Асинхронные электродвигатели
Асинхронные двигатели с короткозамкнутым ротором составляют значительную часть семейства электрических двигателей переменного тока – преобразователей электромагнитной энергии от одно- или трехфазной сети в механическую энергию вращения вала двигателя.
Асинхронный электродвигатель с короткозамкнутым ротором содержит две основные части: неподвижную и вращающуюся. Неподвижная часть – статор – состоит из сердечника той или иной конфигурации, одной или нескольких обмоток, уложенных в пазы сердечника и конструктивных деталей: станины, крепежных деталей и т.п.
Подвижная часть – ротор – состоит из сердечника, короткозамкнутой обмотки, уложенной в его пазы, и конструктивных деталей, с помощью которых обеспечивается возможность вращения подвижной части относительно неподвижной: вала, опорных подшипников, крепежных деталей и т.п.
Конструкция таких двигателей наиболее проста из всех видов электрических машин.
Модельный ряд асинхронных электродвигателей
Сводная таблица основных характеристик серий однофазных и трехфазных асинхронных двигателей с короткозамкнутым ротором INNOVARI, INNORED:
Применение асинхронных двигателей
Предельная простота конструкции и дешевизна производства, а также появление гибких в программировании преобразователей частоты определили практически повсеместное применение асинхронных двигателей с короткозамкнутым ротором в промышленных электроприводах. Однофазные и трехфазные асинхронные двигатели находят применение:
- в металлургическом производстве: в автоматизированных приводах оборудования прокатных и волочильных станов, литейного производства;
- в металлообрабатывающем производстве: в автоматизированных приводах станков и обрабатывающих центров, подъёмно-крановом оборудовании, транспортерах и т.п.;
- в механосборочном производстве: в приводах манипуляторов, конвейеров, компрессорном оборудовании;
- в горнодобывающем производстве: в бурильном и экскаваторном оборудовании, транспортерах и др.;
- в насосном, вентиляционном, компрессорном оборудовании;
- в строительстве: в крановом оборудовании, оборудовании подготовки и транспортировки стройматериалов;
- в бытовой сфере: в ручном электроинструменте, прачечном, кухонном и офисном оборудовании.
Преимущества использования асинхронных двигателей
Привлекательными сторонами использования асинхронных двигателей с короткозамкнутым ротором являются:
- относительно высокие значения коэффициента мощности (cos φ) и коэффициента полезного действия (η);
- жесткая механическая характеристика (малы изменения скорости при колебаниях нагрузки);
- высокие значения пускового и максимально допустимого момента на валу двигателя.
При этом имеет место предельная простота конструкции и обусловленная этим надежность в эксплуатации. Основными элементами, определяющими отказы асинхронных короткозамкнутых двигателей, являются опорные подшипники вала двигателя и электрическая изоляция обмоток.
К основным факторам разрушения изоляции обмоток относится вибрация и перегрев обмоток, а также агрессивность внешней среды. Факторы разрушения подшипников: вибрации и перекос нагрузок, агрессивность внешней среды и паразитные токи через станину и вал двигателя, способствующие эрозии дорожек и тел качения.
Эти недостатки присущи всем видам электрических машин, но в случае асинхронных короткозамкнутых двигателей простота конструкции и обеспечение условий эксплуатации сводит их влияние к минимуму.
Принцип работы асинхронных электродвигателей с короткозамкнутым ротором
В пазах статора пространственно симметрично уложена трехфазная обмотка. Принцип работы асинхронного двигателя основан на свойстве таких обмоток, заключающемся в следующем: при питании фаз обмотки токами, сдвинутыми по времени на электрический угол, в градусах равный пространственному углу сдвига фаз обмотки, внутри статора возникает вращающееся магнитное поле. Частоту вращения такого поля принято называть синхронной.
За один период изменения тока частотой f поле поворачивается на электрический угол 360°, соответствующий двум полюсным делениям. Поэтому скорость вращения поля (синхронная скорость) nс = f/p (об/сек), где p – число пар полюсов обмотки. Вращающийся магнитный поток в пространстве статора пересекает витки обмотки ротора. При этом он индуцирует в обмотке ротора электродвижущую силу, под действием которой в обмотке начинает протекать ток.
Частота и сила тока зависит от разности скоростей синхронной nс и самого ротора n. Относительную разницу этих скоростей принято называть скольжением S=(nс–n)/nс. При номинальном режиме работы величина скольжения лежит в пределах 0,030,05. По мере увеличения нагрузки на валу двигателя скольжение возрастает, поскольку возрастает отставание ротора от магнитного потока.
Ток ротора так же создает свой вращающийся магнитный поток, который, векторно складываясь с потоком статора, создает внутреннее магнитное поле машины. В результате взаимодействия тока ротора с магнитным полем машины возникает вращающий электромагнитный момент, поддерживающий вращение ротора и приводящий в движение нагрузку электродвигателя.
При движении ротора с синхронной скоростью исчезнет индуцируемая электродвижущая сила и ток в обмотке ротора, исчезнет и вращающий момент. Таким образом, ротор всегда движется со скоростью, меньшей синхронной.
В однофазных асинхронных двигателях обмотка статора состоит из двух пространственно сдвинутых фаз и запитывается однофазным напряжением.
Для получения сдвига фаз токов в обмотках последовательно или параллельно одной из них включается фазосдвигающий элемент – чаще всего, конденсатор.
