Для чего предназначен резистор

Что такое резистор?

Для чего предназначен резистор

Что такое резистор — это пассивный элемент электрических цепей, который имеет конкретное или переменное значение электрического сопротивления, резистор предназначен для линейного преобразования силы тока в напряжение и обратно, ограничения тока, поглощения электрической энергии и т.д. Резистор является наиболее часто встречающимся элементом. Ниже будет рассказано, что такое резистор и для чего он нужен, как резисторы обозначаются на радиосхемах и какие виды резисторов существуют.

Назначение резисторов – создание сопротивления электрическому току. Различают постоянные и переменные резисторы. В зависимости от мощности электрического тока, которую способен «рассеять» резистор, зависит и его размер.

На рисунке мы видим, как различаются резисторы. Резистор, находящийся справа – самый мощный среди представленных. Его мощность может составлять несколько киловатт. Правый резистор называется SMD-резистором. Его размер говорит сам за себя о его мощности. Нанесенные на резисторы надписи говорят о их видах и мощности.

Маркировка резисторов

Обозначения резисторов на схемах различаются в зависимости от страны. В нашей стране можно понять, где обозначен резистор, по прямоугольнику с маркировкой в виде наклонных или вертикальных линий, знаков V или Х, с буквой «R» вверху прямоугольника. На зарубежных (американских) схемах резистор обозначается сплошной линией с несколькими изломами.

Ниже на рисунке видна маркировка резисторов:

Наклонные линии обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры), указывают на мощность резистора в несколько Ватт, в соответствии со значением римской цифры.

Переменный резистор

Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.

Переменные резисторы, их также называют реостатами или потенциометрами, предназначены для постепенного регулирования силы тока и напряжения. Выглядят они так:

Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр — напряжение. На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.

На схемах цифрами от 1 до 3 указывается расположение выходов резистора.

Регулировать мощность сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами. Выглядят они так:

Подстроечный резистор

На радиосхемах подстроечные резисторыобозначаются следующим образом:

Чтобы переменный потенциометр использовать в качестве переменного реостата, нужно соединить два вывода между собой.

Термисторы, варисторы и фоторезисторы

Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. , но термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.

В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:

Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Ни картинке ниже вы видите, как выглядят варисторы

Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения. На схемах варисторы обозначаются так:

В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода. Выглядят фоторезисторы так: 

А на схемах изображаются так:

Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.

Источник: https://www.calc.ru/Chto-Takoye-Rezistor.html

Резистор

Для чего предназначен резистор

> Теория > Резистор

Резистор – самый простой пассивный элемент. Его функциональная обязанность заключается в ограничении тока в электроцепи. Некогда их называли сопротивлениями, что является их физическим свойством, однако, чтобы не возникало путаницы, было принято решение переименовать их в резисторы. Если рассматривать такое свойство, как сопротивление, то им обладают все проводники. В этой статье ознакомимся с тем, что такое резистор, и каковы его особенности.

Отличительные черты резистора

Если отталкиваться от вопроса, как образовалось слово, то от английского «resist». Переводя на русский язык, это звучит, как сопротивляться, противостоять. В электроцепи протекает ток, который испытывает внутренние противодействия. Для определения величины сопротивления тока необходимо обращать внимание на разные наружные факторы и свойства проводника.

Токовую характеристику измеряют в Омах. Также следует отталкиваться от напряжения и силы тока. Например, если сопротивление проводного элемента 1 Ом, ток также 1 Ампер, то каждый конец проводника будет иметь напряжение в 1 Вольт. Таким образом, вводя и изменяя величину сопротивления, открывается контроль и регулировка всех остальных параметров. Расчет может быть самостоятельным, что немаловажно.

Обратите внимание! Сейчас наблюдается широкое применение резисторов в различных отраслях науки. Кроме того, деталь широко распространена – используется при производстве плат и электросхем.

Теперь разберемся, для чего необходимо их использование. Основная функция резистора – контролировать и ограничивать перемещения тока. В некоторых случаях при помощи этой детали делят напряжение в сети. Математическое представление позволяет разобраться с принципом работы. Здесь любая деталь, находящаяся в цепи, зависит от того, какое в ней сформировалось напряжение. Для описания зависимости используется закон Ома, а деталь рассматривается как резистор.

В нормальных условиях резистор рассеивает тепло. По мнению специалистов, данный элемент актуален для тех электрических цепей, где требуется рассеивание нужной мощности. Однако необходимо быть внимательным, так как повышенная температура прибора может негативно сказываться на близлежащих элементах. Отталкиваясь от теорий, специалисты рассчитывают напряжение, сопротивление и показатель тока.

Мощность резистора с номинальным характером, как правило, указывается в таблице комплектации. Применяется стандартный показатель мощности – 0.25 и 0.125 Ватт. Если схема создается с применением более мощного резистора, это фиксируется в предварительном списке.

Обратите внимание! В составе многих резисторов есть серебро, но для сборки особых элементов могут использоваться золото, платина, палладий, рутений и тантал.

Как классифицируется элемент

Как проверить резистор мультиметром

Основные различия

То, что такое резистор, понятно, но необходимо знать, что существует несколько технологий их изготовления, как и материалов, используемых для этого. Это напрямую влияет на свойства и то, насколько отклонено их сопротивление от номинала, обозначаемого на корпусе. Резисторы бывают:

  • Проволочными. Для их производства используют высокоомную проволоку из металла (особый сплав, имеющий высокое удельное сопротивление). Особенность подобных резисторов заключается в высокой емкости и показателе индуктивности. При нагревании элемента увеличивается его сопротивление, так как под влиянием температуры резистор становится более длинным и широким. Несмотря на это, проволочными резисторами пользуются редко, в основном в тех ситуациях, когда нужна высокая мощность;
  • Полупроводниковые изделия. По сравнению с металлами, данный вид материалов имеет более высокое удельное сопротивление. Поэтому, чтобы создать элемент, нужно намного меньше полупроводника. Также не требуется делать намотку, так как она имеет вид обычной пластинки с определенным показателем сопротивления.

Есть и прочие параметры, используемые для классификации элемента:

  • Точность маркировки: 10%, 5%, 1% и так далее;
  • Максимально допустимый показатель рассеиваемой мощности: от 0.1 до 2 Вт и более.

