Что такое заземление электрооборудования

Заземление и зануление электроустановок, разновидности (TN-C,TN-S,TN-C-S,TT,TI), достоинства и недостатки

Что такое заземление электрооборудования

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки.

Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN.

Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

Система заземления TN-C-S

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

Источник: https://pue8.ru/elektricheskie-seti/362-zazemlenie-i-zanulenie-elektroustanovok.html

Заземление и зануление: в чем разница

Что такое заземление электрооборудования

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию.

Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.

030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Рисунок TN-C

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.

Фото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

Фото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит.

После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током.

Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

Фото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Источник: https://www.asutpp.ru/zazemlenie-i-zanulenie.html

Определение и объяснение для чего же нужно заземление

Что такое заземление электрооборудования

Если обычного человека спросить, для чего нужно заземление, то ответ будет примерно таким: «Чтобы током не ударило». Приведённая формулировка правильно характеризирует предназначение данного устройства, но она является неполной.

Помимо обеспечения защиты человеческого организма от поражения электрическим током, у заземления есть и другие функции, о которых будет рассказано ниже. Для начала нужно понять значение данного термина, расшифровав определение, данное одной из важнейших книг в профессии электрика, которая называется «Правила Устройства Электроустановок», сокращённо ПУЭ:

Для простого обывателя данная сухая формулировка мало что значит, поэтому ниже будет поэтапно расписано значение каждого слова.

ЭТО ИНТЕРЕСНО:  Для чего используют понижающий трансформатор

Расшифровка терминов

Многие люди представляют себе заземление в виде металлического штыря, закопанного в земле, с тянущимся от него проводом, идущим к электрощиту.

На самом деле, металлическая конструкция, закапываемая в грунт, является заземлителем, а совокупность заземлителя и подключенных к нему проводов называется заземляющим устройством (ЗУ).

на рисунке изображены составные части заземления

Как видно из определения ПУЭ, заземление – это, прежде всего процесс, выполнение которого должно обеспечивать электротехническую защиту людей и оборудования.

Говоря о заземляемом оборудовании, как о защите от поражения, подразумевают защитное заземление. Термин «электрическое соединение» означает подключение при помощи проводников.

Точкой сети может быть место соединения с ЗУ как токонесущего проводника, так и защитного провода, экрана или брони кабеля.

провод заземления или точка соединения ЗУ к контуру заземления

Электроустановкой называют совокупность аппаратов, машин, оборудования, конструкций, сооружений, помещений, предназначенных для генерации, трансформации, распределения и передачи электроэнергии, а также для преобразования в другие типы энергии.

Назначение заземления

Вышеописанная терминология пока не дает ответ на вопрос, зачем необходимо заземление, но приближает к пониманию сути вещей. Интуитивно понятно, что напряжение на заземлённых точках пребывающего в нормальном состоянии оборудования будет равным нулю.

Удельные сопротивления некоторых грунтов

Идеальное заземление должно обладать бесконечно малым сопротивлением ЗУ, чтобы обеспечивать падение напряжения до нуля при бесконечно больших значениях пропускаемых токов.

Иными словами, идеальное заземление обеспечивает зануление любых возникающих в заземлённой точке потенциалов. На практике сопротивление заземления (очень важная характеристика) – зависит от площади контакта заземлителя, характера окружающих его грунтов, их влажности, солёности, плотности.

Также немаловажную роль играет поперечное сечение заземляющих проводов, которое согласно ПУЭ не должно быть меньше 6мм². Падение напряжения на заземлённом металлическом корпусе электроприбора при замыкании на него фазного провода будет зависеть от сопротивления заземления и максимально возможного тока в цепи.

Таким образом, должно быть обеспечено снижение до безопасного для жизни и здоровья уровня разности потенциалов между заземляемым электрооборудованием и землёй.

Совокупная защита заземляющих устройств и предохранителей

Естественно, что одно только заземление не может обеспечить безопасную жизнедеятельность человека, даже, если бы оно было идеальным – ведь тогда в электрических цепях электрооборудования, при повреждении изоляции токонесущих проводов произойдёт короткое замыкание, которое неминуемо приведёт к возгоранию, если не принять дополнительные защитные меры в виде применения предохранителей и автоматических выключателей.

Поэтому, помимо снижения до безопасного значения разности потенциалов, заземление должно обеспечивать ток утечки, достаточный для того, чтобы сработали автоматы защиты и предохранители.

Поскольку нулевой провод электросети имеет достаточно малое сопротивление, и к тому же его заземляют как на трансформаторной подстанции, так и повторно по пути прохождения, то связка заземление плюс зануление корпусов оборудования даёт лучшие результаты, обеспечивая быстрое срабатывание защиты в случае пробоя изоляции.

Система заземления tn-c-s

Если сопротивление заземления достаточно высокое, то защитный автомат может не сработать за короткий период времени. В этом случае необходимо применить устройство защитного отключения, моментально реагирующее на очень малые токи утечки.

Заземление и зануление в системах энергоснабжения

Заземлять каждый корпус электроприбора невыгодно, и нет возможности обеспечить надлежащее качество заземлителя в различных условиях.

Поэтому заземление электрооборудования и бытовой техники осуществляется при помощи линий электропередач, которые имеют, в зависимости от системы, защитный заземляющий провод PE (protect earth – защита землёй). Таких систем электроснабжения, имеющих провод заземления всего три:

  1. устаревшая TN-C, где PE и рабочий ноль N совмещены в одном проводе PEN;
  2. TN-S, где PE и N соединены только в контуре заземления трансформатора и больше нигде не контактируют;
  3. TN-C-S, PE и N совмещены до точки разделения, после которой больше не соединяются.

TN означает заземлённая нейтраль, S – разделённый, C – совмещённый. В системе TN-C защитные функции, которые должно выполнять заземление осуществляет зануление PEN проводом корпусов электроприборов.

Данная схема не является безопасной, поэтому была упразднена, а на смену ей пришли системы энергоснабжения TN-S и TN-C-S, обеспечивающие более безопасную электротехническую защиту при помощи дополнительного заземляющего провода PE.

Обозначение проводников

Заземление электросетей многоквартирного дома по данным схемам должны выполняться исключительно специалистами.

