второй части этой статьи.

Принцип работы автотрансформатора

А сейчас, для лучшего понимания основного принципа работы автотрансформаторов, рассмотрим процессы, которые в них происходят.

В качестве примера, мы возьмем автотрансформатор, который может как повышать напряжение на выходе, так и уменьшать его, относительно начального. Общее количество витков медного провода у него, для удобства расчетов, равно 20, выглядит он следующим образом:

Как видите, у такой модели, есть уже четыре точки подключения к общей обмотке: A1, a2, a3 и X.

К контактам A1 и N – подключается источник переменного электрического тока, например, питание стандартной городской электросети, с напряжением(U1), в нашем случае это стандартные 220В. Всего между этими точками 18 витков медной проволоки, этот участок спирали обозначен как W1, он считается первичной обмоткой автотрансформатора.

Что происходит при подаче напряжения на автотрансформатор

При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.

Проще говоря, при подключении тока к первичной обмотке – в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222 Вольта на каждый.

Теперь, чтобы узнать какое напряжение образуется на всех 20 витках, к точкам a2 и X, подключим нагрузку, какой-нибудь электроприбор – это будет вторичная обмотка автотрансформатора. На схеме условно обозначим нагрузку, некий электроприбор подключеный к этой обмотке, напряжение U2, а число витков между контактами W2 = 20.

Зависимость между обмотками у автотрансформатора, выражается следующей формулой:

U1/w1 = U2/w2, где U1 напряжение на первой обмотке, U2 напряжение на второй обмотке, w1 число витков первой обмотки, w2 число витков второй обмотки.

Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.

Это доказывает нехитрый расcчет:

U1/w1 = U2/w2,

220 Вольт/18 Витков=U2/20 Витков,

U2 = 220*20/18 = 244.44В

Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.

Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации, величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.

Коэффициент трансформации вычисляется по следующей формуле:U1/U2=w1/w2

В нашем случае получается 220/244,44=18/20=0,9

Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.

Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.

Следуя той же формуле, рассчитываем напряжение:

U1/w1 = U3/w3 = 220/18=U3/16, от сюда следует, что U3 =220*16/18 = 195,55.. Вольт, а коэффициент трансформации U1/U3=w1/w3=220/195,55=18/16=1,125 , эта обмотка понижающая.

Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.

Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:

Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:

— на контактах a2 и X, при коэффициенте трансформации k1=0,9 напряжением будет U2=200В/0,9= 222,22 В

— на контактах a3 и X, при коэффициенте трансформации k2=1,125 напряжение равняется U3=200/1,125=177,77 В

ПРАВИЛО: Если коэффициент трансформации k>1 – то трансформатор понижающий, если же k

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/183-avtotransformatory-ustrojstvo-i-printsip-dejstviya

Трансформатор — устройство и принцип работы

Трансформатор – статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Устройство и принцип работы

Схема однофазного двухобмоточного трансформатора представлена ниже.                                        

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков,Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины — вторичными.

Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1 dФ/dt, e2= -n2dФ/dt.

При синусоидальном изменении магнитного потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока.

Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода.

В этом случае i2 = 0, а u2=E2, ток i1 мал и мало падение напряжения в первичной обмотке, поэтому u1≈E1 и отношение ЭДС можно заменить отношением напряжений u1/u2 = n1/n2 = E1/E2 = k.

  Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P2/P1.

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0,5 или 0,35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым. 

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением.

Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду.

При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками.

Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.         

— Приведение обмоток трансформатора                                                                                                                      

1 1 1 1 1 1 1 1 1 1 3.56 (8 Голоса)

Источник: https://electroandi.ru/elektromagnitnye-ustrojstva/transformator-ustrojstvo-i-printsip-raboty.html

Для чего нужны трансформаторы тока

Трансформатор тока — электромагнитный аппарат который принадлежит к одному из видов трансформаторов измерительного вида. Одной из задач трансформатора тока является получение переменного тока во вторичной обмотке.

В общем определить одну определенную задачу трансформатора тока сложно, ведь она зависит от многих факторов в том числе и от конкретной ситуации при которой применение трансформатора просто необходимо.

Особенности

Но среди прочего все же выделяются три основных особенности трансформатора тока, а именно: защита, измерение и стабилизация электрического тока.