Однофазные асинхронные двигатели, как правило, имеют худшие по сравнению с трехфазными двигателями характеристики, однако, в ряде случаев, эти недостатки перекрываются преимуществами, возникающими при возможности питания от однофазной сети.
Обмотка, уложенная в пазах статора, может быть многополюсной. В этом случае переключение обмоток на разное число пар полюсов используется для дискретного регулирования скорости вращения электродвигателя.
Источник: https://rusautomation.ru/privodnaya-tehnika/asinhronnye-elektrodvigateli
Виды электродвигателей и их особенности
Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.
Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели. Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее.
Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения. При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.
Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.
Электродвигатели постоянного тока
Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
Электродвигатели переменного тока
Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста.
Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д.
В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
Шаговые электродвигатели
Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
Серводвигатели
Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
Линейные электродвигатели
Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
Синхронные двигатели
Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
Асинхронные двигатели
Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора.
Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.
Электродвигатели незаменимы в современном мире.
Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.
Источник: https://mirprivoda.ru/articles/vidy-elektrodvigateley
Виды и типы электродвигателей
- 3 августа 2016 г. в 13:52
- 2994
Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:
- Неподвижную часть (статор или индуктор).
- Подвижную часть (ротор или якорь).
В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.
Двигатели постоянного тока
Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:
- Коллекторные.
- Бесколлекторные.
В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:
- Самовозбуждающиеся.
- С возбуждением от электромагнитов постоянного действия.
Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:
- Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
- Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
- Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.
Двигатели переменного тока
Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.
Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью.
Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора.
При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.
Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.
В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:
- 1-нофазные;
- 2-хфазные;
- 3-хфазные;
- многофазные.
Категория размещения и климатическое исполнение
Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:
- Для помещений с высоким уровнем влажности.
- Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
- В условиях открытого пространства.
- Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
- Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.
В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:
- Все возможные макроклиматические районы (В).
- Холодный (ХЛ).
- Все морские районы (ОМ).
- Сухой тропический (ТС).
- Общий (О).
- Умеренный (У).
- Умеренный морской (М).
- Влажный тропический (ТВ).
Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.
Степень защиты корпуса
Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:
- Высокий уровень защиты от пыли — IP65, IP66.
- Защищенные — не ниже IP21, IP22.
- С защитой от влаги — IP55, IP5.
- С защитой от брызг и капель — IP23, IP24.
- Закрытое исполнение — IP44 — IP54.
- Герметичные — IP67, IP68.
При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.
Общие требования безопасности при монтаже и эксплуатации
При монтаже электрического двигателя необходимо придерживаться следующих требований:
- Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
- Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
- При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
- Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
- Строго запрещен монтаж электропривода под напряжением.
В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:
- Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
- Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
- При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
- Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
- Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.
Крановые электродвигатели
Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.
В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:
- Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
- Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
- Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
- Класс нагревостойкости изоляционных материалов не менее F.
- У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
- С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
- Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.
Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:
- Частые пуски, реверсы и торможения.
- Регулирование частоты вращения в широком диапазоне значений.
- Повышенная вибрация и тряски.
- Повторно-кратковременный режим работы.
- Воздействие высокой температуры, газа, пыли и пара.
- Значительная перегрузка во время работы.
Общепромышленные электрические двигатели
Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам.
Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором.
Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:
- Простая конструкция с отсутствием подвижных контактов.
- Низкая стоимость в сравнении с электрическими машинами других типов.
- Высокая ремонтопригодность всех главных узлов и рабочих элементов.
- Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
- Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.
Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др.
Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала.
В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.
Электрические двигатели с электромагнитным тормозом
Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время.
К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя.
Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.
Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:
- Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
- Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
- При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
- После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.
В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:
- С горизонтальным валом.
- С вертикальным валом.
Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.
Источник: https://www.elec.ru/articles/o-elektrodvigateljakh/
Электродвигатели со склада в Уфе
/ Электродвигатели |
Большое значение в правильном выборе электродвигателя имеет не только полное соответствие требуемым техническим характеристикам конкретной модели, но и оптимальная цена и условия поставки.
ООО «Агроводком Электро» гарантирует своим клиентам конкурентные цены на электродвигатели и максимальную оперативность и обязательность в исполнении ваших заявок.
В нашем ассортименте имеются, как и популярные модели общепромышленных электродвигателей, так и специализированные двигатели для различных отраслей народного хозяйства. При необходимости специалисты нашей компании подберут для вас оборудование оптимально подходящее для ваших целей и задач, а также осуществят поставку электродвигателя, отсутствующего в прайс-листе.
Предлагаем вам широкий ряд общепромышленных, взрывозащищенных, специальных электродвигателей.
У нас в продаже:
Электродвигатели АИР, 5АИ
Общепромышленные электродвигатели
Взрывозащищенные электродвигатели
Электродвигатели для привода лифтов
Электродвигатели для привода станков-качалок
Электродвигатели для привода электрических талей
Электродвигатели для привода вибромашин
Электродвигатели для привода моноблокнасосов
Преобразователи частоты («частотники») Hyundai
Общие сведения
Общепромышленные асинхронные двигатели могут изготавливаться как в основном (базовом) исполнении, так и в модифицированных исполнениях.
Основное (базовое) исполнение — это двигатель монтажного исполнения IM1001 (1081), климатического исполнения УЗ, для режима работы S1, имеет типовые технические характеристики, соответствующие требованиям стандартов.
Модифицированное исполнение — это электродвигатель, который изготовливается на основе узлов основных (базовых) двигателей и имеющий необходимые конструктивные отличия по способу монтажа, климатическому исполнению, степени защиты и другие отличия.