Собственноручно заземлённый защитный провод

Ответом на вопрос, как сделать заземление самостоятельно будет система ТТ, где не надо выполнять работ по разделению PEN, достаточно установить индивидуальное заземляющее устройство и соединить его с шиной PE.

Поскольку сопротивление кустарного заземлителя будет больше, чем заземление плюс зануление, то обязательным условием является применение УЗО, которое отреагирует на возникший ток утечки и отключит питание.

На неофициальном уровне можно договориться со службами энергоснабжения о самостоятельном разделении PEN провода на вводном распределительном устройстве частного дома.

В данном случае осуществляется заземление и зануление главной заземляющей шины, с последующим разделением PEN на рабочий N и защитный PE провод.

Осуществляя подобный электромонтаж, всегда нужно помнить важное правило – недопустимо использовать в качестве заземляющего устройства трубопроводы коммуникаций, это может быть смертельно опасным как для членов семьи, так и для соседей. Изготовляют заземлитель из металлопроката различной формы профиля, монтаж осуществляют электросваркой.

Плакат сечение проводников , материал заземления

Обязательно нужно проконсультироваться со специалистом, и попросить его потом измерить сопротивление получившегося заземлителя, которое не должно превышать 30 Ом.

Заземлённое неэлектрическое оборудование

Термин защитное заземление применяется не только по отношению к электрооборудованию. Очень часто заземляют металлические конструкции, которые в принципе не имеют ничего общего с электротехникой, и не соприкасаются с изоляцией кабелей, которая может повредиться.

Например, стальные поручни эстакад и галерей должны быть заземлены, также как и различные трубопроводы и даже металлическая ванна в санузле. Возникает резонный вопрос, зачем требуется заземление данных конструкций, если их функции далеки от использования электроэнергии?

Ответ заключён в том, что опасные потенциалы могут возникнуть не только при пробое изоляции. Очень большим электромагнитным воздействием обладает разряд молнии, происходящий на расстоянии сотен метров, при котором на металлических поверхностях индуцируется опасная разница потенциалов.

Принцип молниезащиты от вторичных проявлений молний (первичный – это прямое попадание) состоит в том, что при помощи системы уравнивания потенциалов (СУП), соединённой с заземлением, наведённые в проводниках токи стекают в землю. Также СУП, установленная в ванной, защищает от статического электричества, возникающего при трениях молекул воды в потоке.

Система уравнивания потенциалов

Наведённое молнией, также как и статическое перенапряжение может достигать нескольких киловольт, чего достаточно для возникновения искры, что является критически опасным для трубопроводов и объектов хранения жидких, газообразных, пылеобразных горючих, легко воспламеняемых, взрывоопасных веществ.

Поэтому нормативные требования по заземлению к таким объектам являются максимальными

Применение заземляющих устройств в радиоаппаратуре

В электронике заземление применяют для подавления влияния электромагнитных помех, защищая от них электронные цепи путём помещения их в заземлённый корпус, выполняющий роль экрана.

Подобное экранирование осуществляется и для чувствительных проводов при помощи оплётки кабеля. Но не стоит путать заземление с термином «земля», означающим условное принятие нуля потенциала в некотором узле цепи.

В радиопередающей технике заземление служит для улучшения эффективности излучения стационарной антенны, которое достигается увеличением емкости между излучателем и противовесом (землей).

Источник: http://infoelectrik.ru/molniezashhita-i-zazemlenie/zachem-nuzhno-zazemlenie.html

Заземление

Справочник мастера ОАО «МОЭСК» > Раздел 1. Основное электротехническое оборудование

> Глава 8.> с.53-55

Заземление выполняется с целью обеспечения безопасности людей при замыкании токоведущих частей электроустановки на землю (защитное заземление) или для обеспечения нормальных режимов работы установки (рабочее заземление). Правила выполнения заземления приведены в ПУЭ, глава 1.7. «Заземление и защитные меры электробезопасности» и в «Инструкции по устройству сетей заземления и молниеотводов».

Электроустановки в отношении мер электробезопасности разделяются на:

  • электроустановки напряжением выше 1000 В в сетях с глухозаземленной нейтралью (сети 110 кВ и выше)
  • электроустановки напряжением выше 1000 В в сетях с изолированной или заземленной через дугогасящий реактор нейтралью (сети 6-35 кВ в эксплуатации МКС)
  • электроустановки напряжением до 1000 В в сетях с глухозаземленной нейтралью (сети 380/220 В в эксплуатации МКС)

Защитное заземление

Защитное заземление является основной мерой обеспечения электробезопасности (защитой) при косвенном прикосновении людей к открытым проводящим частям (металлическим корпусам электрооборудования) оказавшимся под напряжением при повреждении изоляции токоведущих частей электрооборудования.

Защитой от прямого прикосновения людей к неизолированным токоведущим частям, находящимся под напряжением, может быть только предотвращение такого прикосновения путём ограждения токоведущих частей и устройства блокировок, препятствующих доступу людей к токоведущим частям без их отключения и заземления.

Заземление осуществляется с помощью заземляющих устройств, состоящих из заземлителя, непосредственно соприкасающегося с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Защитное заземление должно обеспечивать:

  • в установках с изолированной нейтралью (6-35 кВ) — ограничение до безопасного значения величины тока, протекающего через тело человека при прикосновении его к металлическому корпусу электрооборудования, оказавшемуся под напряжение при пробое изоляции
  • в установках с глухозаземленной нейтралью (0,4 кВ) — надежное автоматическое отключение поврежденного участка, для чего обязательна металлическая связь корпусов электрооборудования с заземленной нейтралью трансформатора

Защитному заземлению подлежат все металлические части (корпуса) электрооборудования, которые могут оказаться под напряжением при повреждении изоляции.

Естественные и искусственные заземлители

В качестве естественных заземлителей используются металлические и ж/б части конструкции зданий, находящиеся в земле, трубы водопровода, свинцовые оболочки кабелей (алюминиевые оболочки нельзя использовать в качестве естественных заземлителей).

Для отдельно стоящих ТП, РП в МКС используют искусственные заземлители.