Трансформатор тока это аппарат который очень важен для использования в области электротехники. Для эффективной, безопасной и стабильной работы различных промышленных приборов и аппаратов, а также бытовых электрических приборов, необходим контроль текущих уровней электрического тока. Специально для этого к трансформатору тока подключаются различные измерительные электрические приборы позволяющие производить контроль всей системы в различных местах.

Трансформатор тока Т-0,66 150/5а

В трансформаторе тока первичный и вторичный ток пропорциональны друг другу. Первичная обмотка трансформатора тока включена последовательно, а вторичная замыкается на нагрузку. За счет этого действия получаются пропорциональные величины.

Пропорциональная величина трансформатора тока это – величина которая имеет одинаковое отношение между собой.

Обмотки

Первичная обмотка включения трансформатора тока бывает в двух типовых исполнениях. Первое — обмотка плоская, второе — обмотка в форме ролика выполненная из толстого провода.

Вторичная обмотка имеет большее число витков катушки которые намотаны на глянцевую основу магнитного материала. Вторичная обмотка трансформатора ток арсчитана на показатель который соответствует стандарту 1 или 5 Ампер.

Трансформаторы тока можно различить по классу точности а именно: 0,2; 0,5; 1; 3; и 10. Эти трансформаторы способны снижать высокие проходные электрические токи, на более низкие. Данное действие обеспечивает безопасный контроль электрической энергии в переменной линии передачи.

Трансформаторы тока делятся также по по номинальной мощности которая имеет следующие значения: 25 кВа, 40 кВа, 63 кВа, 100 кВа и 160 кВа.

При эксплуатации трансформатора тока, возникает необходимость периодического обслуживания и его ремонта. Хочется отметить что обслуживание, ремонт а также замена составляющих запасных частей трансформатора тока, должна проводиться специализированной организацией имеющей допуски к данным видам работ.

Области и сферы назначения

По функциональному назначению трансформаторы тока можно разделить на 4 категории

  • измерение при помощи любого прибора силы электрического тока. В этом случае переменный ток остается переменным, и приемлемым для измерения. Для измерения силы тока подходит вольтметр или другие измерительные электрические приборы кроме амперметра.
  • трансформаторы тока служат для стабилизации работы, в тех случаях когда электрическая система является довольно мощной, это нужно для сохранения целостности изоляции, которая необходима для обеспечения безопасности жизни обслуживающего персонала, который проводит регулярные ремонтные и обслуживающие работы.
  • преобразование трехфазного переменного электрического тока в такой же переменный ток подходящего значения. Это нужно для стабилизации работы и защиты реле, которое подключается к определенной конкретной электрической цепи.
  • при эксплуатации оборудования исключив нарушение изоляции и технологических серьезных ошибок во время установки электрического оборудования, электрический ток все равно способен нанести ущерб здоровью и жизней персонала занимающегося его периодическим обслуживанием и ремонтом.

Источник: https://tr-ktp.ru/oborudovanie/dlya-chego-nuzhny-transformatory-toka.html

Зачем нужен трансформатор напряжения

Зачем нужен трансформатор напряжения, они представляют огромный интерес для служб, по учёту электроэнергии. Следующий пункт, это определение земли на оборудовании и секции шин. Сейчас постараюсь, всё объяснить на пальцах. Трансформаторы напряжения, называют измерительными.

Они необходимы для преобразования в низкое напряжение, более высокое, до нужного Вам значения. Подходящие для питания устройств измерения и релейной защиты силовых трансформаторов.  Ещё они защищают реле и приборы от высокого напряжения.

ЭТО ИНТЕРЕСНО:  Сколько ватт выдерживает автомат на 25 ампер

Более важное условие, с точки безопасности, защищают обслуживающий персонал, работающий на вторичных цепях подстанции.

Где применяются и из чего состоят трансформаторы напряжения

Трансформаторы напряжение, постоянно применяются в установках, 380 В и выше, переменного тока. Они понижают приложенное к первичной обмотке напряжение до 100 В, умнее говорят  100/ корень из трёх. Так же, как и все трансформаторы, у них есть свой коэффициент трансформации трансформатора напряжения. Зачем? Для безопасности людей и оборудования.

Они имеют не сложную конструкцию, надёжны, и главное, обладают очень хорошей точностью. Состоит это приспособление из: двух обмоток, первичная и вторичная, стальной сердечник, набранный из пластин.  У них имеются вывода для подключения. Первичная обмотка, присоединяется к цепи силового напряжения, а с другой стороны, могут прикрепить реле, обмотку вольтметра или ваттметра и всякое разное.