Электродвигатели специального назначения — это двигатели, которые предназначены для узкоспециализированного применения (лифты, транспорт, тали и др.)
Серийно изготавливаемые электродвигатели — это двигатели, которые изготавливаются по действующим на предприятии техническим требованиям и конструкторской документации и предназначенные для серийного изготовления.
В состав серий асинхронных двигателей входят: электродвигатели основного (базового) исполнения, со степенью защиты IP54, (IP55) в закрытом обдуваемом исполнении — АИР, АИВ, 4А, 5А, 6А; электродвигатели повышенной мощности, со степенью защиты IP23 — 4А, 5А; электродвигатели во взрывозащищенном исполнении — ВА; электродвигатели соответствующие рядам мощностей и установочных размеров, согласно нормам CENELEK Dokument — АИС, 5А, 6А;
электродвигатели специального назначения.
Структура обозначения двигателей 5 и 6 серии
К примеру: 5А МХ 132 М 2 БП У2 , где:
5А — обозначение серии (АИР, АИВ, 4А, 5А ,6А, АН, ВА и др.);
МХ — признак модификации (пристраиваемые — П, модернизированные — М, с алюминиевой станиной — Х, с фазным ротором — К, повышенного скольжения — С, с самовентиляцией — Н, с принудительным охлаждением — Ф, встраиваемые — В, однофазные — ЕУ, для транспорта — Э, с повышенным пусковым моментом — Р);
132 — габарит, высота оси вращения, мм. (80, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355 и др.);
М — установочный размер по длине станины (S, М, L), или вариант длины сердечника (А, В);
2 — число полюсов (2, 4, 6, 8, 10, 12 или 2/4, 8/6/4 и т.д);
БП — признак отличия по назначению (по нормам CENELEK — К, с датчиком температурной защиты обмотки — Б, с датчиком температуры подшипника — Б1, с датчиком и антиконденсатным подогревателем — Б2, повышенной точности по установочным размерам — П, малошумные — Н, для лифтов — Л, для станков качалок — С, для сушильных шкафов — СШ, для АЭС — А (А1,А2,А3);
У2 — климатическое исполнение и категория размещения по ГОСТ 15150: У3, Т2 и т.д.
В дополнение к обозначению двигателя указывается: монтажное исполнение — IM.; напряжение питающей сети — 380 В (220/380 В и др.); степень защиты IP..; другие отличия от основного (базового) исполнения.
В обозначении электродвигателя может применяться использование нескольких отличительных признаков модификации и назначения. Обозначение двигателя пишется слитно, без пробелов.
Климатические исполнения
Двигатели имеют исполнения для эксплуатации в районах с умеренным (У), тропическим (Т), умереннохолодным (УХЛ) и холодным (ХЛ) климатом в условиях, определяемых категориями размещения: — открытый воздух; — под навесом при отсутствии прямого воздействия солнечного излучения и атмосферных осадков; — закрытые помещения без искусственного регулирования климатических условий;
— закрытые помещения с искусственно регулируемыми климатическими условиями.
Источник: http://www.agrovodcom.ru/elektrodvigatel/
Электродвигатель: понятие, типы
Электродвигатель — это электрическая машина, в которой электрическая энергия преобразуется в механическую. Существует несколько типов электродвигателей: синхронные, асинхронные и двигатели постоянного тока.
Синхронные двигатели
Синхронные двигатели имеют большую мощность (50-100кВт и более), по сравнению с другими двигателями, применяются на металлургических заводах, в шахтах и других предприятиях, служат для приведения в движения насосов, компрессоров, вентиляторов, двигательно-генераторных установок и др.
Особенностью синхронных электродвигателей определяющей их функциональные возможности и области применения, является постоянство средней частоты вращения при неизменной частоте, амплитуде напряжения питания и колебания момента нагрузки.
Следовательно, при снижении напряжения синхронный двигатель сохраняет большую перегрузочную способность, а возможность форсировки возбуждения увеличивает надежность работы при аварийных понижениях напряжения.
Большой воздушный зазор и применение постоянных магнитов делает КПД синхронных двигателей выше.
Синхронный двигатель состоит из неподвижного статора и вращающегося ротора. В пазах статора размещена обмотка переменного тока, получающая питание от сети, а в роторе – обмотка постоянного тока.
Электродвигатели вращают, ротор синхронно с магнитным полем питающего напряжения. Расположенная на роторе обмотка возбуждения получает питание от источника постоянного тока через контактные кольца. В основном применяются на приводах большой мощности.
Мощность такого электродвигателя достигает несколько десятков мегаватт.
Имея столько достоинств, синхронные двигатели имеют ограничение в применении — сложностью конструкций, наличием возбудителя, высокой ценой и сложностью пуска.
Асинхронные двигатели
Асинхронные двигатели подразделяются на двигатели с короткозамкнутым и фазным ротором. Электродвигатели мощностью больше 0,5 кВт обычно выполняются трехфазными, а при меньшей мощности однофазными.
Асинхронные электродвигатели применяются в станкостроении, сельском хозяйстве, деревообрабатывающей и металлообрабатывающей промышленности, строительной технике и др. Такие электродвигатели давно известны отечественному рынку. Эти электродвигатели имеют не высокую стоимость, неприхотливы в обслуживании и просты в конструкции.