По периметру здания ТП, РП, на расстоянии не менее 1 м от фундамента забивают вертикальные электроды, из угловой стали 50x50x5 мм длиной 2,5-3 м (количество электродов определяется в проекте). Верхние концы электродов (должны быть от поверхности земли на глубине 0,5-0,6 м) соединяются с помощью сварки стальной полосой 40×4 мм, образуя внешний контур заземления, который соединяется полосой 40×4 с внутренним контуром в 2-х местах.

Внутренний контур заземления выполняется также из стальной полосы 40×4 мм с приваренными к ней в нужных местах шпильками (клеммами) с гайками для подсоединения защитных заземляющих проводников от корпусов установленного электрооборудования и рабочего заземляющего проводника от нейтрали трансформатора.

Защитные заземляющие проводники оборудования выполняются медным проводом (МГ) сечением 25 мм2.

Защитное заземление корпуса трансформатора и рабочее заземление нейтрали трансформатора выполняется проводом МГ сечением 50мм2 (или 2×25 мм2).

Выполненное таким образом заземляющее устройство считается удовлетворяющим требованиям обеспечения электробезопасности, если его сопротивление

R

Если замеренное сопротивление R окажется больше рекомендуемой величины, то выполняется заземляющее устройство с глубинными электродами заземления (согласно проекту).

Источник: https://obryv.ucoz.ru/index/zazemlenie/0-86

Виды и правила заземления электроустановок

Работа с электроприборами, не подключенными к заземляющему контуру или заземленными с нарушением правил электробезопасности, может стать причиной несчастных случаев на производстве. Также это приводит к выходу из строя как самих электроустановок, так и сопутствующего защитного и измерительного оборудования. Правильно подключенное защитное заземление электроустановок обеспечит их защиту в случае выхода из строя изоляции токоведущих частей.

Общие сведения

Заземлением называется мероприятие по созданию контакта между корпусом электроустановки и землей, с целью защиты обслуживающего персонала и электроустановок. В случае правильного подключения системы заземления электроустановок, при пробое изоляции, большая часть тока уйдет по заземляющему контуру, который имеет меньшее сопротивление, чем другие элементы цепи.

Согласно правилам безопасности, электроустановки и другие приборы, которые подлежат заземлению, можно подключить к естественным заземлителям. В их качестве используют:

  • имеющие непосредственный контакт с землей металлические каркасы помещений;
  • металлическую защитную обмотку кабелей, закопанных в землю;
  • проложенные в земле металлические трубы (за исключением трубопроводов с горючими смесями);
  • железнодорожные рельсы.

Подключение таких конструкций к электроустановкам позволяет снизить затраты на оборудование заземления.

Важность сопротивления

Основным параметром эффективности заземления электроустановок является величина электрического сопротивления.

Согласно нормам ПУЭ (Правил Устройства Электроустановок) сопротивление заземлителя на жилых объектах с напряжением сети 220 и 380 Вольт, должно составлять не более чем 30 Ом.

Сопротивление промышленного оборудования (трансформаторных подстанций, генераторов, сварочного оборудования и других приборов) не более чем 4 Ом.
Чтобы достигнуть заданного в ПУЭ значения сопротивления, необходимо обеспечить заземляющее устройство высокой проводимостью. Для увеличения проводимости заземлителя в электроустановках и уменьшения его сопротивления необходимо выполнить одно из условий.

Во-первых, можно увеличить площадь соприкосновения заземляющего контура с землей. Достигается или увеличением площади металлической рамки заземлителя или помещением в грунт дополнительных стальных прутьев.

Во-вторых, можно повысить проводимость земли в месте установки заземлителя. Сопротивление повышается, если грунт поливать соляным раствором.

Еще один способ заключается в замене кабеля, идущего от корпуса электроприбора к контуру заземлителя, на кабель, имеющий большую токопроводимость.

Защита электроприборов

Для обеспечения необходимой защиты от поражения электрическим током применяются следующие защитные мероприятия:

  • установка защитных ограждений;
  • надежная изоляция всех токоведущих элементов;
  • защитные оболочки;
  • ограничение зоны досягаемости;
  • по возможности, использование малого напряжения.

На случай пробоев и изоляции и утечки напряжения на корпус электрооборудования применяются такие методы защиты, как заземление, выравнивание потенциалов, дополнительная изоляция токоведущих частей оборудования. В некоторых случаях требуется установка изолирующих (непроводящих электричество) помещений.

В случаях, когда наряду с заземлением применяются другие меры защиты от поражения электрическим током, они не должны оказывать друг на друга негативного влияния и снижать эффективность защиты оборудования и персонала.

Применение естественных элементов заземления возможно только в том случае, если исключается возможность нанесения им какого-либо ущерба, вследствие протекания по ним электрического тока.

Требования к электробезопасности

Если различные виды электроустановок располагаются на смежной территории, следует использовать одно общее заземляющее устройство, отвечающее всем необходимым параметрам безопасности.

Заземляющее устройство, применяемое для защиты электрического оборудования имеющее одно или разное назначение, в обязательном порядке должно соответствовать правилам безопасности. Каждое требование, предъявляемое к устройству заземления электроустановок, должно соблюдаться.

Для соединения заземляющего контура различного электрического оборудования в одну общую заземляющую сеть, можно применять как естественные, так и искусственные заземляющие устройства.

Пиковое значение напряжения утечки и сопротивление заземляющей сети должно отвечать требованиям электробезопасности и обеспечивать надежную защиту при любых атмосферных явлениях, и в любое время года. При расчете сопротивления заземляющих устройств, следует учитывать параметры всех естественных и искусственных заземлителей.

Все элементы схемы заземления должны быть устойчивы к внешним механическим воздействиям, влиянию высокой температуры и любых атмосферных явлений.

Основные типы

Согласно ПУЭ (Правил Устройства Электроустановок) существуют система заземления ТN (включающая в себя группы TN-C, TN-S, TN-C-S), TT и IT.
Латинские буквы в обозначении имеют следующее значение:

Источник: https://evosnab.ru/ustanovka/na-obektah/zazemlenie-elektroustanovok

Заземление. Что это такое и как его сделать (часть 1)

Мой рассказ будет состоять из трёх частей.

3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования. Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений. Третья часть (практика) в некотором смысле продолжит вторую.