По принципу своего действия, они идентичны силовому трансформатору. Есть у него потери от намагничивания, они в следствии дают некоторую погрешность. Для этого, есть разброс в классах точности.  Вот по этому случаю статья, классы точности электроизмерительных приборов.

   У них бывают несколько вторичных обмоток, и разное число фаз. Кроме напряжения, есть и максимальная мощность, которую он способен обеспечить, при этом, правильно и длительно функционировать, от неблагоприятного перегрева внутренних обмоток.

Способы их установки различны, внутренние и внешние.

Расшифровка аббревиатур трансформаторов напряжения

Различаются и по способу изоляции, сухая, она же литая и масляной. У каждого свое, буквенное обозначение трансформатора. Есть на разные классы напряжения, такие как, нтми-10,  ном-10, зном-35, ном-35, нкф-110, нами-10. В предыдущем предложении, цифры означают номинальное напряжение.

Начнём с самой важной буквы, которая находится в самом начале практически всех аббревиатур, это буква Н. Она как раз и означает трансформатор напряжения. Кстати говоря, его сокращённо называют просто ТН.

Следующие по списку и по важности буква это, Т и О, которые означаю количество фаз. Трехфазный и однофазный соответственно. У буквы Т есть ещё одно значение, она означает что, трансформатор трёх обмоточный.

Следующие буквы, относятся к изоляции и способам охлаждения. Она может быть, литой (Л), С сухой, Естественное мысленно охлаждение, маркируется буквой М.

Следующие значения, можно отнести к дополнительным функциям. Для подключения измерительных приборов, наносится (И).  Если видим (К), следует понимать, что в трансформаторе напряжения есть дополнительная обмотка, которая уменьшает угловую погрешность или каскад.

«З» – наличие заземляющего вывода.

Активную часть, часто помещают в фарфоровую покрышку, поэтому присутствует символ «Ф».

(У) — относится к установки в умеренно климате. Д, Е – делитель, имеет определённую ёмкость.

 Земля на секции шин 10 кВ

Теперь про землю на секциях шин. Под этим выражением надо понимать, что на ячейках, которые называются ТН, где собственно и ставится трансформатор напряжения, ставятся киловольтметр.  Подходя к нему, переключаем его ручку, во всех позициях фазного и линейного напряжения, должно показываться, примерно равное значение.

Если есть, перекос фаз, разбег в показаниях, это и означает что, на линии земля. Сейчас более точно, оборвался провод и лежит на земле, или сломался изолятор, и провод лёг на траверсу, это из оборудования воздушных линий электропередач. Схожие проблемы и с кабельными линиями.

Источник: http://energytik.net/oborudovanie-transformatornyih-podstantsiy/zachem-nuzhen-transformator-napryazheniya.html

Что такое трансформатор: устройство, принцип работы и назначение

Электромагнитные статические устройства используются для создания и применения магнитного поля. Случаев, зачем нужен трансформатор в электронных, электрических цепях и радиотехнике, существует много. Устройство оснащено индуктивными обмотками, взаимно связанными на магнитопроводе. Сеть способствует возникновению переменного поля, а трансформатор с помощью электромагнитной индукции придает току постоянные значения без изменения частоты.

Определение и назначение

Для питания приборов нужны напряжения различных характеристик. Трансформатор — это конструкция для использования индукционной работы магнитного поля. Ленточные или проволочные катушки, объединенные общим потоком, понижают или увеличивают напряжение. В телевизоре применяется 5 В для работы транзисторов и микросхем, питание кинескопа требует нескольких киловольт при использовании каскадного генератора.

Изолированные обмотки располагаются на сердечнике из спонтанно намагниченного материала с определенным значением напряженности. Старые агрегаты использовали существующую частоту сети, около 60 Гц. В современных схемах питания электроприборов применяют импульсные трансформаторы с высокой частотой. Переменное напряжение выпрямляется и преобразовывается при помощи генератора в величину с заданными параметрами.

Напряжение стабилизируется благодаря управляющей установке с импульсно-широтной модуляцией. Высокочастотные всплески передаются трансформатору, на выходе получают стабильные показатели. Массивность и тяжесть приборов прошлых лет сменяется легкостью и небольшими размерами. Линейные показатели агрегата пропорциональны мощности в отношении 1:4, для уменьшения габаритов устройства увеличивается частота тока.