Отдельно стоит отметить переменные и подстроечные элементы. Резисторы такого вида – это изделия в виде пластинки полупроводника или обмотка из высокоомного провода, имеющая отводы. Помимо этого, предусматривается особый контакт, прикасающийся к полупроводнику или проводу. Используя специальную ручку, изменяется место соприкосновения.

Переменные резисторы применяются для сборки схем, которые позволяют механическим путем регулировать громкость, уровень сигнала, тока или напряжения. Особенность переменных элементов – в высокой надежности при постоянных регулировках. Что касается подстроечных, они работают, когда необходимы редкие регулировки с установленным сопротивлением.

Такой резистивный элемент также принято маркировать цветом. Следует понимать, что резистор выполняется круглой формы, процедура его производства полностью автоматизирована. Поэтому иногда бывает, что элементы устанавливаются на монтажных платах надписью вниз. Для определения номинала в таких ситуациях используется маркировка при помощи цветных полосок:

  • 20% точности – 3 полоски;
  • 10%, 5% – 4 полоски;
  • ниже 5% – 5 или 6 полосок.

Состав резистивного слоя также позволяет классифицировать виды сопротивлений, которые могут быть:

  • Углеродистыми;
  • Металлопленочными;
  • Металлодиэлектрическими;
  • Металлоокисными;
  • Полупроводниковыми.

Чаще всего из этого списка используются первые два типа.

Где находят применение

Некоторое время назад люди задавались вопросом, что такое резистор. Сейчас данный элемент находит все более частое применение, начиная низковольтными карманными устройствами и заканчивая высоковольтными промышленными агрегатами. Речь идет о различных бытовых приборах, техническом и измерительном оборудовании, автоматических системах, высокочастотных линиях, волноводах, радио,- и видеоаппаратуре, цепях питания, робототехнике и многом другом.

На данный момент встречаются схемы, где сопротивление используется в единичном порядке, а иногда устанавливается цельная конструкция, в которую входит немалое количество элементов.

Интересно. Резисторы еще долго будут использоваться при построении электрических схем. Это благодаря тому, что данное микроустройство доступное, простое в эксплуатации, малогабаритное и имеет высокий показатель КПД.

Когда начали появляться микроконтроллеры, у современной техники появилось больше функций, и ее начали производить более компактных размеров. Благодаря таким элементам, упрощаются электрические схемы, а устройства потребляют меньше тока, в результате миниатюрной стала сама элементная база.

Резистор – что это такое? С первого взгляда, кажется, что этой простой элемент, просто кусок материала, который сопротивляется электрическому току. Но не все так просто, так как в формировании данного элемента играют роль множество параметров, которые необходимо учитывать при составлении электрической схемы.

Электрическое сопротивление

Источник: https://elquanta.ru/teoriya/rezistor.html

Что такое резистор и для чего он нужен в электрической цепи

Для чего предназначен резистор

Один самых часто используемых элементов в электронике – это резистор. Простым языком его называют «сопротивление». С его помощью можно ограничивать ток или измерять его, делить напряжение, создавать цепи обратной связи. Без сопротивлений не обходится ни одна схема. В этой статьи мы расскажем о том, что такое резистор, какой у него принцип работы, а также для чего нужен этот элемент электрической цепи.

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Виды

Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:

  • Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
  • SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.

Внешний вид элементов двух типов вы видите на рисунке ниже:

Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:

  • Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
  • Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.

Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:

  • манганин;
  • константан;
  • нихром;
  • никелин;
  • металлодиэлектрики;
  • оксиды металлов;
  • углерод и прочие.

Источник: https://www.entehno.ru/chto-takoe-rezistor-i-dlja-chego-on-nuzhen-v-jelektricheskoj-cepi.html

Р рµр·рёсѓс‚рѕсђ рўрћр’ (3,5-7,5 рєр’с‚)

Непроволочный резистор специальный РѕСлаждаемый РІРѕР·РґСѓСРѕРј.

Предназначен для работы РІ радиотеСРЅРёС‡РµСЃРєРёС СѓСЃС‚СЂРѕР№СЃС‚РІР°С РІ качестве поглотителя мощности в цепяС высокой частоты.

Резисторы изготавливают в исполнении УХЛ и все климатическом исполнении В категории 2 по ГОСТ 15150-69.

Аналог: СОВ ОЖ0.467.054 ТУ / Р1-53 АБШК.434110.043 ТУ / Р1-90

Габаритные размеры:

Тип резистора L,мм D,мм l,мм d,мм
РЎРћР’-1 190 60 В  В 
РЎРћР’-3 450 60 9 45
РЎРћР’-7,5 280 120 12 94
РЎРћР’-8 400 120 12 105
ЭТО ИНТЕРЕСНО:  Какое напряжение подается на магнетрон в микроволновке

РўРµСнические Сарактеристики:

РўРёРї резистора Мощность рассеяния,Р’С‚ Номинальное сопротивление,РћРј Допускаемое отклонение,% Диапазон СЂР°Р±РѕС‡РёС С‡Р°СЃС‚РѕС‚ РљРЎР’Рќ Масса,РєРі РЅРµ более
РЎРћР’-1 1000 50 РћРј, 75 РћРј, 150 РћРј В±5; В±10 РґРѕ 1000 РњРіС† 1,2 0,75
РЎРћР’-3 3000 50 РћРј, 75 РћРј, 150 РћРј В±5; В±10 РґРѕ 1000 РњРіС† 1,2 2,0
РЎРћР’-7,5 7500 50 РћРј, 75 РћРј, 150 РћРј В±5; В±10 РґРѕ 1000 РњРіС† 1,2 3,5
РЎРћР’-8 8000 50 РћРј, 75 РћРј, 150 РћРј В±5; В±10 РґРѕ 1000 РњРіС† 1,2 4,5

Условное обозначение резистора при заказе и в конструкторской документации должно состоять из слова «Резистор», сокращенного обозначения вида, обозначения варианта исполнения (буква В) для резисторов всеклиматического исполнения, полного обозначения номинального сопротивления и допускаемого отклонения по ГОСТ 11076-69 и обозначения ТУ.

Резисторам присвоено сокращенное обозначение СОВ-1, СОВ-3, СОВ-7,5 ; СОВ-8, где

РЎ — специальный, Рћ — РѕСлаждаемый, Р’ — РІРѕР·РґСѓСРѕРј, 1; 3; 7,5; 8 — номинальная мощность рассея­ния, РєР’С‚.

Пример обозначения: Резистор СОВ-3 – 75 Ом ±5% ЛНАД.468590.007ТУ.