При выборе асинхронного электродвигателя необходимо учитывать два фактора: КПД преобразования энергии и тип исполнения агрегата. Существует множество аналогов электродвигателей марки АИР (АИР марка электродвигателей, которая не привязана к определенному заводу), например новые современные электродвигателе 5АИ. В работе этого оборудования используются менее шумные подшипники, повышенная степень защиты: исполнение IP55, резьбовое отверстие в торце вала и др.
Принцип действия двигателя основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трехфазного переменного тока по обмоткам статора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля, при условии, что частота вращения ротора меньше частоты вращения поля. Асинхронные электродвигатели потребляют реактивную мощность из сети. Предел применения асинхронных электродвигателей с короткозамкнутым ротором определяется мощностью системы электроснабжения конкретного предприятия, так как большие пусковые токи при малой мощности системы создают большие понижения напряжения.
Двигатели постоянного тока
Принцип работы основан на электромагнитном преобразовании энергии. Широко применяются в промышленности, транспортных и других установках, где требуется плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).
Различаются двигатели с параллельным, независимым, последовательным и смешанным возбуждением.
- Двигатели постоянного тока с независимым или параллельным возбуждением, подключенные к сети с постоянным напряжением, может работать как в генераторном, так и в двигательном режиме и переходить из одного режима работы в другой. Двигатели с параллельным возбуждением имеют параллельное подключение обмотки возбуждения с обмоткой якоря к сети. Если в двигателе обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, то его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание обмотки якоря осуществляется от генератора или полупроводникового преобразователя.
- Двигатели с последовательным возбуждением широко применяются в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.).
- Двигатель со смешанным возбуждением, благодаря магнитному потоку создает совместное действие двух обмоток возбуждения – параллельной и последовательной.
Источник: https://arve.ru/text-articles/elektrodvigatel-ponyatie-tipy-princip-raboty/
Выгода использования электродвигателей в железнодорожной и автомобильной промышленности
Вскоре после того как электродвигатель был изобретен, его начали использовать в наземном и водном транспорте в качестве тягловой силы. Даже с появлением двигателя внутреннего сгорания электрические механизмы не утратили своей актуальности благодаря таким качествам, как:
- Высокий КПД (до 95%).
- Большой ресурс.
- Экологичность.
- Простота в уходе.
- Большая мощность.
- Экономичность.
- Бесшумность.
Виды транспорта, в которых применяются электродвигатели
Использование электродвигателей в железнодорожной и автомобильной промышленности обусловлено их высокой эффективностью и, что особенно важно на данный момент, экологической чистотой. Основные виды техники, работающей на электричестве – это:
- Локомотивы (тепловозы с электропередачей и электровозы).
- Атомоходы, подводные лодки, теплоходы с электроприводами.
- Пригородные электропоезда.
- Городской наземный транспорт (троллейбусы и трамваи).
- Подземный городской транспорт (поезда метрополитена).
- Электромобили.
- Большегрузные автомобили с электроприводом.
- Беспилотные летательные аппараты.
- Самоходные краны.
- Транспортно-подъемные машины.
В тепловозах часто устанавливается дизель в паре с электродвигателем – первый вращает генератор, питающий ТЭД, а второй приводит колеса в движение.
Ниже мы рассмотрим особенности моторов разных типов транспорта.
Двигатели для городского транспорта
Двигатели для надземного и подземного городского транспорта дают возможность улучшить экологическую обстановку и снизить уровень шума в мегаполисах. Основная нагрузка приходится на поезда метро, поэтому сейчас непрерывно ведется работа над улучшением эксплуатационных характеристик, надежности и долговечности электродвигателей вагонов. К ним предъявляются следующие требования:
- Способность справляться с высокими пусковыми ускорениями.
- Способность сохранять высокую эффективность при постоянной смене режимов работы.
К особенностям тяговых двигателей для всех видов городского транспорта можно отнести:
- Сравнительно небольшую мощность (до 200 кВт).
- Низкое максимальное напряжение.
- Высокий КПД (до 91%).
- Наличие резервов для роста эффективности работы агрегата.
Двигатели для спецтехники и крановых установок
На самоходных кранах электродвигатели приводят в движение привод колес и лебедку. При мощности в 40-50кВт они могут работать от сети 220В. В торговых и логистических центрах для транспортировки продуктов питания и фармакологических товаров применяются исключительно погрузчики с электродвигателями, так как они не производят экологически вредных выбросов.
Двигатели для электровозов
Это самые мощные двигатели (до 400кВт для тепловозов и до 1500кВт для карьерных и магистральных электровозов), которые работают в комплексе с тяговой передачей и движущей колесной парой, образуя колесно-моторный блок. Они создают очень сильное тяговое усилие и позволяют транспорту развивать большую скорость.
Источник: https://www.szemo.ru/press-tsentr/article/vygoda-ispolzovaniya-elektrodvigateley-v-zheleznodorozhnoy-i-avtomobilnoy-promyshlennosti/
Что следует учитывать при выборе асинхронного электродвигателя
При выборе асинхронных электродвигателей переменного тока часто не учитываются требования к конструкции, которые связаны с их применением в составе того или иного оборудования.
Также обычно имеет место подход, основанный на универсальности электродвигателя, и тогда выбор зависит только от его напряжения, мощности и скорости вращения ротора.
Тем не менее есть еще целый ряд дополнительных аспектов для рассмотрения, таких как диапазон напряжения питания, сохранение номинальной мощности при изменении скорости вращения и область применения. Все это в итоге сводится к решению следующих вопросов: какова цель применения электродвигателя, как сделать все быстрее и эффективнее?
