Автомобильный генератор: устройство, назначение и неисправности
Генератор предназначен для питания электрическим током всех потребителей и для подзарядки аккумуляторной батареи при работе двигателя на средних и больших оборотах. На современные автомобили устанавливается генератор переменного тока. Он включен в электрическую цепь автомобиля параллельно аккумуляторной батарее. Однако питать потребителей и заряжать батарею генератор будет только в том случае, если вырабатываемое им напряжение превысит напряжение аккумуляторной батареи.
А произойдет это тогда, когда двигатель автомобиля начнет работать на оборотах выше холостых, так как напряжение, вырабатываемое генератором, зависит от скорости вращения его ротора.
При этом, по мере увеличения частоты вращения ротора генератора, вырабатываемое им напряжение может превысить требуемое. Поэтому генератор работает в паре с регулятором напряжения.
Регулятор напряжения является электронным прибором, который ограничивает вырабатываемое генератором напряжение и поддерживает его в пределах 13,6 – 14,2 вольта.
Устройство автомобильного генератора
Основные части генератораГенератор в разрезеСтатор и ротор
Статор (неподвижная часть генератора) представляет собой обмотки с магнитопроводом, в которых образуется электрический ток. Ротор – вращающаяся часть генератора. Ротор состоит из обмоток возбуждения с полюсной системой, вала и контактных колец.
Кольца выполняются чаще всего из меди, с опрессовкой их пластмассой. Для снижения износа и предотвращения окисления они могут изготавливатья из латуни или нержавеющей стали. К кольцам присоединяются выводы обмотки возбуждения. Питание к обмоткам подается через щетки (скользящие контакты), которые прижимаются к кольцам с помощью пружин.
Щетки бывают двух типов — меднографитные и электрографитные. Последние имеют более высокое электрическое сопротивление, что снижает выходные характеристики генератора, зато они обеспечивают значительно меньший износ контактных колец. Существуют и бесщеточные генераторы, у которых на роторе расположены постоянные магниты, а обмотки возбуждения – на статоре.
Отсутствие щеток и контактных колец повышает надежность генератора, но увеличивает массу и шумность при работе.
При вращении ротора напротив катушек обмотки статора появляются попеременно разнополярные полюсы, т. е. направление и величина магнитного потока, пронизывающего катушку, меняется, что и приводит к появлению в ней переменного напряжения. Так как потребители электрической сети автомобиля работают на постоянном напряжении, в схему генератора вводится диодный выпрямитель.
Диодный мост и регулятор напряженияКонструкция и привод генераторов
Электронные регуляторы напряжения, как правило, встроены в генератор (“таблетка”) и объединены со щеточным узлом. Иногда они располагаются отдельно в подкапотном пространстве. Регуляторы изменяют ток возбуждения путем изменения времени включения обмотки ротора в питающую сеть.
Устройства необслуживаемые, необходимо лишь контролировать надежность контактов. Существуют регуляторы напряжения, наделенные функцией термокомпенсации, – они измененяют напряжение зарядки в зависимости от температуры воздуха в подкапотном пространстве для обеспечения оптимального заряда АКБ.
Чем ниже температура воздуха, тем большее напряжение подводится к батарее, и наоборот.
Генераторы выпускаются в двух конструктивных исполнениях – “классическом”, с вентилятором у приводного шкива, и компактном, с двумя вентиляторами внутри генератора. Так как “компактные” генераторы имеют привод с более высоким передаточным отношением, их называют еще высокоскоростными генераторами.
Генератор устанавливается на специальном кронштейне двигателя и приводится в действие от шкива коленчатого вала через ременную передачу. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива генератора, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.
На современных моделях, как правило, привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра. Привод генератора может осуществляться как отдельно, так и одним ремнем вместе с насосом охлаждающей жидкости (“помпой”).
Натяжение ремня регулируется либо отклонением корпуса генератора, либо (в случае применения поликлинового ремня) натяжными роликами при неподвижном генераторе.