В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий. Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта. Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).И попытаюсь “перевести” эти определения на “простой” язык.
Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.
Заземляющее устройство

Источник: https://habr.com/ru/post/144464/

Заземление электрооборудования в Нижнем Новгороде: установка защитных устройств

Заземление электрического оборудования и сетей – это необходимое условие для обеспечения безопасности людей и стабильной работы техники. Мы выполняем заземление электрооборудования в Нижнем Новгороде, проектируем и монтируем заземляющие устройства электроустановок и предоставляем другие электромонтажные услуги. За несколько минут мы расскажем, почему вам стоит обратиться именно к нам.

Что такое заземление и какую роль оно играет?

В профессиональной терминологии заземление – это действие. Оно означает соединение частей электрооборудования с заземляющим устройством с помощью проводников. Заземляющее устройство — это совокупность этих проводников и заземлителя – той части, которая находится в непосредственном контакте с землей. Заземлитель так же состоит из проводника или группы проводников.

https://www.youtube.com/watch?v=XLWD0-jxrpA

Заземляющие устройства выполняют три функции:

  1. Рабочую. Устройства этого типа предназначены для обеспечения нормальной работы электрического оборудования в обычном и аварийном режиме.
  2. Защитную. Предотвращают поражение людей и животных электрическим током при замыкании фазы на металлические элементы оборудования. Эту функцию выполняет заземление корпуса электрооборудования.
  3. Грозозащитную. Заземляющие устройства этого типа используют совместно с молниеотводами и разрядниками для отвода тока молнии в землю.

Очень часто они сочетают несколько функций – например, рабочую и защитную.

Защитное заземление электрооборудования является необходимым для обеспечения его нормального режима работы и безопасности людей. Оно выполняется не только в промышленных зданиях, но и в многоэтажных жилых домах, все чаще – в частных домах, на различных сооружениях, трансформаторных и распределительных будках. Без этой меры повышается риск случайного поражения током, выхода из строя оборудования, возгораний и пожаров.

Устройство заземления электроустановок должно быть выполнено правильно – с соблюдением всех норм и требований.

Существуют правила, определяющие тип и сечение заземляющих проводников и заземлителя, метод их соединения между собой и частями электроустановок, расчета сопротивления, которое должен иметь заземлитель в соответствии с теми функциями, которое заземляющее устройство должно выполнять. Несоблюдение этих требований влечет за собой неэффективность последнего, и как следствие – его бесполезность.

Чтобы избежать этого, важно подходить к процессу создания систем заземления электроустановок профессионально и ответственно. В противном случае это не просто выброшенные на ветер деньги, это риск для здоровья и жизни сотрудников предприятий или жителей дома.

Где заказать профессиональное заземление в Нижнем Новгороде?

Если вам необходимо выполнить заземление электрооборудования электроустановки, частного дома, любого сооружения или строения, обращайтесь к нам! Наши специалисты имеют необходимую квалификацию и опыт, мы располагаем специальным инвентарем, материалами и подходим к работе ответственно. Мы понимаем, что от ее качества напрямую зависят чьи-то здоровье и жизнь.

Мы выполняем:

  • Защитное заземление электроустановок в Нижнем Новгороде
  • Установку заземления в электроустановках всех видов, включая трансформаторные подстанции
  • Заземление частных домов и строений
  • Расчеты, подготовку к монтажу и монтаж заземляющих систем

Наша компания также предлагает большой перечень электромонтажных услуг в Нижнем Новгороде.

Преимущества, которые вы получаете, выбирая нас:

  1. Уверенность в результате. Мы предоставляем исключительно профессиональные услуги. Гарантируем надежность и качество результата. Это подтверждают многочисленные положительные отзывы наших клиентов.
  2. Удобство. Мы всегда на связи. Работаем без выходных. Можем быстро добраться в любой указанный вами район города. Предоставляем широкий комплекс услуг в сфере монтажа и ремонта электрооборудования.
  3. Выгода. Наши цены на заземление электроустановок в Нижнем Новгороде всегда остаются в разумных пределах. Мы предлагаем систему скидок для того, чтобы сотрудничество с нами приносило вам еще больше приятных эмоций.

Эти преимущества оценили уже боле 1000 клиентов за более чем 8 лет работы компании.

Как заказать наши услуги?

Сделать это очень просто. Механизм выглядит примерно так:

  1. Ваш звонок/письмо по указанному на сайте телефону/электронной почте. Можете также заказать обратный звонок.
  2. Обсуждение проблемы с консультантом фирмы.
  3. Если нужно – выезд специалиста на место, осмотр и оценка фронта работ.
  4. Расчеты и подготовка.
  5. Монтаж заземляющего устройства.

Окончательную стоимость заземления электрооборудования мы сообщим вам после оценки объема работы.

Если вы ищете фирму, которая смогла бы профессионально, качественно и за разумные деньги выполнить заземление электрооборудования в Нижнем Новгороде, обращайтесь к нам! Электромонтажные услуги и заземление электроустановок всех типов – наш профиль. Ждем ваших звонков!

Источник: http://konkord-nn.ru/zazemlenie-elektrooborudovaniya-v-nizhnem-novgorode.html

Заземление — что это такое и как его правильно монтировать | электросеть

Термин «контур заземления» постоянно используется в электромонтажных работах, но, как показывает практика, не многие наши клиенты хорошо себе представляют что это такое. Иногда нам приходится доказывать клиенту, что у него должно быть заземление, и что это не «развод» на дополнительную работу, а требование ПУЭ (правила устройства электроустановок). Давайте рассмотрим, что такое контур заземления, как он выглядит и какие функции выполняет.