Базовые принципы выбора электродвигателя
Отправными точками для выбора асинхронного двигателя являются напряжение питания обмоток статора, создающего магнитное поле, а также номинальная мощность и скорость вращения ротора, которые соответствуют требованиям конкретного применения. Еще один, не менее важный момент — это необходимый вариант установки двигателя в приводе.
Должен ли двигатель иметь крепление на основании, или он будет помещен на фланец на конце привода, или же должен предоставлять обе возможности? Кроме того, необходимо учитывать характеристики окружающей среды, в которой будет эксплуатироваться двигатель.
При этом для выбора двигателя необходимо знать, потребуется ли ему работать под дождем и имеется ли вообще риск попадания на него воды, а также оценить уровень загрязнения и наличия пыли. Для эксплуатации в жестких условиях хорошо подходят электродвигатели закрытого типа с вентиляторным охлаждением (англ. totally enclosed fan cooled, TEFC) или электродвигатели закрытого типа без охлаждения (англ.
totally enclosed non-vented, TENV). Если среда, в которой будет использоваться двигатель, не загрязнена и он будет эксплуатироваться без риска попадания на него воды, то в этом случае может быть достаточно применения каплезащищенного электродвигателя открытого исполнения (англ. open drip proof, ODP).
Выбор инвертора
Благодаря усилиям лоббистов местных энергетических компаний в сочетании с преимуществами, получаемыми при возможности регулирования скорости вращения ротора двигателей, все более распространенными становятся частотно-регулируемые приводы (ЧРП, англ. variable frequency drive, VFD).
При их использовании особое внимание следует уделять генерации электромагнитных помех, которая характерна для таких приводов исходя из самой их природы.
Для того чтобы электродвигатель мог использоваться с ЧРП, необходимо учитывать несколько технических особенностей, которым должен удовлетворять подходящий по остальным характеристикам электродвигатель. Среди них можно выделить две главные:
Максимально допустимое напряжение изоляции обмоточных проводов статора электродвигателя.
Электрическая прочность изоляции провода, из которого выполнена обмотка статора асинхронного электродвигателя, находится в пределах 1000–1600 В, но, как правило, в документации указывается значение прочности изоляции, равное 1200 В. Однако чем больше воздушный зазор между приводом и двигателем, тем, естественно, бо́льшим скачкам переходного напряжения, воздействующим на двигатель, он может противостоять.
Электродвигатель, в котором для обмотки статора используется провод с электрической прочностью изоляции провода, равной 1600 В, может иметь ссылку на стандарт Национальной ассоциации производителей электрооборудования (NEMA, США) NEMA MG-1 2003, раздел 4, параграф 31, в котором говорится, что двигатель должен выдерживать без повреждений начальное напряжение коронного разряда (англ.
corona inception voltage, CIV) уровнем до 1600 В.
Коэффициент сохранения постоянного крутящего момента (CT) двигателя, часто упоминается как «xx: 1 CT».
Этот показатель дает представление о диапазоне регулирования скорости. По нему можно узнать, насколько может быть снижена скорость вращения ротора двигателя, при которой он будет работать с сохранением того же крутящего момента (англ. CT — constant torque, постоянный крутящий момент), что и при номинальной скорости. Ниже этого значения крутящего момента производительность асинхронного электродвигателя снижается.
Например, возьмем электродвигатель мощностью 10 л. с. с начальной скоростью 1800 об/мин. При номинальной скорости (около 1800 об/мин), как указано, он имеет крутящий момент 29 фунтов на фут.
Если в спецификации на электродвигатель написано, что коэффициент сохранения номинальной мощности составляет 10:1 CT, это означает, что такой электродвигатель может обеспечить номинальный крутящий момент до скорости 180 об/мин.
Если же указано, что электродвигатель имеет коэффициент сохранения номинальной мощности 1000:1 CT, то имеется в виду, что крутящий момент сможет сохранять номинальное значение до скорости 1,8 об/мин.
При этом необходимо учитывать еще один нюанс, который связан с охлаждением электродвигателя. Нужно обязательно уточнить у поставщика, будет ли электродвигатель перегреваться при длительной работе на малых оборотах.
Дело в том, что если двигатель охлаждается за счет крыльчатки, закрепленной на его валу, то на малых скоростях вы столкнетесь с низкой скоростью охлаждающего двигатель потока воздуха.
Если асинхронный электродвигатель работает на низкой скорости и в течение длительного времени используется с большим крутящим моментом, то он будет выделять много тепла — при таких условиях, возможно, придется остановить свой выбор на двигателе с иным методом охлаждения.
Например, для организации принудительного охлаждения можно применить воздуходувное устройство, имеющее собственный, отдельно управляемый двигатель. Производительность такого устройства не связана с системой управления электропривода. В этом случае воздушный поток, который обдувает мощный электродвигатель, будет постоянным и достаточным для его охлаждения при низкой или даже при нулевой скорости.
Связь мощности и крутящего момента
При выборе асинхронного электродвигателя еще одним важным аспектом является номинальная, или основная, скорость двигателя. Обычно используются двухполюсные (3600 об/мин) и четырехполюсные (1800 об/мин) электродвигатели.
Однако имеются и коммерчески доступные 6-, 8- и 12-полюсные асинхронные электродвигатели со скоростью вращения ротора 1200, 900
и 600 об/мин соответственно.