Возможна ли замена генератора одной марки на другой? Вполне, если выполняются следующие условия:
- энергетические характеристики заменяющего генератора не ниже, чем у заменяемого;
- передаточное число от двигателя к генератору одинаково;
- габаритные и крепежные размеры заменяющего генератора позволяют установить его на двигатель. Большинство генераторов зарубежного производства имеют однолапное крепление, а отечественные крепятся за две лапы, поэтому замена “иномарочного” генератора отечественным потребует замены кронштейна;
- электрические схемы генераторных установок аналогичны.
Неисправности автомобильного генератора
ВИДИМАЯ НЕПОЛАДКА | ПРИЧИНА | СПОСОБ УСТРАНЕНИЯ |
Контрольная лампа заряда не горит при включении зажигания | Разряжен либо неисправен аккумулятор | Зарядить или заменить аккумулятор |
Перегорела лампа на приборной панели | Заменить | |
Нет контакта провода массы с задней частью генератора | Проверить надежность контакта массы, очистить и подтянуть болты крепления провода массы | |
Нарушение целостности провода между выводом подключения лампы на генераторе и приборной панелью | Проверить вольтметром или омметром по электрической схеме | |
Не подсоединены разъемы между генератором и приборной панелью | Проверить и, если требуется, заменить разъемы | |
Щетки неплотно прилегают к контактным кольцам (“зависли” либо износились) | Проверить длину (min=5 мм) и свободу перемещения щеток в щеткодержателе | |
Дефект регулятора напряжения | Заменить регулятор напряжения | |
Сильный износ роторных колец | Проверить и, если требуется, заменить роторные кольца | |
Обрыв обмоток ротора генератора | Проверить ротор, при необходимости заменить. | |
Контрольная лампа заряда гаснет при увеличении оборотов двигателя, но на аккумуляторе зарядки нет | Ослабло натяжение клинового ремня | Натянуть клиновой ремень |
Обрыв диодов диодного моста | Проверить и заменить диодный мост | |
Дефект регулятора напряжения | Проверить и, если требуется, заменить реле регулятор напряжения | |
Провод между генератором и аккумулятором имеет плохой контакт | Проверить и заменить провод, после чего проверить диодный мост в генераторе. | |
Контрольная лампа заряда не гаснет при увеличении оборотов двигателя | Ослабло натяжение клинового ремня | Натянуть клиновой ремень |
Неисправность диодного моста или обмотки статора | Проверить и заменить диодный мост или обмотку | |
Дефект регулятора напряжения | Проверить и, если требуется, заменить реле регулятор напряжения | |
Провод между генератором и контрольной лампой имеет контакт с массой | Найти и устранить замыкание или заменить жгут проводов, после чего проверить диодный мост в генераторе | |
Контрольная лампа заряда горит при выключенном зажигании | Короткое замыкание диода | Проверить диоды, и заменить диодный мост |
Аккумулятор выкипает | Неисправность реле регулятора напряжения | Заменить реле регулятор и проверить диоды, при необходимости заменить диодный мост |
Правила эксплуатации генератора (по Остеру)
И напоследок несколько “вредных” советов, как быстро и без проблем “сжечь” генератор:
- Самый лучший и быстрый способ – “Переплюсовка”. Поменяйте местами провода от клемм аккумуляторной батареи, при этом возможен не только оптический эффект (яркая вспышка внутри генератора, легкое дымовое облако), но также звуковой (от щелчка до хлопка и шипения), обонятельный (почувствуете непередаваемый аромат горящих проводов!), и, наконец, тактильный (ожог 1-3 степени – подбирается экспериментально!) После применения этого способа диодный мост выгорает с вероятностью 99%, статор – 60%, реле-регулятор – 20%, провода – 10%, автомобиль целиком – 0,01%! Способ очень эффективен при “прикуривании”. Возможны побочные эффекты – выгорание бортовых компьютеров, сигнализации, музыки и т.д. Большой плюс – не требует специальных навыков и знаний, легко осваивается начинающими.
- Способ “Мойка”. Помойте двигатель своей машины. Особенно тщательно помойте генератор, проследите, чтобы потоки воды прополоскали все внутренности агрегата. Ни в коем случае не продувайте генератор после мойки! Сразу же заводите машину и включите побольше нагрузок – весь свет, обогрев, музыку. Если эффект не произошел – повторите попытку. Эффект появится, поверьте!!! Плюс – сгоревший генератор будет чистым.