В 

Номинальная мощность рассеивания резисторов обеспечивается РїСЂРё удельном расСРѕРґРµ РѕСлаждающего РІРѕР·РґСѓСР° РЅРµ менее 150 Рј РєСѓР±.

/С‡ РЅР° 1 РєР’С‚ рассеиваемой мощности РїСЂРё температуре окружающего РІРѕР·РґСѓСР° РѕС‚ РјРёРЅСѓСЃ 60 РґРѕ +45 °С (РѕС‚ 213 РґРѕ 318 °К) Рё атмосферном давлении 84000 – 106700 РџР° (630 – 800 РјРј СЂС‚. СЃС‚.).

Для обеспечения номинальной мощности рассеяния РІ интервале РїРѕРЅРёР¶РµРЅРЅС‹С СЂР°Р±РѕС‡РёС РґР°РІР»РµРЅРёР№ РѕС‚ 53300 РґРѕ 84000 РџР° (РѕС‚ 400 РґРѕ 630 РјРј СЂС‚. СЃС‚.

) РїСЂРё температуре РѕСлаждающего РІРѕР·РґСѓСР° РѕС‚ РјРёРЅСѓСЃ 60 РґРѕ +45 °С (РѕС‚ 213 РґРѕ 318 °К) расСРѕРґ РѕСлаждающего РІРѕР·РґСѓСР° должен быть РЅРµ менее 170 Рј РєСѓР±.

/ч на 1 кВт рассеиваемой мощности.

Условия эксплуатации:

— диапазон СЂР°Р±РѕС‡РёС С‡Р°СЃС‚РѕС‚ РѕС‚ 50 Гц РґРѕ 250 МГц;

— интервал температур РѕС‚ РјРёРЅСѓСЃ 60 РґРѕ + 70°С ( РѕС‚ 213 РґРѕ 343 Рљ );

— относительная влажность РІРѕР·РґСѓСР° РґРѕ 98В %В РїСЂРё температуре:

  • РґРѕ + 25°С ( 298 Рљ ) — для резисторов обычного исполне­ния;
  • РґРѕ + 40°С ( 313 Рљ ) — для резисторов всеклиматического исполнения;

— смена температур РІ интервале РѕС‚ РјРёРЅСѓСЃ 60 РґРѕ + 70°С ( РѕС‚ 213 РґРѕ 343 Рљ );

— атмосферное давление РѕС‚ X06700 РґРѕ 53300 РџР° ( РѕС‚ 800 РґРѕ 400 РјРј СЂС‚. СЃС‚. );

— соляной туман ( для резисторов всеклиматического испол­нения );

— среда, зараженная плесневыми грибами ( для резисторов всеклиматического исполнения );

— воздействие инея Рё СЂРѕСЃС‹;

— вибрация РІ диапазоне частот РѕС‚ I РґРѕ 200 Гц СЃ ускорением РґРѕ 49,1 Рј/СЃ2В ( 5g );

— многократные удары СЃ ускорением РґРѕ 392 Рј/СЃ2В ( 40В gВ ) РїСЂРё длительности удара 2-10 РјСЃ;

Резисторам присвоено сокращенное обозначение РЎРћР’-1; РЎРћР’-3; РЎРћР’-7,5; РЎРћР’-8, РіРґРµ РЎ — специальный ,Рћ — РѕСлаждаемый ,Р’ — РІРѕР·РґСѓСРѕРј; 1; 3 ; 7,5; 8 — номинальная мощность рассея­ния, РєР’С‚.

В 

Указания по эксплуатации:

Резисторы устанавливаются в аппаратуре в вертикальном положении. Допускается устанавливать резисторы в горизонтальном положении при условии снижения мощности рассеяния на 30% от номинальной.

Для обеспечения работоспособности резисторов РЅР° РІС‹СЃРѕРєРёС С‡Р°СЃС‚РѕС‚Р°С Рё согласования РёС СЃ высокочастотными линиями резисторы необСРѕРґРёРјРѕ помещать РІ специальные согласующие экраны, являющиеся элементами аппаратуры.

Крепление резисторов РІ аппаратуре должно исключать появление СЂР°СЃС‚СЏРіРёРІР°СЋС‰РёС СѓСЃРёР»РёР№ РІ контактном узле.

Р’РѕР·РґСѓСодувные устройства, подводящие РѕСлаждающий РІРѕР·РґСѓС Рє резисторам, РїСЂРё зазоре 10 РјРј между внутренней стенкой РІРѕР·РґСѓСРѕРІРѕРґР° Рё ребром резистора, должны обеспечивать требуемый расСРѕРґ РІРѕР·РґСѓСР°.

Нагрузка РЅР° резисторы должна подаваться РЅРµ ранее 2-С РјРёРЅСѓС‚ после включения РѕСлаждающего РІРѕР·РґСѓСР°. Отключение РѕСлаждения резисторов должно производится РЅРµ раньше 3-С РјРёРЅСѓС‚ после снятия нагрузки.

Гарантийная наработка резисторов – 5000 ч.

Срок гарантии 12 лет с момента изготовления.

Источник: http://myunion.ru/rsov/

Что такое резистор и зачем он нужен

Приветствую, друзья!

Сегодня мы познакомимся ещё с одним «кирпичиком» электроники — резистором.

Мы не будем рассматривать все многообразие современных резисторов, но ознакомимся с принципом их действия.

И дадим кое-какие практические рекомендации применительно к компьютерам и периферийным устройствам.

Но сначала немного теории «на пальцах».

Проводники, полупроводники и диэлектрики

С точки зрения прохождения электрического тока (движения заряженных частиц) все вещества можно условно разделить на три большие группы — проводники, полупроводники и диэлектрики.

Проводники — это вещества, которые, в первом приближении, хорошо проводят ток, полупроводники — это вещества, которые плохо проводят ток, диэлектрики — не проводят ток вообще. Класс вещества определяется степенью сопротивление электрическому току.

Степень сопротивления вещества определяется строением его молекул и наличием различного количества свободных заряженных частиц.

Меньше всего сопротивляются прохождению электрического тока проводники, больше всего —  диэлектрики.

Большинство металлов и их сплавов являются проводниками.

Проводники используются для доставки электрической энергию от генератора к потребителю.

Чтобы энергия доходила без больших потерь, необходимо, чтобы проводники (провода и кабели) обладали низким сопротивлением. Лучшими проводниками являются серебро, медь и алюминий.