Массивные приборы используют в схемах электроснабжения, если требуется создать минимальный уровень рассеяния помех с высокой частотой, например при обеспечении качественного звука.

Магнитная система

Выполняется из легированной трансформаторной стали, феррита, пермаллоя с сохранением геометрической формы для продуцирования магнитного поля агрегата. Проводник конструируется из пластин, лент, подков, его изготавливают на прессе. Часть, на которой располагается обмотка, называются стержнем. Ярмо — это элемент без витков, выполняющий замыкания цепи.

Принцип действия трансформатора зависит от схемы стоек, которая бывает:

  • плоская — оси ярм и сердечников находятся в единой плоскости;
  • пространственная — продольные элементы устраиваются в разных поверхностях;
  • симметричная — одинаковые по форме, размеру и конструкции проводники расположены ко всем ярмам аналогично другим;
  • несимметричная — отдельные стойки отличаются по виду, габаритам и ставятся в разных положениях.

Если предполагается, что через обмотку, которую называют первичной, протекает постоянный ток, то магнитный провод делают разомкнутым. В остальных случаях сердечник закрытый, он служит для замыкания силовых линий.

Условные обозначения

Чтобы удобно читалась схема трансформатора, есть специальные знаки. Сердечник вычерчивается толстой линией, цифра 1 показывает первичную обмотку, вторичные витки обозначаются цифрами 2 и 3.

В некоторых схемах линия сердечника аналогична по толщине черте полуокружностей обвивки. Обозначение материала стержня различается:

  • магнитопровод из феррита чертят толстой линией;
  • стальной сердечник с магнитным зазором рисуют тонкой чертой с разрывом в середине;
  • ось из намагниченного диэлектрика обозначают тонким пунктиром;
  • медный стержень имеет на схеме вид узкой линии с условным обозначением материала по таблице Менделеева.

Для выделения катушечного вывода применяют жирные точки, обозначение мгновеннодействующей индукции одинаково. Используется для обозначения промежуточных агрегатов в каскадных генераторах для показания противофазности. Ставят точки, если требуется установить полярность при сборке и направление расположения обмоток. Число витков в первичной обмотке определяется условно, как не нормируется и количество полуокружностей, пропорциональность есть, но строго не соблюдается.

Основные характеристики

Холостой режим применяется при разомкнутом вторичном контуре трансформатора, в нем отсутствует напряжение. Ток проходит по первичной обвивке, возникает реактивное намагничивание. При помощи холостой работы определяют КПД, показатель трансформации и потери в сердечнике.

Функционирование под нагрузкой подразумевает подключение источника питания к первичной цепи, где протекает суммарный ток функционирования и холостого хода. Нагрузка подсоединяется к вторичному контуру трансформатора. Этот режим является распространенным.

Фаза короткого замыкания возникает, если сопротивление вторичной спирали составляет единственную нагрузку. В этом режиме определяются потери на нагревание катушки в цепи. Параметры трансформаторов учитываются в системе замещения прибора с помощью установки сопротивления.

Отношением потребляемой и отдаваемой мощности определяется коэффициент полезного действия трансформатора.

Область применения

Бытовые приборы имеют контакт с заземлением посредством нейтрального провода. Одновременное касание потребителем тока фазы и нулевой цепи ведет к замыканию контура и травме. Подключение через разделительный трансформатор позволяет обезопасить человека, т. к. вторичная обмотка не контактирует с землей.

Импульсные агрегаты используются при передаче прямоугольного толчка и трансформации коротких сигналов при нагрузке. На выходе изменяется полярность и амплитуда тока, но остается неизменным напряжение.

Измерительное оборудование постоянного тока является магнитным усилителем. Изменять переменное напряжение помогает направленное движение электронов небольшой мощности. Выпрямитель поставляет постоянную энергию и зависит от значений входного электричества.

Силовые агрегаты широко используются в генераторах тока малой величины, мощности, показатели в дизелях имеют средние значения. Трансформаторы монтируют последовательно с нагрузкой, прибор подключается к источнику первичной обмоткой, вторичный контур выдает преобразованную энергию. Значение выходного тока прямо пропорционально нагрузке. Используется оборудование с 3 магнитными стержнями, если генератор трехфазного тока.