- “Дедовский” метод – сдёргивание плюсовой клеммы аккумулятора на работающем двигателе вроде бы для проверки зарядной системы. Процент сгоревших релюшек увеличивается до 50-70%. Способ требует определенной сноровки – главное, чтобы было побольше искр! Возникающие в цепях высоковольтные коммутационные процессы рано или поздно должны будут сжечь хоть что-нибудь в Вашем генераторе, или, в крайнем случае, в машине! Как всегда, рекомендуется включить побольше всяких там нагрузок – свет, печки, подогрев. Способ не очень эффективен на старых машинах, но главное – верить, что так и будет!
- “Лужа” – способ, которым пользуется множество автолюбителей, даже не подозревая об этом. При этом многие искренне уверены, что автомобиль и его агрегаты, включая генератор, по водонепроницаемости должен быть сродни подводной лодке. Дерзайте! Как много неисследованных глубин ждут своих первооткрывателей! И еще простой совет – лужу надо проезжать на возможно максимальной скорости, тщательно следя, чтобы брызги равномерно захлестывали подкапотное пространство. Отсутствие защитных кожухов и поддонов во многом облегчит Вашу непростую задачу. Очень большой плюс – способом можно пользоваться практически ежедневно, не выходя из машины!
- Способ “Меломан”. Для очень крутых! Поставьте в Вашу машинку супер магнитолку, парочку CD чейнджеров, пару-тройку ламповых усилителей ватт по 200-300, сабвуфер ватт на 500, ну колонок с десяток, лучше полтора. Вообще, чем больше – тем лучше! Баксов на 12-25 тысяч! (Это не враки – случай зафиксирован!) Включайте! Если через пару минут генератор все ещё работает, а характерного дыма и запаха все еще нет – значит Вы поставили слишком дешёвую аппаратуру!
- “Аккумуляторный” способ – наиболее коварный и таинственный из всех, поскольку его осознание требует понимания химических и физических процессов (ну хотя бы закон Ома, что уже не всем дано!) А если по-простому – используйте давно просроченный аккумулятор, не моложе трех-пяти лет. Чем старше – тем больше вероятность, что в аккумуляторе окажется короткозамкнутая банка. При этом аккумулятор может подавать признаки жизни – заводить машину, подзаряжаться от зарядного устройства и т.д., но при этом он становится мощной паразитной нагрузкой в цепи генератора. Возможно, что силы тока будет хватать на работу инжектора, но при включении дальнего света и обогрева генератор будет греться так, что его можно использовать для приготовления яичницы в походных условиях! Главное – не обращать на это внимания, и способ когда-нибудь сработает!
Источник: https://avtonov.info/avtomobilnyj-generator-ustrojstvo-naznachenie-i-neispravnosti
Общее устройство генератора
Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию. Генераторы могут генерировать постоянный или переменный ток.
Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.
На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.
Как работает генератор?
Чтобы ответить на вопрос, — как работает генератор? — мы рассмотрим Принцип работы генератора.
Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.
Устройство простейшего генератора
Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.
В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.
Устройство автомобильного генератора переменного тока
Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой).
Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора.
Реле регулятор может встраиваться в корпус, а может находиться отдельно.
Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.
Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.
Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.
Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).
От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.
Принцип работы автомобильного генератора
Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.
Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.
В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.
От поворота ключа до выдачи напряжения
Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.
Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.
Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.
Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.
На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.
Источник: https://www.autoezda.com/elect/1119-общее-устройство-генератора.html
Статор генератора: рождающий ток
Каждое современное транспортное средство оснащается электрическим генератором, который вырабатывает ток для работы бортовой электросистемы и всех ее приборов. Одна из основных частей генератора — неподвижный статор. О том, что такое статор генератора, как он устроен и работает — читайте в этой статье.
Назначение статора генератора
В современных автомобилях и других транспортных средствах применяются синхронные трехфазные генераторы переменного тока с самовозбуждением. Типичный генератор состоит из неподвижного статора, закрепленного в корпусе, ротора с обмоткой возбуждения, щеточного узла (подводящего ток к обмотке возбуждения) и выпрямительного блока. Все детали собраны в относительно компактную конструкцию, которая монтируется на двигателе и имеет ременной привод от коленчатого вала.