Номинальная скорость асинхронного электродвигателя напрямую связана с числом полюсов, которые такой двигатель конструктивно содержит (табл.), и определяется по следующей формуле:
Об/мин = (120 × частота) / N (число полюсов)
В качестве примечания необходимо отметить, что, хотя прямой связи здесь нет, но, как правило, с увеличением количества полюсов возрастают и размеры, а также стоимость электропривода.
Кроме того, пользователям электроприводов, в зависимости от области применения данных устройств, может понадобиться обеспечить необходимый крутящий момент путем изменения скорости. В целом по мере увеличения скорости двигателя крутящий момент уменьшается, что также относится к редукторам и цепным приводам. Это соотношение объясняется следующим уравнением:
мощность (л. с.) = (крутящий момент × × номинальная скорость) / 5252
Крутящий момент, в соответствии с заданной целью, может быть достигнут путем выбора электродвигателя с необходимой мощностью и номинальной скоростью и реализован через любую цепную, ременную передачу или редуктор. Такой подход снижает стоимость привода, его габаритные размеры и время, уходящее на замену его подвижных заменяемых частей в ходе выполнения ремонта или технического обслуживания.
Число полюсов, N | Скорость, об/мин | Крутящий момент, л. с. / фут-фунт |
2 | 3600 | 1,46 |
4 | 1800 | 2,92 |
6 | 1200 | 4,38 |
8 | 900 | 5,84 |
10 | 720 | 7,29 |
12 | 600 | 8,75 |
Примечание. Как правило, увеличение числа полюсов приводит к увеличению габаритов, а следовательно, и к повышению стоимости привода на основе асинхронного электродвигателя
Источник: https://controlengrussia.com/e-lektroprivod/vybor-asinhronnogo-jelektrodvigatelja/
Особенности высоковольтных электродвигателей
Когда речь заходит об электродвигателях, не существует линейной зависимости между мощностью, числом оборотов и потребляемого напряжения. Рассмотрим, в каких отраслях применяют и чем различаются высоковольтные электродвигатели, двигатели с высокими оборотами, а также двигатели с большой мощностью.
Разные виды высоковольтных электродвигателей
Высоковольтные электродвигатели – это синхронные и асинхронные двигатели с напряжением 3000, 6000, 6300, 6600 и 10000 В. В основном данные электродвигатели применяются в промышленности: металлургическая, горнодобывающая, станкостроительная, химическая отрасли. Такие электродвигатели применяются в установках, дымососах, мельницах, станах, грохотах, вентиляторах и т.д.
Трехфазные двигатели предназначены для работы от переменного тока с частотой 50 (60) Гц. Для обеспечения надежной работы используют обмотку статора типа «Монолит» или «Монолит-2» с классом нагревостойкости не ниже «В». Корпус электродвигателей усиленный, что, в свою очередь, понижает уровни звука и вибрации. Удельная материалоемкость и энергетические показатели находятся в оптимальном соотношении. Высоковольтные электродвигатели характеризуются также повышенной износостойкостью.
Предназначаются такие электродвигатели для привода:
- механизмов, не требующих регулирования частоты вращения – серии А4, А4 12 и 13, ДАЗО4, ДАЗО4-12, ДАЗО4-13, АОД, АОВМ, АОМ, ДАВ;
- механизмов с тяжелыми условиями пуска — серия 2АОД;
- вертикальных гидравлических насосов – серия ДВАН.
Высокооборотистые электродвигатели и их особенности
В отличие от высоковольтных электродвигателей, высокооборотные – это двигатели, количество оборотов которых равно 50 об/с или 3000 об/мин. Они имеют меньшую массу, габариты и даже стоимость, чем более тихоходные собратья одинаковой мощности.
Для применения двигателей с частой до 9000 об/мин необходимо использовать механизм с большим передаточным числом, в частности, волновой передаточный механизм. Он отличается простотой, высокой надежностью, точностью и компактностью.
Область применения высокооборотных двигателей очень широка. Сюда входят и электродвигатели для ручного гравера, и для сверла бормашины, и двигатели для автомобильной и авиационной промышленности.
Мощные электродвигатели
У обычных трехфазных электродвигателей номинальная мощность колеблется в диапазоне 120 Вт-315 кВт. Однако, как показывает практика, чем мощней электродвигатель, тем больше высота оси вала. Поэтому мощными принято считать электродвигатели больше 11 кВт. Области применения тоже довольно широкие. В частности, краново-металлургическая. Электродвигатели большой мощности также применяются в насосных агрегатах.
Источник: https://www.rosdiler-electro.ru/vysokovoltnye-moshhnye-jelektrodvigateli.html
Danfoss Drives
Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.
Существует множество видов электродвигателей, различающихся по принципу действия, конструкции, исполнению и другим признакам. Рассмотрим основные типы этих электрических машин.
По принципу действия различают магнитоэлектрические и гистерезисные электрические машины. Несмотря на простоту конструкции, высокий пусковой момент, последние не получили широкого распространения. Эти электродвигатели имеют высокую цену, низкий коэффициент мощности, ограничивающие их применение. Подавляющее большинство выпускаемых электродвигателей – магнитоэлектрические.
По типу напряжения питания различают:
- Электродвигатели постоянного тока.
- Двигатели переменного тока.
- Универсальные электрические машины.
По конструкции различают электродвигатели с горизонтально и вертикально расположенным валом. Кроме того, электрические машины классифицируют по назначению, климатическому исполнению, степени защиты от попадания влаги и посторонних предметов, мощности и другим параметрам.