Полупроводники в чистом виде плохо проводят электрический ток.

Но при добавлении определенных веществ в них появляется избыток заряженных частиц того или иного знака (p – положительно заряженных частиц и n – отрицательно заряженных).

При соединении двух полупроводников  различного знака получается такая фундаментальная вещь как p-n переход.

P-n переход является основой большинства полупроводниковых приборов (диодов, транзисторов и т.п.)

В компьютере присутствуют и проводники, и полупроводники, и диэлектрики.

Так, например, материнская плата вашего компьютера сделана из диэлектрического материала (стеклотекстолита), на поверхности которого расположены медные проводники, к которым припаяны различные детали.

Процессор вашего компьютера содержит в себе несколько миллионов полупроводниковых транзисторов.

Кроме того, на плате полно отдельных (дискретных) диодов, транзисторов, конденсаторов и резисторов.

Что такое резистор

Резистор — это электронная деталь (условно относящаяся к классу проводников), обладающая сопротивление электрическому току.

В электронной технике очень часто надо внести в электрическую цепь не просто сопротивление, но сопротивление определенной величины.

Чем больше сопротивление электрической цепи, тем меньше соответствии с законом Ома ток в ней  при том же напряжении:

I = U/R, где I – электрический ток, U – напряжение, R – сопротивление

Если ток представить в виде движения стада животных, то пастух будет представлять собой напряжение. Сопротивлением в этом случае будет выступать нрав животных. Стадо можно заставить двигаться быстрее (увеличить силу тока), если пастух начнет щелкать бичом (поднимется напряжение).

Ток (сила тока) измеряется в амперах, напряжение — в вольтах, сопротивление – в омах.

Все эти единицы названы в честь физиков Анри-Мари Ампера, Алессандро Вольты и Георга Ома.

Резисторы могут иметь сопротивление от долей Ома до десятков и сотен Мегом (миллионов Ом). Электрическая лампочка накаливания – это, по существу, также резистор, обладающий сопротивлением в несколько десятков или сотен Ом (в зависимости от мощности лампы).

Постоянные, переменные и подстрочные резисторы

Постоянный резистор — это деталь с двумя выводами, которая вносит в электрическую цепь постоянное сопротивление.

Постоянный резистор представляет собой стержень из диэлектрического материала (чаще всего из керамики) на поверхности которой нанесена токопроводящая пленка из углерода или металлического сплава.

На торцы стержня плотно насажены «чашечки», переходящие в проволочные выводы. Чем тоньше плёнка, тем больше сопротивление.

На поверхность стержня могут наноситься канавки, увеличивающие сопротивление. Резистор с небольшим значением сопротивления может представлять собой керамическое основание с намотанным на него тонким проводом.

Для защиты резистивного слоя сверху наносится слой компаунда или лака, поверх которого наносится буквенно-цифровая маркировка или маркировка в виде нескольких цветных колец.

Раньше выводы резисторов в большинстве случаев были медными. Теперь же часто основу этих выводов составляет железо (которое дешевле меди).

Очень часто возникает задача изменить вносимое в электрическую цепь сопротивление. Это задачу выполняют переменные или подстроечные резисторы, у которых три (или более) вывода.

Переменные резисторы отличаются тем, что токопроводящий слой на них нанесен виде подковы, к концам которой подключены два неподвижных вывода.

Третий вывод – подвижный — скользит по подкове, поэтому при перемещении его сопротивление между ним и крайними выводами меняется.

Положение подвижного вывода можно менять посредством соединенной с ним вращающейся рукоятки.

Подстроечный резистор отличается от переменного тем, что в нем труднее повернуть рукоятку.

Часто в рукоятке подстроечного резистора делают прорези под шлиц отвертки.

Иногда после регулировки электрической схемы рукоятку заливают компаундом или полиэтиленом —  чтобы невозможно было ее повернуть и сбить настройку.

Кстати, регулятор громкости в ваших настольных акустических системах – это переменный резистор.

SMD резисторы

Если посмотреть на материнскую плату компьютера, можно увидеть другое конструктивное исполнение резисторов (и других деталей тоже). Это SMD (Surface Mounted Device) исполнение, предназначенное для монтажа на поверхность платы.

Традиционный резистор с проволочными выводами монтируется «через отверстие» (through hole).

При этом SMD резисторы выглядят в виде «кирпичиков» различного размера без проволочных выводов. Выводами в этом случае является торцы кирпичика, покрытые припоем.

При использовании SMD компонентов увеличивается плотность монтажа, уменьшаются размеры изделий, и в плате не нужно сверлить сотни отверстий.

Кроме того, из-за отсутствия длинных проволочных выводов уменьшается паразитная емкость и индуктивность резистора, что улучшает характеристики устройства в целом.

Выбор необходимого типоразмера SMD осуществляется исходя из необходимой рассеиваемой мощности. Здесь действует та же физика: чем больше размер, тем большую мощность может рассеивать резистор. Типоразмеры SMD резисторов и рассеиваемая мощность приведены в таблице.

Конструктивно SMD резистор представляет собой кусочек из той же керамики в виде параллелепипеда с нанесенной на его поверхность резистивной пленкой. Толщина и состав резистивных пленок могут быть различными.

Условно SMD резисторы разделяют на толстопленочные (10-70 микрометров) и тонкопленочные (единицы микрометров и менее), которые различаются технологией производства. Резистивные пленки могут быть из нихрома, нитрида тантала, оксида свинца и других материалов. Точная подстройка номинала резистора осуществляется с помощью луча лазера.

Сверху резистивный слой защищен защитным слоем с нанесенной на нем маркировкой.

Существует SMD резисторы с нулевым сопротивлением, которые используется в качестве перемычек.

Тепловое действие электрического тока

При прохождении через проводник электрический ток оказывает тепловое действие — проводник нагревается. Степень нагрева определяется величиной тока и сопротивлением в соответствии с законом Джоуля-Ленца.

Q = I²*R*t, где Q – количество теплоты, I – сила тока, R – сопротивление, t — время

На этом принципе работают паяльники и всякого рода нагреватели.

Заканчивая первую часть статьи, отметим, что и «обычный» резистор в электронной схеме тоже в той или иной мере нагревается.

Через резисторы могут проходить различные токи, поэтому на них может рассеиваться различная мощность.

Тепловая мощность рассеивается в виде излучения. Интенсивность излучения определяется в том числе и площадью поверхности излучения.