Если придерживаться правил, то правильно будет говорить не «контур заземления», а «устройство защитного заземления». Защитное заземление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции (ГОСТ 12.1.030-81 ССБТ). Исходя из этого определения следует, что все металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, подлежат заземлению. КОНТУР ЗАЗЕМЛЕНИЯ ВЫПОЛНЯЕТ ФУНКЦИЮ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМЗаземление — это преднамеренное электрическое соединение с заземляющим устройством какой-либо части электроустановки. «Заземляющее устройство» — это совокупность заземлителя и заземляющих проводников. «Заземлитель» — это проводник (электрод) или несколько проводников (электродов) соединенных между собой, находящихся в прямом соприкосновении с землёй. Заземлители делятся в свою очередь на Искусственные заземлители и Естественные заземлители.  К искусственным заземлителям относятся заземлители, которые выполняют специально для заземления. К естественным заземлителям относятся электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для целей заземления, и находящиеся в соприкосновении с землёй (например трубы водопровода, арматура фундамента и т.п.). Запрещается использовать в качестве естественного заземлителя трубы с легковоспламеняющимися жидкостями и газами. Защитное заземление электроустановок выполняется обязательно если: 1. Напряжение электроустановки при переменном токе равно или выше 380 В, при постоянном токе 440 В и выше; 2. В помещениях с повышенной опасностью и в наружных установках при переменном токе от 42 В, при постоянном токе от 110 В. 

В сетях напряжением 380/220 В с глухозаземленной нейтралью источника питания заземление корпусов электроустановок осуществляют путем соединения их с нулевым защитным проводом сети (зануление). Зануление по сути — частный вид заземления, давайте разберем его чуть подробнее.

Основное отличие зануления от классического заземления заключается в том, что при заземлении безопасность обеспечивается благодаря быстрому снижению напряжения электрического тока (ток «уходит в землю»). А при занулении безопасность обеспечивается путем отключения участка цепи, в котором случился пробой изоляции.

ПУЭ запрещают в сетях с глухозаземленной нейтралью выполнять защитное заземление отдельных корпусов электроприемников без присоединения их к нулевому проводу, то есть обязывает занулять их.

Если отдельные корпуса электрооборудования будут только заземлены, то в случае замыкания на такой корпус образуется замкнутая цепь через два последовательных заземления — рабочее заземление нейтрали источника питания и защитное заземление упомянутого корпуса. При этом ток в цепи может оказаться меньше уставки защитного аппарата и отключения не произойдет. В этом случае появится напряжение относительно земли как на корпусе электроприемника с поврежденной изоляцией, так и на всех других корпусах с исправной изоляцией, что недопустимо.

Для заземления электроустановок в первую очередь должны быть использованы естественные заземлители. Если при этом сопротивление заземляющих устройств или напряжение прикосновения имеет допустимые значения, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве, то искусственные заземлители должны применяться лишь при необходимости снижения плотности токов, протекающих по естественным заземлителям или стекающих с них.

Чаще всего встречаются электроустановки с напряжением 380 В и 220 В, сопротивление заземляющего устройства в таких электроустановках должно быть не более 4 и 8 Ом соответственно, такое сопротивление должно быть обеспечено с учётом использования естественных заземлителей. Заземляющее устройство может выполняться как в виде треугольника, так и в виде линейного расположения электродов.

Глубина залегания заземляющего устройства находится примерно на глубине от 0,4 м до 1 м, длина вертикальных электродов составляет от 1,5 м до 3 м., в зависимости от удельного сопротивления грунта и глубины залегания заземляющего устройства.

Материал из которого изготавливается заземляющее устройство, как правило, это стальная толстостенная труба с толщиной стенки не менее 3,5 мм и диаметром 32 мм, либо стальной уголок толщина не менее 4мм и ширина полки не менее 40 мм. (для вертикального проводника (электрода), и стальная полоса или пруток с сечением не менее 160 мм.кв., например стальная полоса 4х40мм, ( для горизонтального проводника).

В случае установки электроустановки (щита, ВРЩ) на трубостойку и при питании его по ВЛ (воздушной линии), в качестве заземляющего устройства можно использовать саму трубостойку, если она выполнена из стали и заглублена не менее чем на 1,5 метра в землю.

Если же трубостойка или опора, на которой установлено электрооборудование, выполнена из не проводящего ток материала, то необходимо выполнить в непосредственной близости к данной опоре устройство заземления, чтобы оно соответствовало правилам и нормам ПУЭ. При заводке кабеля или ВЛ в здание или дом, для каждого здания или дома должно быть предусмотрено наличие защитного заземления на вводе.

Как его выполнить, если в непосредствееной близости от дома сделан так называемый «Треугольник»? А очень просто — путём прокладки горизонтального проводника до цоколя здания стальной полосой. К стальной полосе на конце (на цоколе фундамента) приваривают болт. Болт используется для соединения заземляющего устройства с электроустановкой проводом, и для измерения сопротивления контура заземления на растекание и металлосвязь. Ввод заземляющего проводника в дом (от болта на стальной полосе цоколя до ВРЩ) обычно выполняют проводом, причем провод должен иметь желто-зелёную полосатую расцветку, а его сечение должно быть не менее сечения фазного проводника, но не меньше 6 мм.кв. 

При правильном монтаже устройства защитного заземления, если монтажник не поленился сделать все на совесть, не сэкономил на длине вертикальных заземлителей и правильно выбрал сечение проводников, замеры покажут нормальные значения. При сопротивлении контура заземления более 4 и 8 Ом (для сетей 380 и 220 В соответственно) эксплуатация электроустановки небезопасна. При организации заземления своей электроустановки обращайтесь к профессионалам.

Группа компаний «ЭЛЕКТРОСЕТЬ» выполняет работы по профессиональному монтажу систем защитного заземления

Источник: http://xn--e1aaocrlife4hb.xn--80adxhks/zazemlenie/

Заземление и зануление электроустановок

Заземление электроустановки — это обеспечение электробезопасности путём целенаправленной электрической связи корпуса устройства с «землёй». Защита делится на два варианта: заземление и зануление. Их общей целью является нейтрализация вредного для человека при касании воздействия электрического тока, если оборудование на корпусе или же в любой другой доступной точке пробило на опасное напряжение.

Заземление

Суть защитного заземления в обеспечении безопасной эксплуатации электрооборудования путём соединения его защищаемой части с соответствующим устройством — «землёй». Если на внешнем кожухе установки или любой другой её детали внезапно окажется электрический потенциал, вред для человека будет сведён к минимуму.

характеристика заземляющего устройства — его сопротивление, качество защиты улучшается с его понижением. Заземление можно разделить на две основные детали — заземлитель и проводящие соединители, обеспечивающие контакт с заземляемой деталью.