Классы электродвигателей:
- Постоянного тока
- Бесщеточные ЕС (электронно-коммутируемые)
- Со щетками
- С последовательным возбуждением
- С параллельным возбуждением
- Со смешанным возбуждением
- С постоянными магнитами
- Переменного тока
- Универсальные
- Синхронные
- Индукционные
Электродвигатели переменного тока
Электрические машины такого типа широко используют для приводов всех типов технологического оборудования, электроинструментов, автоматических регуляторов. По наличию разности между скоростью вращения магнитного поля статора и частотой вращения ротора различают синхронные и асинхронные двигатели.
Асинхронные электродвигатели
Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора.
Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов.
По особенностям обмоток статора выделяют:
- Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
- Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
- Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.
По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.
Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:
- Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
- Допустимость кратковременных перегрузок.
- Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
- Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
- Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.
Электрические машины с короткозамкнутым ротором имеют свои недостатки:
- Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
- Технически сложная реализация регулирования частоты вращения.
- Высокие пусковые токи при прямом запуске.
Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.
Такие электродвигатели обладают следующими достоинствами:
- Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
- Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
- Возможность регулировки скорости.
Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.
Синхронные двигатели переменного тока
Как и в асинхронных электродвигателях, вращение ротора в синхронных машинах достигается взаимодействием полей ротора и статора. Скорость вращения ротора таких электрических машин равна частоте магнитного поля, создаваемого обмотками статора.
Обмотка неподвижной части двигателя рассчитана на питание от трехфазного напряжения. К электромагнитам ротора подключается постоянное напряжение. Различают явнополюсные и неявнополюсные обмотки. В синхронных двигателях малой мощности используют постоянные магниты.
Запуск и разгон синхронной машины осуществляется в асинхронном режиме. Для этого на роторе двигателя имеется обмотка конструкции “беличья клетка”. Постоянное напряжение подается на электромагниты только после разгона до номинальной частоты асинхронного режима. Синхронные двигатели имеют следующие особенности:
- Постоянная скорость вращения при переменной нагрузке.
- Высокий к.п.д. и коэффициент мощности.
- Небольшая реактивная составляющая.
- Допустимость перегрузки.
К недостаткам синхронных электродвигателей относятся:
- Высокая цена, относительно сложная конструкция.
- Сложный пуск.
- Необходимость в источнике постоянного напряжения.
- Сложность регулировки скорости вращения и момента на валу.
Все недостатки электрических машин переменного тока можно исправить установкой устройства плавного пуска или частотного преобразователя. Обоснование выбора того или иного устройства обусловлено экономической целесообразностью и требуемыми характеристиками электропривода.
Универсальные двигатели
В отдельную группу выделяют универсальные электродвигатели, которые могут работать от сети переменного тока и от источников постоянного напряжения. Они используются в электроинструментах, бытовой технике, а также других маломощных устройствах. Конструкция такой электрической машины принципиально не отличатся от двигателя постоянного тока.
Главное отличие – конструкция магнитной системы и обмоток ротора. Магнитная система состоит из изолированных друг от друга секций для снижения магнитных потерь. Обмотка ротора такой машины поделена на 2 части. При питании от переменного тока напряжение подается только на ее половину.
Это делается в целях снижения радиопомех, улучшения условий коммутации.
К преимуществам таких машин относятся:
- Высокая скорость вращения. Универсальные электродвигатели развивают скорость до 10 000 об/мин и более.
- Питание от переменного и постоянного напряжения. Двигатели такого типа широко применяют для электроинструментов, имеющих дополнительные аккумуляторные батареи.
- Возможность регулирования скорости без использования дополнительных устройств.
Однако, такие электромашины имеют свои недостатки:
- Ограниченная мощность.
- Необходимость обслуживания коллекторного узла.
- Тяжелые условия коммутации при питании от переменного напряжения из-за наличия трансформаторной связи между обмотками.
- Электромагнитные помехи при подключении к сети переменного тока.
Каждый тип двигателя имеет свои достоинства и недостатки. Выбор электрической машины для привода любого оборудования делается исходя из условий эксплуатации, требуемой частоты вращения, экономической целесообразности, типа нагрузки и других параметров.
Источник: https://drives.ru/stati/ehlektricheskie-dvigateli/
Критерии выбора электродвигателя
Электродвигатель — это устройство, способное преобразовывать энергию тока в кинетическую энергию. Такие приборы, обладают большим количеством преимуществ:
- высокий показатель КПД, более 90%, благодаря чему двигатель можно использовать во многих сферах деятельности;
- в процессе применения нет трения трансмиссии.
Изделие абсолютно безопасно для окружающей среды, так как в процессе работы не происходит выброс вредных элементов. Также к достоинствам можно отнести тот факт, что электродвигатель обладает высокой ремонтопригодностью. Благодаря этому вы сможете восстановить работу оборудования, не затрачивая большой объём денежных средств.
Главным фактором при выборе товара является определение сферы его применения. Оборудование находит применение в следующих областях:
- насосных установках;
- компрессорах;
- на различных промышленных предприятиях;
- в устройствах для кондиционирования.
Виды двигателя
На сегодняшний день на рынке электродвигателей доступно несколько основных видов устройств:
1. Привод постоянного тока.
Является одним из самых распространенных типов. Данная система применяется в металлургической промышленности и транспорте, однако модели постепенно вытесняются асинхронными устройствами.
Дело в том, что у такого аппарата существуют недостатки – возможность применения, только в том случае, если имеется определенная мощность тока, не изменяющаяся во время работы. Для обеспечения таких условий функционирования, требуется совершать дополнительные финансовые вложения.