Поэтому, чтобы рассеять бОльшую мощность, требуется бОльшая поверхность излучения, и, соответственно, бОльшие габариты резистора.

Источник: https://vsbot.ru/lektronika/chto-takoe-resistor-i-zachem-on-nuzhen.html

Для чего нужен резистор в электрической цепи — Все об электричестве

Итак, резистор Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор.

Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор —  у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко.

Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Ограничение тока резистором

Падение напряжения на резисторе

Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт.

На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа)  показывает 5В.

На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.

Падение напряжение на резисторе

Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.

Единица измерения сопротивления резистора

Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Закон Ома для электрической цепи

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).

V=I*R

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2.  При этом считаем сопротивление лампочки равным 0.

V=I*R    =>     R=V/I    =>    R= 12В / 0,2А   =>   R=60Ом

ЭТО ИНТЕРЕСНО:  Сколько ватт часов в аккумуляторе

 Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.

Характеристика мощности резистора

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду.

Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит.

Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Расчет мощности резистора

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А.

Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощностьтока через резистор равна P=I*V=0,2А*5В=1Вт.

 Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

Соединение резисторов

Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.

Последовательное соединение резисторов

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:

Последовательное соединение резисторов

Параллельное соединение резисторов

При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:

Параллельное соединение резисторов

Источник: https://contur-sb.com/dlya-chego-nuzhen-rezistor-v-elektricheskoy-tsepi/

Что такое резистор и для чего он нужен?

Резисторы относятся к наиболее широко используемым в электронике элементам. Это название давно вышло из узких рамок терминологии радиолюбителей. И для каждого, кто хоть немного интересуется электроникой, термин не должен вызывать непонимание.

Виды резисторов

Виды резисторов можно разбить на следующие категории:

  1. Нерегулируемые (постоянные) — проволочные, композитные, пленочные, угольные и др.
  2. Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.

Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)

Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:

  1. Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
  2. Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
  3. Рассеиваемая мощность — предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
  4. Температурный коэффициент сопротивления — величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
  5. Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
  6. Шумовая характеристика — степень вносимых резистором искажений в сигнал.
  7. Влагостойкость и термостойкость — максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
  8. Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.

Источник: https://odinelectric.ru/knowledgebase/chto-takoe-rezistor

Что такое резистор

Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

статьи

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

Источник: https://www.radioelementy.ru/articles/chto-takoe-rezistor/

Гост 28608-90 резисторы постоянные для электронной аппаратуры. часть 1. общие технические условия

ГОСТ 28608-90
(МЭК 115-1-82)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РЕЗИСТОРЫ ПОСТОЯННЫЕ ДЛЯ ЭЛЕКТРОННОЙ АППАРАТУРЫ

Часть 1

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

Москва Стандартинформ2005

СОДЕРЖАНИЕ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТРЕЗИСТОРЫ ПОСТОЯННЫЕ ДЛЯ ЭЛЕКТРОННОЙ АППАРАТУРЫЧасть 1 Общие технические условияFixed resistors for use in electronic equipment. Part 1. Generic specification ГОСТ 28608-90(МЭК) 115-1-82

Дата введения 01.01.92*

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандартраспространяется на постоянные резисторы для электронной аппаратуры.

Стандарт устанавливаетстандартизованные термины, методики контроля и методы испытаний для использованияв групповых технических условиях (далее — ТУ) и в ТУ на резисторы конкретныхтипов для сертификации изделий в системах сертификации изделий электроннойтехники.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Ссылочныедокументы

Стандарты МЭК, на которыеимеются ссылки в настоящем стандарте:

27-1 (1971)** Буквенныеобозначения, применяемые в электротехнике. Часть 1. Общие положения.

60-1 (1973)*** Техникаиспытаний высоким напряжением. Часть 1. Общие определения и требования киспытаниям.

60-2 (1973)*** Часть 2.Методы испытаний

62 (1974)** Коды длямаркировки резисторов и конденсаторов.

63 (1963)** Рядыпредпочтительных величин для резисторов и конденсаторов.

Поправка № 1 (1967).

Поправка № 2 (1977).

68 Основные методыиспытаний на воздействие внешних факторов.

68-1 (1978) Часть 1.Общие положения.

68-2-1 (1974) ИспытаниеА. Холод.

68-2-1А (1976) Первоедополнение.

* Порядок введения стандартав действие приведен в приложенииD.

** В настоящем стандарте, в качестве которогонепосредственно применен международный стандарт МЭК 115-1-82, ссылки замененына:

ГОСТ 2.710ЕСКД. Обозначения буквенно-цифровые в электрических схемах

ГОСТ 28883 Коды длямаркировки резисторов и конденсаторов

ГОСТ28884 Ряды предпочтительных значений для резисторов и конденсаторов

ГОСТ2.721 ЕСКД. Обозначения условные графические в схемах. Обозначения общегоприменения

ГОСТ 21342.19 Резисторы.Методы измерения уровня

ГОСТ 28885 Конденсаторы.Методы измерений и испытаний

ГОСТ21395.0 Резисторы. Методы проверки требований к конструкции. Общиеположения

ГОСТ 21342.16Резисторы. Метод измерения нелинейности сопротивления

ГОСТ 8.417 ГСИ. Единицы величин

***Государственныйстандарт находится в стадии разработки.

68-2-2 (1974) ИспытаниеВ. Сухое тепло.

68-2-2А (1976) Первоедополнение.

68-2-3 (1969) ИспытаниеСа. Влажное тепло, постоянный режим.

68-2-6 (1970) Испытание Fc. Вибрация(синусоидальная). Поправка № 1 (1972).

68-2-13 (1966) ИспытаниеМ. Пониженное атмосферное давление.

68-2-14 (1974) ИспытаниеN. Быстрая смена температуры.

68-2-20 (1968) ИспытаниеТ. Пайка.

68-2-20А (1970) Первоедополнение. Испытание ТЬ. Теплостойкость при пайке. Метод 1.

68-2-21 (1975) Испытание U. Прочность выводов и ихкреплений к корпусу изделий. Поправка № 1 (1979).

68-2-27 (1972) ИспытаниеЕa. Удар.

68-2-29 (1968) ИспытаниеЕb. Ударная тряска.

68-2-30 (1969) Испытание Db. Влажное тепло,циклическое (12 + 12-часовой цикл).

68-2-45 (1980) ИспытаниеХА. Погружение в очищающие растворители.

117* Рекомендуемыеграфические обозначения.