Статор — неподвижная часть автомобильного генератора, несущая на себе рабочую обмотку. В процессе работы генератора именно в обмотках статора возникает электрический ток, который преобразуется (выпрямляется) и подается в бортовую сеть.
Статор генератора имеет несколько функций:
• Несет на себе рабочую обмотку, в которой генерируется электрический ток; • Выполняет функцию корпусной детали для размещения рабочей обмотки; • Играет роль магнитопровода для повышения индуктивности рабочей обмотки и правильного распределения силовых линий магнитного поля;
• Выступает в роли теплоотвода — отводит чрезмерное тепло от нагревающихся обмоток.
Все статоры имеют принципиально одинаковую конструкцию и не отличаются разнообразием типов.
Конструкция статора генератора
Конструктивно статор состоит из трех основных частей:
• Кольцевой сердечник; • Рабочая обмотка (обмотки);
• Изоляция обмоток.
Сердечник собирается из железных кольцевых пластин с пазами с внутренней стороны. Из пластин формируется пакет, жесткость и монолитность конструкции придается сваркой или клепкой. В сердечнике выполняются пазы для укладки обмоток, а каждый выступ — это ярмо (сердечник) для витков обмотки.
Сердечник собирается из пластин толщиной 0,8-1 мм, изготовленных из специальных марок железа или ферросплавов с определенной магнитной проницаемостью.
На внешней стороне статора могут присутствовать ребра для улучшения отвода тепла, а также выполняться различные пазы или углубления для стыковки с корпусом генератора.
В трехфазных генераторах используется три обмотки — по одной на фазу. Каждая обмотка изготавливается из медного изолированного провода большого сечения (диаметром от 0,9 до 2 мм и более), которая в определенном порядке укладывается в пазах сердечника. Обмотки имеют выводы, с которых снимается переменный ток, обычно число выводов составляет три или четыре, но бывают статоры с шестью выводами (каждая из трех обмоток имеет свои выводы для выполнения соединений того или иного типа).
В пазах сердечника располагается изоляционный материал, защищающий изоляцию провода от повреждения. Также в некоторых типах статоров в пазы могут вкладываться изоляционные клинья, которые дополнительно выполняют роль фиксатора витков обмоток. Статор в сборе дополнительно может подвергаться пропитке эпоксидными смолами или лаками, что обеспечивает целостность конструкции (предотвращает сдвиг витков) и улучшает ее электроизоляционные свойства.
Статор жестко монтируется в корпусе генератора, причем сегодня чаще всего используется конструкция, в которой сердечник статора выполняет роль корпусной детали.
Реализуется это просто: статор зажимается между двумя крышками корпуса генератора, которые стягиваются шпильками — такой «сэндвич» позволяет создавать компактные конструкции с эффективным охлаждением и простотой обслуживания.
Популярностью пользуется и конструкция, при которой статор объединен с передней крышкой генератора, а задняя крышка выполнена съемной и обеспечивает доступ к ротору, статору и другим деталям.
Типы и характеристики статоров
Статоры генераторов отличаются числом и формой пазов, схемой укладки обмоток в пазах, схемой подключения обмоток и электрическими характеристиками.
По числу пазов под витки обмоток статоры бывают двух типов:
• С 18 пазами;
• С 36 пазами.
Сегодня наиболее часто используется конструкция с 36 пазами, так как она обеспечивает лучшие электрические характеристики. Генераторы со статорами с 18 пазами сегодня можно встретить на некоторых отечественных автомобилях ранних выпусков.
По форме пазов статоры бывают трех типов:
• С открытыми пазами — пазы прямоугольного сечения, в них требуется дополнительная фиксация витков обмоток; • С полузакрытыми (клиновидными) пазами — пазы суживаются кверху, поэтому витки обмоток фиксируются вставкой изоляционных клиньев или кембриков (трубок из ПВХ);
• С полузакрытыми пазами для обмоток с одновитковыми катушками — пазы имеют сложное сечение под укладку одного или двух витков провода большого диаметра или провода в виде широкой ленты.