Областью использования защитного заземления являются трёхфазные сети, нейтраль в которых изолирована.

Защитное заземление действует на основе серьёзного уменьшения разности потенциалов между деталью, на которую пробило напряжение (корпус и т.д.), и землёй, вплоть до безопасного для человека уровня. Если заземление отсутствует, контакт с опасным местом электроустановки является непосредственным контактом с фазой. У возникающего электрического тока нет иных путей, кроме тела человека.

При низком электрическом сопротивлении надетой обуви, самого пола и наличии изолированности проводов от «земли» величина тока окажется недопустимой для пострадавшего. Если организация работы по охране труда была выполнена грамотно и проблемная деталь имеет защитное заземление, то даже в случае больших значений воздействующего напряжения, оно не вызовет серьёзных последствий для организма.

Согласно закону Ома, сила тока будет обратно пропорциональна сопротивлению. При наличии двух параллельных цепей — человеческого тела и заземляющего контура, при равном значении исходного напряжения (фаза), сила проходящего тока будет тем выше, чем меньше сопротивление цепи.

Сконструированное с учётом обеспечения минимального сопротивления защитное заземление примет на себя основной электрический ток, обезопасив имеющего значительно более высокое сопротивление человека.

Два типа заземления

Заземлители делятся на два типа — естественные и искусственные. Если для заземления используются уже существовавшие при постройке здания металлические конструкции (трубы, арматура и т.п.), заземлитель называют естественным.

Когда стальные стержни, уголки или трубы специально забивают или закапывают в землю, конструкция является искусственной. В целях повышения безопасности длина искусственного заземлителя не может быть меньше 2.5 м., а улучшая защиту, металлические фрагменты комбинируют путём сварки стальными накладками или проволокой.

Чтобы обеспечить электрический контакт между заземляемым прибором и заземлителем, принято использовать шины, выполненные из меди или стали. Заземляющие проводники крепят к корпусу оборудования при помощи сварки или с использованием надёжного резьбового соединения.

Обязательная защита с использованием технологии заземления требуется для трансформаторов, электрических шкафов и щитов, а также большинства промышленных и некоторых бытовых приборов и механизмов.

Хотя защитное заземление в большой степени уменьшает риск для человека, оно не ликвидирует его полностью. Потенциальная проблема в наличии своего собственного сопротивления у заземлителя, соединительных проводов и даже земли.

Если изоляция нарушена, замыкающий ток проделает путь от заземляемой детали до земли, и на каждом этапе имеющееся сопротивление создаст дополнительную разность потенциалов. Итоговое суммарное напряжение будет значительно ниже общепринятых в России 220 В, однако всё ещё может составлять небезопасные для человека значения.

Чтобы снизить суммарное напряжение надо уменьшить сопротивление заземлителя относительно финальной точки — земли. Общепринятой практикой является увеличение количества искусственных заземлителей.

Зануление

Вторым видом защиты от удара током при пробое на корпус является защитное зануление. Оно заключается в целенаправленном соединении частей электрического прибора, потенциально могущих оказаться под фазой, с заземленным выводом источника переменного или с аналогичной средней точкой в сетях постоянного тока.

Тем самым пробой любой фазы на корпус оборудования переводится в короткое замыкание с заземлённым нулём. Протекающий при защитном занулении ток в разы больше, чем в случае заземления.

Поэтому основной целью создания защитного зануления является быстрое прекращение работы и полное обесточивание сломанного устройства в принципе.

Нулевой проводник бывает рабочим и защитным. Рабочий проводник предназначен для полноценного питания электроустановки, поэтому не отличается от других носителей по толщине и качеству изоляции, материалу и сечению провода. Защитный проводник имеет целью всего лишь создание в краткий период времени короткого замыкания очень высокого тока, который позволит сработать защите и оперативно обесточить неисправное устройство.

В качестве нулевого защитного провода часто выступают используемые при прокладывании проводки стальные трубы или нулевые провода без дополнительных деталей (выключателей и предохранителей). Равно как и заземление, зануление не может полностью защитить человека от воздействия электричества при непосредственном контакте с находящимся под фазой элементом конструкции.

Если обеспечение электробезопасности в помещении требует повышенного внимания, строго необходимо комбинировать зануление с другими мерами защиты — выравниванием потенциала и защитным отключением.

Источник: https://www.novation.by/articles/zazemlenie-i-zanulenie-elektroustanovok/

Заземление шахтного электрооборудования. Технические требования и методы контроля

ГОСТ 28298-89

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЗАЗЕМЛЕНИЕ ШАХТНОГО ЭЛЕКТРООБОРУДОВАНИЯ

Технические требования и методы контроля

Mine equipment earthing. Check methods andspecification

Москва

Стандартинформ

2006

МЕЖГОСУДАРСТВЕННЫЙСТАНДАРТ

ЗАЗЕМЛЕНИЕ ШАХТНОГО ЭЛЕКТРООБОРУДОВАНИЯТехнические требования и методы контроляMine equipment earthing. Check methods and specification ГОСТ28298-89

Дата введения 01.07.90

Настоящий стандарт распространяется назащитное заземление шахтного электрооборудования переменного и постоянноготока, за исключением подземной тяги, применяемое в подземных выработках шахтвсех категорий.

1. ТЕХНИЧЕСКИЕТРЕБОВАНИЯ

1.1.1. Защитное заземлениедолжно обеспечивать защиту людей от поражения электрическим током приприкосновении к металлическим нетоковедущим частям электрооборудования илиустройствам, которые могут оказаться под напряжением в случае поврежденияизоляции.

1.1.2. Заземлению подлежатметаллические части электроустановок, нормально не находящиеся под напряжением,которые могут оказаться под напряжением в случае повреждения изоляции, а также трубопроводы,сигнальные тросы и другие протяженные металлокоммуникации, расположенные ввыработках, в которых имеются электроустановки.

С защитной заземляющейсистемой допускается не соединять нетоковедущие части оборудования, у которогоприменены защитное разделение, защитная изоляция или безопасное сверхнизкоенапряжение.

1.1.3. Запрещается в шахтахприменять сети с глухозаземленной нейтралью, за исключением трансформаторов,предназначенных для питания преобразовательных устройств контактных сетейэлектровозной откатки. Подсоединение других потребителей и устройств к такимтрансформаторам и питаемым от них сетям запрещается.