195 (1965)* Методизмерения токовых шумов постоянных резисторов.

294 (1969)* Измерениеразмеров цилиндрического изделия с двумя аксиальными выводами.

410 (1973)** Правила ипланы выборочного контроля по качественным признакам.

440 (1973)* Методыизмерения нелинейности сопротивления резисторов.

QC 001001 (1981)** Основные правилаСистемы сертификации изделий электронной техники.

QC 001002 (1981)** Правила процедуры вСистеме сертификации изделий электронной техники.

Другие стандарты, накоторые имеются ссылки в настоящем стандарте

ISO 1000 (1973)* Единицы СИ ирекомендации по применению кратныхи дольных единиц от них и некоторых других единиц.

* В настоящем стандарте, вкачестве которого непосредственно применен международный стандарт МЭК 115-1-82,ссылки заменены на:

ГОСТ 2.710ЕСКД. Обозначения буквенно-цифровые в электрических схемах

ГОСТ 28883 Коды длямаркировки резисторов и конденсаторов

ГОСТ28884 Ряды предпочтительных значений для резисторов и конденсаторов

ГОСТ2.721 ЕСКД. Обозначения условные графические в схемах. Обозначения общегоприменения

ГОСТ 21342.19 Резисторы.Методы измерения уровня

ГОСТ 28885 Конденсаторы.Методы измерений и испытаний

ГОСТ21395.0 Резисторы. Методы проверки требований к конструкции. Общиеположения

ГОСТ 21342.16Резисторы. Метод измерения нелинейности сопротивления

ГОСТ 8.417 ГСИ. Единицы величин

** Государственныйстандарт находится в стадии разработки.

2.2. Единицы физических величин,обозначения и термины

2.2.1. Общиеположения

Единицы физическихвеличин, графические и буквенныеобозначения и термины, применяемые в настоящем стандарте, по следующейНТД: ГОСТ 2.710, ГОСТ2.721, ГОСТ 8.417, МЭК 50 (1978).

2.2.2. Тип — группарезисторов, имеющих общие конструктивныепризнаки, сходство технологии изготовления которых позволяет объединитьих для сертификации или дляконтроля соответствия качества. Обычно на них распространяются одни ТУ на резисторы конкретных типов.

Примечание. Резисторы, изготовляемыепо нескольким ТУ на резисторыконкретных типов, могут в некоторых случаях рассматриваться как принадлежащие кодному и тому же типу и поэтому могут быть объединены для сертификации идля контроля соответствия качества.

2.2.3. Вид -подразделение типа, осуществляемое обычнопо размерным признакам.

Вид может объединятьрезисторы нескольких вариантов исполнения,обычно отличающихся конструктивными особенностями.

2.2.4. Категория — терминдля обозначения дополнительных общих характеристик,касающихся применения, например резисторов с длительным сроком службы.

Термин «категория» можноиспользовать только в сочетании с однимили более словами (например, категория с длительным сроком службы), а не с одной буквой или цифрой.

Цифры, добавляемые послетермина «категория», должны быть арабскими.

2.2.5. Семейство (изделийэлектронной техники) — группа изделийэлектронной техники, в которых проявляется одно преобладающее физическоесвойств и (или) которые выполняют определенную функцию.

2.2.6. Подсемейство(изделий электронной техники) — группа изделий в пределах одного семейства,изготовленных по единой технологии.

2.2.7. Номинальноесопротивление — сопротивление, на которое рассчитан резистор и значениекоторого обычно указано на резисторе.

Источник: https://www.rags.ru/stroyka/text/30556/

Простая инструкция по применению резистора: для чего он нужен?

Резистор есть в каждом доме, да не один. Да, да, и в вашем тоже их предостаточно. Секрет в том, что любая электрическая схема содержит резистор.

Крошечный элемент играет огромную роль в работоспособности электроприбора. В чем же секрет детали?

Резистор — что это такое?

Электрический поток – вещь небезопасная и неудержимая. Но человечество научилось обманывать физические явления себе на благо.

Резистор используют подобно ловушке: он собственным сопротивлением удерживает электрический ток, делит и уменьшает напряжение.
Эти параметры прочно взаимосвязаны, потому благодаря регулированию силы сопротивления, можно получать необходимые параметры тока. Чем мы успешно пользуемся сегодня.

Для измерения силы сопротивления тока в резисторе используют физическую единицу – Ом.

На какие особенности обращать внимание при выборе?

Различают множество видов таких приборов. Подбор резистора для конкретной цели зависит от сложности электрической цепи, прибора, параметра электрического тока и отрезком значений для его регулирования – снижения показателей. Существует 2 типа таких устройств – переменные и постоянные. Вместе с этим их разнообразие уже насчитывает более 10–15 видов моделей.

Главное типовое различие – постоянный или переменный поток напряжения.

Например, в схеме регулирования громкости звука всегда установлен переменный резистор. Он подстраивается под сокращение или нарастание напряжения и меняет силу сопротивления. От этого мы слышим громкий или тихий звук.

В остальном резисторы отличаются по принципу работы, соединения, мощности, материалу-проводнику и качеству. Последнее — наиболее важный критерий. Профессионалы рекомендуют приобретать модели известных производителей, проверенные многолетней продажей на рынке. Также для выбора резистора необходимо учитывать:

  • значение необходимого сопротивления;
  • минимальную мощность рассеивания резистора.

Выбор резистора по мощности рекомендуется проводить с её запасом в 1–2 раза больше от расчетной. Правильно подобранный резистор – это отсутствие перегрева у самого устройства и близлежащих элементов схемы.
Он обеспечивает рассеивание и дробление энергии, постоянство удерживаемого потока. Появление помех в работе техники: шум, перегрев, скачки напряжения — означает, что резисторы не справляются с работой. Поспешите совершить диагностику и замену резисторов.

Области применения резисторов

Резисторы с каждым годом расширяют сферу влияния и использования. От низковольтных карманных приборов до высоковольтных промышленных агрегатов.

ЭТО ИНТЕРЕСНО:  Как выпаивать SMD резисторы

Встретить микроприбор можно в бытовых приборах, медицинском, техническом оборудовании, измерительных устройствах, системах автоматики, цепях питания, высокочастотных линиях, волноводах, робототехнике, автотранспортных технологиях, теле-, радио-, видеоаппаратуре и прочее.