По схеме укладки обмоток статоры бывают трех типов:
• С петлевой (петлевой распределенной) схемой — провод каждой обмотки укладывается в пазы сердечника петлями (обычно один виток укладывается с шагом в два паза, в эти пазы укладываются витки второй и третьей обмоток — так обмотки приобретают сдвиг, необходимый для генерации трехфазного переменного тока); • С волновой сосредоточенной схемой — провод каждой обмотки укладываются в пазы волнами, обходя их то с одной, то с другой стороны, причем в каждом пазу лежит по два витка одной обмотки, направленных в одну сторону;
• С волновой распределенной схемой — провод также укладывается волнами, однако витки одной обмотки в пазах направлены в разные стороны.
При любом типе укладки каждая обмотка имеет шесть витков, распределенных по сердечнику.
Независимо от способа укладки провода, существует две схемы соединения обмоток:
• «Звезда» — в этом случае обмотки соединены параллельно (концы всех трех обмоток соединены в одной (нулевой) точке, а их начальные выводы свободны);
• «Треугольник» — в этом случае обмотки соединены последовательно (начало одной обмотки с концом другой).
При соединении обмоток «звездой» наблюдается более высокий ток, данная схема применяется на генераторах мощностью не более 1000 Вт, которые эффективно работаю на малых оборотах. При соединении обмоток «треугольником» ток снижается (в 1,7 раз относительно «звезды»), однако генераторы с такой схемой подключения лучше работают на высоких мощностях, а для их обмоток можно использовать проводник меньшего сечения.
Часто вместо «треугольника» используется схема «двойная звезда», в этом случае статор должен иметь уже не три, а шесть обмоток — по три обмотки соединяются «звездой», и две «звезды» подключаются к нагрузке параллельно.
Что касается характеристик, то для статоров наибольшее значение имеет номинальное напряжение, мощность и номинальный ток в обмотках. По номинальному напряжению статоры (и генераторы) делятся на две группы:
• С напряжением в обмотках 14 В — для транспортных средств с напряжением бортовой сети 12 В;
• С напряжением в обмотках 28 В — для техники с напряжением бортовой сети 24 В.
Генератор вырабатывает более высокое напряжение, так как в выпрямителе и стабилизаторе неизбежно происходит падение напряжения, а на входе в бортовую электросеть наблюдается уже нормальное напряжение в 12 или 24 В.
Большинство генераторов для автомобилей, тракторов, автобусов и прочей техники имеет номинальный ток от 20 до 60 А, для легковых автомобилей достаточно 30-35 А, для грузовиков — 50-60 А, для тяжелой техники выпускаются генераторы с током до 150 и более А. При этом мощность генераторов колеблется от 400 до 2500 Вт.
Принцип работы статора генератора
Работа статора и всего генератора основана на явлении электромагнитной индукции — возникновении тока в проводнике, который движется в магнитном поле или покоится в переменном магнитном поле. В автомобильных генераторах используется второй принцип — проводник, в котором возникает ток, покоится, а магнитное поле постоянно изменяется (вращается).
При запуске двигателя ротор генератора начинает вращаться, одновременно на его возбуждающую обмотку подается напряжение от аккумуляторной батареи. Ротор имеет многополюсный стальной сердечник, который при подаче тока на обмотку становится электромагнитом, соответственно, вращающийся ротор создает переменное магнитное поле.
Силовые линии этого поля пересекают статор, расположенный вокруг ротора.
Сердечник статора определенным образом распределяет магнитное поле, его силовые линии пересекают витки рабочих обмоток — в них за счет электромагнитной индукции генерируется ток, который снимается с выводов обмотки, поступает на выпрямитель, стабилизатор и в бортовую сеть.
При увеличении оборотов двигателя часть тока от рабочей обмотки статора подается на обмотку возбуждения ротора — так генератор переходит в режим самовозбуждения и уже не нуждается в стороннем источнике тока.
В процессе работы статор генератора испытывает нагрев и электрические нагрузки, также он подвергается негативным воздействиям окружающей среды. Это с течением времени может привести к ухудшению изоляции между обмотками и электрическому пробою. В данном случае статор нуждается в ремонте или полной замене. При регулярном техническом обслуживании и своевременной замене статора генератор будет служить надежно, стабильно обеспечивая автомобиль электрической энергией.