1.1.4. Соединение с землейпосредством компенсационных защитных или измерительных устройств или соединениес землей прибором для измерения сопротивления электрической изоляциизаземлением сети не считается.

1.1.5. В искробезопасных цепяхзаземление должно выполняться согласно требованиям ГОСТ22782.5.

1.1.6. Термины и пояснения кним приведены в приложении 1.

1.2.Требования к защитной заземляющей системе

1.2.1. В подземных выработкахшахт должна устраиваться общая сеть заземления, к которой должны присоединятьсявсе объекты, подлежащие заземлению.

Сопротивление заземляющегоустройства, используемого для электроустановок различных напряжений, должноудовлетворять требованиям к заземлению электроустановок, для которых необходимонаименьшее сопротивление заземляющего устройства.

1.2.2. Для искробезопасной аппаратуры телефоннойсвязи и ее кабельных муфт на участке сети с кабелями без брони допускаетсяместное заземление без присоединения к общей сети заземления. Сопротивлениеэтого самостоятельного заземления должно быть принято таким, чтобы произведениеактивного сопротивления заземления и протекающего в нем тока замыкания непревышало допустимой величины безопасного напряжения прикосновения.

1.2.3. цепь заземления и заземляющий контур должны выполняться из гологостального проводника сечением не менее 100 мм2. Проводникинеобходимо размещать так, чтобы предупредить их механическое повреждение иликоррозию (особенно в местах их присоединения) и чтобы можно было осуществлятьих контроль.

1.2.4. цепь заземлениядолжна иметь не менее двух главных искусственных заземлителей, расположенных вразличных местах.

1.2.5. При расчетахсопротивление заземления должно приниматься таким, чтобы напряжениеприкосновения на корпусах электроустановок при замыкании на землю не превышалодопустимого значения по ГОСТ12.1.038, но не более 2 Ом.

1.3.Требования к элементам системы заземления

1.3.1. Материалы, размеры иконструкции элементов заземляющих устройств электрооборудования до и выше 1,2кВ должны быть устойчивы к механическим, химическим и термическим воздействиямпри двухфазных замыканиях на землю с учетом времени срабатывания защиты иобеспечивать сохранение нормируемых параметров в течение всего срока службыустройств. Применение алюминия для выполнения заземляющих проводниковзапрещается.

1.3.2. Для главных заземлителейдолжны применяться стальные полосы площадью не менее 0,75м2, толщиной не менее 5мм и длиной не менее 2,5м.

1.3.3. Для местныхзаземлителей, располагаемых в водосточных канавах выработок, должны применятьсястальные полосы площадью не менее 0,6м2, толщиной не менее 3мм, длиной не менее 2,5м.

1.3.4. При устройстве местныхзаземлителей в шпуре должны применяться трубы диаметром не менее 30мм и длиной не менее 1,5м. Стенки труб должны иметь на разной высоте не менее 20отверстий диаметром 5 мм.Свободное пространство шпура должно засыпаться гигроскопичным материалом ипериодически увлажняться по мере подсыхания.

1.3.5. Для устройства местныхзаземлителей электрооборудования номинальным напряжением выше 127 В переменногои ПО В постоянного тока допускается использовать не менее трех рамметаллокрепи, соединенных между собой металлическим проводником (тросом,полосой и т. п.) из стали или меди сечением не менее соответственно 50 и 25 мм2и имеющих связь с другими рамами крепи посредством распорных элементов.

1.3.6. Для устройства местныхзаземлителей электроустановок номинальным напряжением до 127 В переменного и доПО В постоянного тока протяженных металлокоммуникаций, а также металлическихэлементов объектов, на которых может накапливаться статическое электричество,допускается использовать одну раму металлокрепи.

1.3.7. Для дополнительногозаземления устройств защитного отключения допускается использовать в качествезаземлителя одну раму металлокрепи, не используемую в качестве защитного заземления,или отдельный искусственный заземлитель.

1.3.8. В качестве естественныхместных заземлителей допускается также использовать металлические желобасамотечного гидротранспорта угля.

1.3.9. Каждый подлежащийзаземлению объект должен присоединяться к сборным заземляющим шинам илизаземлителю при помощи отдельного ответвления из стали или меди сечением неменее 50 и 25 мм2 соответственно. Для устройств связи допускаетсяприсоединение аппаратуры к заземлителям стальным или медным проводом сечениемне менее 12 и 6 мм2 соответственно.

1.3.10. Сборные заземляющиепроводники для группы заземляемых объектов изготовляют из стали сечением неменее 50 мм2 или из меди сечением не менее 25 мм2.

Источник: https://ohranatruda.ru/ot_biblio/norma/240398/

Заземление электроустановок и оборудования | правила и требования

Заземление электроустановок – обязательная составляющая комплекса мер по защите промышленного оборудования и работающих на нем людей от поражения током.

С учетом существующего разнообразия электротехнических приборов и агрегатов вопросам их безопасной эксплуатации уделяется повышенное внимание. Каждый тип заземляемого оборудования имеет свои особенности, вынуждающие пользователей сетей принимать специальные защитные меры.

В соответствие с правилами заземления электроустановок и их устройством для этих целей применяются особым образом организованные системы защиты.

Классификация систем заземления

Общепринятая классификация систем заземления осуществляется по следующим основным признакам:

  • Состояние нейтрали электросети (заземленное или изолированное).
  • Способ ее прокладки от подстанции с понижающим трансформатором до конечной электроустановки потребителя.
  • Особенности подключения нагрузки к нейтральной жиле.

Основным документом, согласно которому производится классификация этих систем, являются ПУЭ (правила заземления электроустановок). В них подробно рассматриваются характерные признаки, согласно которым принято различать действующие защитные системы. Для их обозначения применяются английские буквенные символы T, N, I, C и S, которые расшифровываются как «заземление», «нейтраль», «изолированное», «общая» и «раздельная».

Обратите внимание: По данной маркировке удается определить, какой способ защиты источника тока применен в данной системе и какие схемы защитного заземления оборудования могут быть использованы на потребительской стороне.