Существуют схемы, где используют резисторы в единичном порядке или устанавливают цельные конструкции из множества таких микроприборов.В заключение можно сказать, что резисторы еще долгое время будут занимать главенствующую нишу в построении электросхем.
Ведь высокий КПД, доступность, простота в эксплуатации, малогабаритность позволяют внедрить микроустройство в любую деталь.

Подробный рассказ на видео: почему так широко используют резисторы

Источник: https://elektrik24.net/elektrooborudovanie/rezistory/dlya-chego-nuzhen.html

Резистор простым языком: что это такое, устройство, принцип работы, виды

При передаче электрического тока на расстояние из-за сопротивления проводов теряется часть энергии. В таких случаях сопротивление является негативным фактором и его стараются свести к минимуму.

Другое дело электрические цепи в электронных устройствах. Там резистор выполняет много полезных функций. В электронных схемах используется свойства этих пассивных компонентов для ограничения тока в многочисленных цепях. С их помощью обеспечивается нужный режим работы усилительных каскадов.

Что такое резистор?

Название этого электронного элемента произошло от латинского слова resisto — сопротивляюсь. То есть – это пассивный элементприменяемый в электрических цепях, действие которого основано на сопротивлении току. Основной характеристикой этого электронного компонента является величина его электрического сопротивления.

Пассивность данного электронного компонента означает то, что основной его функцией является поглощение электрической энергии. В отличие от активных элементов электроники, он ничего не генерирует, а только пассивно рассеивает электричество, преобразуя его в тепло. В схемах замещения сопротивление является основным параметром, в то время как ёмкость и индуктивность – паразитные величины.

Применение

Резисторы применяются во всех электрических схемах для установления нужных значений тока в цепях, с целью демпфирования колебаний в различных фильтрах, в качестве делителей напряжений и т. п.

Резисторы выполняют функции нагрузки в резистивных цепях, используются в качестве делителя напряжения (см. рисунок ниже) и тока, являются элементами фильтров, применяются для формирования импульсов, выполняют функции шунтов и многое другое. Сегодня трудно себе представить электрическую схему, в которой не задействованы несколько резистивных элементов.

Рис. 1. Пример использования резисторов в схеме делителя напряжения

Без резисторов не работает ни один электронный прибор.

Устройство и принцип работы

Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.

Устройство таких элементов можно понять из рисунка 2 ниже.

В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.

Рис. 2. Строение резистора

Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.

Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.

Для непроволочных резисторов используются следующие резистивные материалы:

  • нихром;
  • манганин;
  • константан;
  • никелин;
  • оксиды металлов;
  • металлодиэлектрики;
  • углерод и другиематериалы.

Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.

Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.

Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.

Рис. 3. Регулировочные резисторы Рис. 4. Подстроечные резисторы

Принцип действия.

Работа резистора основана на действии закона Ома: I = U/R , где I  – сила тока, U – напряжение, R – сопротивление на участке цепи. Из формулы видно как зависят от величины сопротивления параметры тока и напряжения.

Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.

Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.

Рис. 5. Принцип работы

Номиналы резисторов

Элементы имеют свой допуск в отклонениях номинальных сопротивлений. В соответствии с допусками номиналы резисторов разбиты на 3 ряда, которые обозначаются: Е6, Е12, и Е24.

Компоненты ряда Е6 имеют допускотклонения ± 20%; ряда Е12 – ± 10%, а ряда Е24 –  ± 5%.

Номиналы резисторов каждого ряда представлены в справочных таблицах, которые можно найти в интернете.

Маркировка

Раньше на корпусах сопротивлений проставляли номинал, ряд, мощность и серийный номер. В связи с миниатюризацией деталей перешли на цветовую маркировку. Параметры сопротивлений кодируют с помощью цветных колец (см. рис. 8).

Рис. 8. Цветовая маркировка

Еслина корпусе присутствует 3 кольца, то первые два обозначают величинусопротивления, третье – множитель, а допустимое отклонение составляет 20%.

Еслина корпусе 4 кольца, то значения первых трёх из них такие же, как в предыдущемпримере, а четвёртое кольцо указывает на величину отклонения.

Пятьколец: первые 3 указывают величину сопротивления, на четвёртой позиции –множитель, а на пятой – допуск.

На сверхточных деталях наносятся 6 цветовых полос: три первых указывают величину сопротивления, полоса на четвёртой позиции – множитель, а пятое кольцо — допустимое отклонение.

Каждому цвету присвоена конкретная цифра (от 0 до 9). Учитывая позицию кольца и его цвет, можно с точностью определить параметры изделия. Для этого удобно пользоваться таблицей цветов (рис. 9).

Рис. 9. Таблица цветов

В некоторых случаях вместо сопротивления используют обычные перемычки. Считается что у них нулевое сопротивление. Вместо перемычек иногда устанавливают резистор с нулевым сопротивлением (по сути та же перемычка, только адаптирована под размеры резистора). На корпус такого сопротивления наносят 1 чёрную полоску.

Маркировка SMD-резисторов

Сопротивления, предназначенные для поверхностного монтажа маркируют цифрами (см. рис. 10). Кодировка сложна для запоминания. В ней учитывается количество цифр и их позиции. Цифрами кодируют типоразмеры изделий и значения основных параметров. Для расшифровки кодов данного типа маркировки существуют справочные таблицы или калькуляторы.

Рис. 10. Цифровая маркировка

Код на рисунке расшифровывается так: номинальное сопротивление 120×106 Ом (последняя цифра показывает количество нулей, то есть степень числа 10). Резистор из ряда Е96 с допуском 1%, типоразмер 0805 либо 1206 (значения, выделенные курсивом, определяются по справочнику).

Обозначение на схемах

Источник: https://www.asutpp.ru/chto-takoe-rezistor.html

Резисторы: виды, устройство, маркировка и параметры резисторов

Она устанавливается соответствующим ГОСТ и указывается с помощью маркировки на элементе или на таре. Численное значение номинальной величины устанавливается рядами предпочтительных чисел, т.е. десятичными рядами геометрических прогрессий, первый член которых равен 1, а знаменатель q определяет количество номинальных значений в десятичном (от 1 до 10) интервале. Любой член такой прогрессии aN равен:

AN = qN-1,

где N — номер искомого члена.

Для номинальных значений параметров электроэлементов наиболее употребительны ряды предпочтительных чисел, которым присвоены обозначения Е6, Е12, Е24 и т.д.

Элементы этих рядов вычисляются соответственно следующим образом. Сначала определяются основания рядов:

а, затем, подставляя в формулу значения q, определяем ряды:

Е6 1,0; 1,5; 2,2; 3,3; 4,7; 6,8.