Но есть и преимущества — этот вид системы гарантирует бесперебойную работу даже при чрезмерных нагрузках.
2. Приводы переменного тока.
Это изделия, которые можно разделить на два типа: синхронные и асинхронные. Каждый из этих видов имеет индивидуальные особенности и характеристики, которым также стоит уделить внимание:
- Синхронные устройства в основном используются в устройствах, которые имеют стабильную рабочую скорость (генераторы, насосы). Данный вид системы обладает высоким КПД. Используя синхронные электродвигатели можно минимизировать потребление электроэнергии. Мощность системы может достигать показателя в 10 000 кВт, похвастаться которым смогут не многие.
- Асинхронные двигатели – уникальные устройства. Их особенность заключается в высоких показателях вращения магнитного поля, особенно при сравнении с другими аппаратами. Работает оборудование при помощи переменного тока, который образуется благодаря индукции, возникающей во время передвижения проводниковой среды в магнитном поле. Для того чтобы это происходило, специалисты используют обмотку, которая обтекается токами.
3. Вентильные устройства.
Этот вид включает в себя аппараты, в которых для регулировки режима использования, следует применять специальные вентили. Такие агрегаты обладают целым рядом достоинств:
- безопасность использования;
- легкость эксплуатации;
- отсутствие необходимости в дополнительном уходе;
- высокий уровень исполнения;
- возможность регулировать скорость вращения по своему усмотрению.
На что следует обращать внимание при выборе устройства?
Если вам требуется произвести выбор электродвигателя для производства, либо для применения в другой сфере, следует обратить внимание на такие факторы:
- способ питания;
- вид электрического тока;
- режим эксплуатации;
- воздействие внешней среды на оборудование.
Современная модель электродвигателя, должна функционировать от сети с частотой от 50 до 60 Гц, чтобы обеспечить её использование в любой точке мира. Двигатель должен демонстрировать высокий показатель КПД и отвечать всем международным нормам.
Мощность системы
Существует достаточно большое количество приборов, которые функционируют при постоянной или изменяющейся нагрузке. К такому оборудованию можно отнести наносы, вентиляторы и многие другие. В процессе выбора товара учитывайте мощность, которая вам необходима. Определить данный показатель, можно только при помощи расчетов. Чтобы произвести расчет мощности электродвигателя, следует воспользоваться формулой:
P=Рм/ηп
Обозначение:
- «Рм» – мощность, которая будет потребляться устройством;
- «ηп» – коэффициент передачи полезного действия.
Рекомендуем при использовании этой формулы устанавливать мощность аппарата немного выше расчетного показателя. Если вам потребуется посчитать номинальный уровень постоянного тока устройства, используйте такую формулу:
IH=1000PH/ηHUH
Чтобы определить ток трехфазного оборудования, используйте следующий способ:
IH=1000PH/UHcosφH√ηH)
Обозначения:
- «РН» — номинальное значение мощности;
- «UH» –номинальный уровень напряжения;
- «cosφH» — показатель мощности.
Номинальный размер мощности также можно найти в техническом документе оборудования.
Обратите внимание! Выбирая устройство, запас показателя мощности обязательно должен быть, но не большим. В том случае, если это правило будет нарушено, может значительно снизиться показатель КПД. В некоторых ситуациях, это может повлечь за собой еще и снижение показателя мощности.
Вам необходимо рассчитать пусковой ток? Примените такую формулу:
IП=IH*Кп
Обозначения:
- «IH» – номинальное значение тока;
- «Кп» – кратность тока.
Пусковой ток рассчитывается для каждого двигателя в цепи. Количественное значение величины облегчит подбор типа автоматического выключателя, чтобы защитить всю цепь.
Режимы работы устройств
Режим работы способен определить нагрузку на прибор. В определенных ситуациях она может оставаться абсолютно неизменной, в других же может меняться. Показатель нагрузки также нужно учитывать во время выбора системы. В соответствии с нормами и стандартами, существуют определенные режимы использования агрегата:
- Продолжительный режим (S1). Нагрузка остается постоянной в течение всего времени, пока температура электродвигателя не достигнет необходимого значения.
- Кратковременный режим (S2). Температура при эксплуатации не достигает установившегося значения. После отключения двигателя, он охлаждается до температуры окружающей среды. Для режима необходимо проверять перегрузочную способность электропривода;
- Периодически-кратковременный режим (S3). В периоды включения и отключения температура двигателя не успевает достигнуть заданного значения или охладиться до температуры окружающей среды. При расчете мощности двигателя обязательно учитывается продолжительность пауз и потерь в переходные периоды. При выборе электродвигателя важным параметром является допустимое количество включений за единицу времени;
- Периодически кратковременный режим с частыми пусками (S4) и режим с электрическим торможением (S5). Данные режимы следует рассчитывать по таким же значениям, как и в предыдущем случае с S3;
- Периодически-непрерывный режим с кратковременной нагрузкой (S6). В данном случае работа двигателя происходит под нагрузкой, которая чередуется с холостой эксплуатацией;
- Периодически-непрерывный режим с электроторможением (S7);
- Периодически-непрерывный режим с одновременным изменением нагрузки и частоты вращения (S8);
- Непериодический режим с изменением нагрузки и частоты вращения (S9).
Большинство моделей электроприводов, которые предназначены для длительной эксплуатации, адаптированы под изменяющийся уровень нагрузки.