Действующие системы заземления

При обустройстве действующих линий энергоснабжения в России традиционно применяются следующие основные системы:

  • TN-C, из обозначения которой следует, что на всем протяжении трассы нулевой рабочий N и защитный PE проводники объединены в общую шину PEN (C – это «common»).
  • TN-S, означающая раздельную прокладку упоминавшихся выше проводников («Select»).
  • TN-C-S, из названия которой следует, что на части трассы проводники PE и N объединены, а начиная с какого-то места они прокладываются раздельно.

На практике также встречаются редко используемые системы TT и IT, применяемые только в исключительных случаях. Такой уникальный способ построения заземляющей структуры как система с изолированным нулем, например, востребован при электроснабжении сооружений, где необходимо обеспечить высокий уровень безопасности.

В частности, это касается электрооборудования, устанавливаемого на горнодобывающих шахтных предприятиях. Объясняется это тем, что при подземных работах нередки случаи скопления взрывоопасных газов, а система IT, особенностью которой является пониженное искрообразование, в этом случае является самой безопасной.

Требования к заземлению электроустановок до 1000 Вольт

Заземление оборудования – это комплекс технических мероприятий, позволяющих получить надежное электрическое соединение между защищаемыми корпусами электроустановок и землей. Оно организуется с целью защиты оперативного персонала и работающих на оборудовании людей от случайного токового удара.

В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;

Источник: https://fishkielektrika.ru/zazemlenie-elektroustanovok

Заземление электрооборудования

Защитное заземление предназначено для обеспечения безопасности людей, соприкасающихся с металлическими частями электрооборудования, которые вследствие нарушения изоляции могут оказаться под напряжением.

Заземляющее устройство состоит из заземления (очага заземления) и проводников, соединяющих заземляющую часть электрооборудования с заземлением. Заземлитель выполняется в виде ввертываемых, забиваемых или закладываемых в землю на глубину 3-5 м металлических проводников в виде труб, пруткового материала или профильной угловой стали.

При устройстве заземления в первую очередь необходимо использовать естественные заземлители (проложенные в земле металлические трубопроводы, металлические шпунты, обсадные трубы артезианских скважин, металлоконструкции и арматуры железобетонных конструкций в сооружениях и т. п.).

Рекламные предложения на основе ваших интересов:

В качестве искусственных заземлителей применяют вертикально погруженные в землю на глубину 2,5-5 м металлические стержни диаметром 12-15 мм, уголковую сталь при толщине полок не менее 4 мм и стальные трубы с толщиной стенки не менее 3,5 мм.

Заземлители и заземляющие проводники, прокладываемые для обеспечения хорошего контакта с землей, не окрашиваются. При наличии агрессивных грунтов применяется обедненная и оцинкованная сталь.

В качестве заземляющих проводников могут быть использованы нулевые проводники питающей сети, металлоконструкции зданий, стальные трубы электропроводок, алюминиевые оболочки кабелей и т. п.

Все присоединения заземляющих проводников к заземлителям выполняют электрической или газовой сваркой. При невозможности применения сварки присоединение может быть выполнено металлическими хомутами. При этом контактную поверхность хомутов облуживают, а трубы зачищают до металлического блеска. Фланцы и задвижки трубопроводов, болтовые или клепаные соединения металлоконструкций и не связанные между собой стыки для надежности и непрерывности цепи заземления шунтируют перемычками на сварке.

Для забивки в землю вертикальных электродов из стальных труб или уголковой стали имеется ряд механизмов. Широкое применение в электромонтажном производстве получил способ ввинчивания вертикальных электродов, заземлителей с помощью электродрели с редуктором и других механизмов.

Электрошлифовальная машинка. Подготовка поверхности мест заземления аппарата и оболочек кабеля часто выполняется вручную с применением простейшего слесарного инструмента (стальных щеток, наждачных полотен и т. п.).

Применение для этих целей пневматических шлифовальных машинок не всегда оказывалось приемлемым, так как использование пневматического инструмента требует широко разветвленной сети воздухопроводов.

Создана малогабаритная машинка, получающая питание от малогабаритного электродвигателя марки ПА-21, с помощью которой успешно выполняется указанная операция.

Машинка (рис. 1) снабжена стальной щеткой для зачистки панцирной оплетки на кабелях и набором фасонных шлифовальных камней для зачистки различных поверхностей.

https://www.youtube.com/watch?v=6MIOsXp7Tso

Конструкция машинки состоит из следующих основных узлов: асинхронного электродвигателя с коротко-замкнутым ротором, насадки с цанговым зажимом, защитного кожуха, рукоятки, колодки штепсельного разъема, вставки штепсельного разъема и сменного инструмента, который закрепляется в цанговом зажиме насадки и приводится во вращение электродвигателем.

В набор сменного инструмента машинки входят: шлифовальная головка, шлифовальный круг и карцовочная щетка. Шлифовальная головка состоит из головки и стальной оправки. Оправка соединяется со шлифовальной головкой компаундом К-150. Шлифовальный круг состоит из шлифовального круга, прокладок, изготовленных из картона, стального кожуха, гаек, оправки; карцовочная щетка из оправки, чашки, щетки, гаек и шайбы.

Рис. 1. Электрошлифовальная машинка.

Благодаря сменному инструменту, шлифовальным камням различной формы и карцовочным щеткам машинку можно использовать для зачистки контактных поверхностей медных и алюминиевых шин, стальных поверхностей при контактной и точечной электросварке, для зачистки поверхностей при заземлении электроаппаратуры и панцирных оплеток кабелей.

Данная машинка в 1,5 раза легче существующих конструкций и меньше по габаритам. Она приспособлена для работы в труднодоступных местах. Смена рабочего инструмента в ней производится быстро.

Зачистка поверхностей с помощью переносных шлифовальных электрифицированных машинок осуществляется в 10-15 раз быстрее, чем вручную.

Рекламные предложения:

Читать далее: Некоторые сведения об организации ремонта электрооборудования

Категория: — Инструмент для электромонтажных работ

→ Справочник → Статьи → Форум

Источник: http://stroy-technics.ru/article/zazemlenie-elektrooborudovaniya

Понравилась статья? Поделиться с друзьями:
Электро Дело