Е12 1,0; 1,2; 1,5; 1,8; 2,2; 2,7; 3,3; 3,9; 4,7; 5,6; 6,8; 8,2.

Е24 1,0;

Е48 1,0;

Использование рядов предпочтительных чисел сокращает количество номиналов, уменьшает число типоразмеров элементов и удешевляет производство.

1.2. Допуск на параметр резистора

Допускаемое отклонение фактической величины от номинальной называется допуском и указывается в процентах или с помощью класса точности.

ГОСТ 9664-61 определяет следующие стандартные отклонения действительной величины параметра от номинальной (в %).

± 0,01; ± 0,02; ± 0,05; ± 0,1; ± 0,2; ± 0,5; ± 1,0; ± 5,0; ± 10,0; ± 20,0; ± 30,0.

                                                                                 1          2           3

Наиболее часто используются: 1, 2, и 3 классы точности. Класс точности не является показателем качества.

1.3. Параметры, характеризующие электрическую прочность резистора

Электрическая прочность — это способность ЭРЭ выдерживать электрические нагрузки без потери работоспособности.

Электрическую прочность характеризуют следующие напряжения.

Uном — максимальное напряжение, под которым при нормальных условиях (температура 1525 °C; влажность 4575 %, давление 650800 мм.рт.ст.) элемент может находиться в течение гарантированного срока службы.

Uраб — напряжение, соответствующее эксплуатационным условиям и требованиям надежности. Для соблюдения условий нормальной работы ЭРЭ должно выполняться неравенство:

Uраб < Uном.

Uисп — максимальное напряжение, под которым ЭРЭ может находиться небольшой промежуток времени (примерно несколько секунд).

Uпpo6 — минимальное напряжение, при котором наступает пробой изоляции ЭРЭ.

1.4. Номинальная мощность резистора

Номинальная мощность (PHOM) — максимально допустимая мощность, которую элемент может рассеивать в течение гарантированного срока службы при непрерывной электрической нагрузке и определенных условиях окружающей среды: температуры, влажности и атмосфеРном давлении, и при условии, что напряжение на элементе не превышает Uном.

1.5. Параметры, характеризующие потери

На электрические параметры некоторых элементов схем большое влияние оказывает различные потери. Особенно они влияют на параметры колебательных контуров, так как определяют их активное сопротивление.

Активное сопротивление r складывается из:

—              активного сопротивления проводников току высокой частоты;

—              сопротивлений, определяемых диэлектрическими потерями;

—              сопротивлений, вносимых экранами, сердечниками и различными деталями;

—              сопротивления, вносимого различными нагрузками.

Рассмотрим некоторые из них.

1. Сопротивление проводников. Известно, что сопротивление прямолинейного проводника переменному току больше его сопротивления постоянному току (омическое сопротивление) из-за явления поверхностного или Скин-эффекта. Суть заключается в следующем.

При прохождении по проводнику переменного тока образуется магнитное поле, под влиянием которого в проводнике возникает индукционный ток. Взаимодействие этого тока с основным вызывает перераспределение тока по сечению проводника так, что плотность тока в наружных частях сечения возрастает, а во внутренних — падает.

С увеличением частоты ток сильнее оттесняется к поверхности проводника, занимая все более тонкий слой. Рассмотрим схему этого явления (см. рис. 1.1).

Рисунок 1.1. а) — возникновение скин-эффекта; б) — кривые распределения тока по сечению проводника при токах различной частоты: f1, f2 f3

В прямолинейном проводнике круглого сечения мгновенное направление переменного тока i1 указано стрелкой. Ток i1 возбуждает магнитное поле Н1, имеющего вид концентрических окружностей и направленных по часовой стрелке. Это поле Н1, пронизывая проводник, возбуждает индукционный ток i2, который создает вторичное магнитное поле Н2, направленное противоположно основному.

Циркуляция тока i2 показана пунктирной линией и стрелкой. Линии тока i2 в наружных частях проводника совпадают, а во внутренних — они противоположны. Поэтому плотность тока в наружных слоях проводника возрастает, а во внутренних падает.

Поэтому уменьшается действующее, или эффективное сечение проводника, что ведет к повышению сопротивления провода току высокой частоты, которое может быть в несколько раз выше значения сопротивления постоянному току.

Оказывает влияние на величину сопротивления проводника и шероховатость поверхности.

Рис. 1.2. Зависимость сопротивления проводника от шероховатости поверхности

Шероховатости удлиняют путь тока и увеличивают сопротивление проводника. А в совокупности с действующим Скин- эффектом сопротивление еще больше увеличивается и может достигать 50100 % роста на частотах в сотни МГц. Для предотвращения этого явления токопроводящие поверхности тщательно полируют и покрывают слоем серебра, тогда поверхность меньше подвергается окислению. Для защиты используется также покрытие слоем радия, потом Ag, потом снова радием.

Сопротивление криволинейного проводника может значительно отличаться от сопротивления прямолинейного проводника при всех прочих равных условиях.

Это объясняется тем, что на любом участке криволинейного проводника распределение тока по сечению определяется как собственным магнитным потоком, так и магнитным потоком соседних участков. Поэтому ток оттесняется к внутренним участкам катушки, а активное сечение уменьшается (см. рис. 1.3).

При этом действующее сечение уменьшается, сопротивление возрастает. Это явление называется эффектом близости и особенно сильно проявляется в проводниках, свернутых в виде спирали. Сопротивление может возрасти в несколько раз.

Рис. 1.3. Распределение плотности тока по сечению провода в катушке

2. Потери в диэлектрике. Они возникают в тех элементах, где имеется несовершенный диэлектрик, находящийся в переменном электрическом поле. Например, в конденсаторах, катушках индуктивности, переключателях, цоколях и панельках и т.п. Каждый такой случай можно уподобить наличию несовершенного диэлектрика в конденсаторе. Поэтому можно рассматривать диэлектрические потери в конденсаторе.

При невысоких напряжениях диэлектрические потери в основном вызываются замедленной поляризацией и проводимостью диэлектрика. Благодаря потерям в полной проводимости конденсатора появляется активная составляющая, которая изменяет угол сдвига фаз φ между током и напряжением. В идеальном конденсаторе φ=90°, в конденсаторе с потерями φ

Источник: https://eti.su/articles/elektrokomponenti/elektrokomponenti_1490.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]