Источник: https://odinelectric.ru/equipment/chto-takoe-transformator

IT News

Дата Категория: Физика

Используемая человеком электрическая энергия в основном вырабатывается на крупных электростанциях. Эти предприятия передают электричество на районные подстанции, которые затем распределяют его по потребителям.

Так как линии электропередач обладают электрическим сопротивлением, часть энергии электрического тока теряется, превращаясь в теплоту. Постоянный ток (DC) течет в одном направлении; переменный ток (АС) периодически изменяет свое направление.

Первоначально для электроснабжения применялся только постоянный ток. По ряду причин передача и преобразование постоянного тока связаны со значительными трудностями, поэтому по соображениям безопасности электростанции передавали его под низким напряжением.

Однако к тому времени, когда постоянный ток достигал потребителей, сопротивление съедало 45 процентов его энергии.

Выход был найден в передаче переменного тока высокого напряжения, которое может быть легко изменено при помощи трансформатора (рисунок внизу).

Так как высоковольтным линиям требуется меньший ток для передачи одного и того же количества энергии, ее потери на преодоление сопротивления стали намного меньшими.

Когда переменный ток покидает электростанцию, повышающие трансформаторы увеличивают его напряжение с 22 000 до 765 000 вольт, а перед поступлением в дома другие трансформаторы, понижающие, уменьшают его до ПО или 220 вольт.

Принцип действия трансформатора

Трансформаторы увеличивают или уменьшают напряжение переменного тока. Преобразуемый переменный ток проходит по первичной обмотке, охватывающей стальной сердечник (рисунок сверху). Периодически изменяющийся ток создает в сердечнике переменное магнитное поле. При перемещении во вторичную обмотку это магнитное поле генерирует в ней переменный ток. Если вторичная обмотка имеет больше витков, чем первичная, выходное напряжение будет выше, чем входное.

Потери энергии при протекании постоянного тока

Электрическая мощность (Р) вычисляется путем умножения силы тока (I) на напряжение (V), т.е. Р = I х V. Если напряжение возрастает, сила тока, необходимая для обеспечения заданной мощности, уменьшается. Низковольтная мощность постоянного тока требует большей силы тока, чем высоковольтная мощность переменного, чтобы передать одно и то же количество электроэнергии.

Переменный ток легко трансформируется

В отличие от постоянного, переменный ток периодически изменяет свое направление. Если переменный ток проходит по первичной обмотке трансформатора (рисунок слева), образующееся переменное магнитное поле индуцирует ток во вторичной обмотке. При протекании по первичной обмотке постоянного тока (рисунок справа), во вторичной обмотке ток не возникает.

Источник: http://information-technology.ru/sci-pop-articles/23-physics/235-kak-rabotaet-transformator

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n Как работает трансформатор напряжения?

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

Зачем нужен трансформатор |

Трансформатор — это прибор для повышения или понижения напряжения в электрической сети.

Транспортировать электричество по проводам на большие расстояния удобнее под высоким напряжением (так уменьшаются непроизводительные потери), а большинство бытовых и некоторая часть промышленных электроприборов может работать лишь с низким напряжением. Трансформаторы решают эту проблему, можно до входа в них подавать высокое напряжение тока, а на выходе получать требуемую величину.

в избранное ссылка отблагодарить

Для измерения токов в силовых цепях переменного напряжения применяют трансформаторы тока. Они применяются как в цепях до 1000 В так и выше 1000 В. Они имеют стандартные токи вторичной цепи – 1 А или 5 А и измерительные приборы и реле выполняют на этот ток. Вторичная обмотка трансформатора обязательно заземляется, чтоб в случае пробоя изоляции измерительные устройства не оказались под напряжением первичной цепи.

Схема такого трансформатора показана ниже:

Главной особенностью таких устройств является то, что ток, протекающий в первичной цепи абсолютно независим от режимов работы вторичной цепи. Во вторичной цепи трансформатора предохранитель не ставят, так как обрыв вторичной цепи трансформатора тока – это аварийный режим работы. Почему так мы рассмотрим в следующих статьях.

Номинальное напряжение

Это напряжение линейное сети, в которой должен работать трансформатор. Именно это напряжение будет определять изоляцию между обмотками, одна из которых будет находится под высоким потенциалом, а вторая заземлена.

Источник: https://crast.ru/instrumenty/zachem-nuzhen-transformator-naprjazhenija

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]