Еще в этом разделе
Источник: http://www.autoopt.ru/articles/products/22729780/
Устройство автомобилей
Конструкция генератора 37.3701 переменного тока, устанавливаемого на многих автомобилях марки ВАЗ (-2105, -2106, -2108, -2109 и др.), представлена на рис. 1.
Подвижное магнитное поле создается вращающимся двенадцатиполюсным магнитом – ротором (рис. 2, а), который представляет собой стержень с надетыми на него стальными звездочками, каждая из которых имеет по шесть клювообразных полюсов.
В полости между звездочками ротора на стальном кольце размещена обмотка возбуждения, напряжение к которой подводится через медно-графитовые щетки и два изолированных контактных кольца, напрессованных на вал ротора.
Концы обмотки возбуждения выведены через отверстия и подсоединены к контактным кольцам.
На контактные кольца опираются медно-графитовые щетки, размещенные в щеткодержателях, расположенных в задней крышке генератора со стороны, противоположной приводу. Одна из щеток присоединена к корпусу генератора, а вторая – к изолированной клемме, к которой через регулятор напряжения подводится ток возбуждения от аккумуляторной батареи.
Регулятор напряжения встроен в шеткодержатель, образуя вместе с ним единый съемный блок.
Магнитное поле намагничивает клювообразные полюсы ротора, имеющие разную полярность. Ротор, вращаясь внутри цилиндрического статора, индуцирует ЭДС в фазных обмотках, навитых на набранном сердечнике статора.
Статор генератора (рис. 2, б) состоит из сердечника, представляющего собой набор изолированных друг от друга листов магнитопроводящей мягкой электротехнической стали. Внутренняя поверхность сердечника статора имеет равномерно расположенные по окружности зубцы с пазами между ними. Число пазов кратно трем. В пазах между зубцами укладываются витки катушек обмотки статора.
Для изоляции катушек от сердечника используется электротехнический картон. Статор в сборе пропитывается изоляционным лаком.
Каждая из трех фаз обмотки статора содержит одинаковое число последовательно соединенных катушек, число которых в статоре кратно трем.
Обычно статоры современных генераторов содержат 18 катушек, последовательно соединенных в три группы (по шесть катушек на каждую фазу).
Обмотка возбуждения генератора получает питание или от генератора, или от аккумуляторной батареи.
Небольшой силы ток, поступающий в обмотку возбуждения через щетки и контактные кольца, вызывает магнитный поток, который замкнуто циркулирует по металлическим деталям ротора, в том числе по полюсным наконечникам.
Так как полюсные наконечники левой и правой половин сердечника ротора смещены, происходит и смещение магнитно потока. Поэтому входя в один зубец статора, магнитный поток выходит через другой зубец, пересекая катушки статора.
https://www.youtube.com/watch?v=t3M9xvxE7dc
При вращении ротора происходит постоянное чередование северного и южного полюсов ротора, что приводит к изменению пересекающего катушки статора магнитного потока по величине и направлению. В результате в фазных обмотках наводится переменная ЭДС.
Для обеспечения первоначального возбуждения генератора, после включения зажигания, к клемме «В» регулятора напряжения, подводится ток по двум цепям:
1. Плюсовая клемма аккумуляторной батареи — контакт «30» генератора — контакты «30/1» и «15» замка зажигания — контакт «86» и «85» обмотки реле зажигания – клемма «минус» аккумуляторной батареи.
После замыкания реле ток в обмотку возбуждения поступает по второй цепи.
2.
Плюсовая клемма аккумуляторной батареи — контакт «30» генератора — контакты «30» и «87» реле зажигания — предохранитель №2 в блоке предохранителей — контакт «4» белого разъема в комбинации приборов — резистор 36 Ом в комбинации приборов — контрольная лампа зарядки аккумуляторной батареи — контакт «12» белого разъема в комбинации приборов — контакт «61» — вывод «В» регулятора напряжения — обмотка возбуждения — вывод «Ш» регулятора напряжения — выходной транзистор регулятора напряжения – минусовая клемма аккумуляторной батареи.
После пуска двигателя обмотка возбуждения питается с общего вывода трёх дополнительных диодов, установленных на выпрямительном блоке, а напряжение в системе электрооборудования автомобиля контролируется светодиодом или лампой в комбинации приборов.
При исправно работающем генераторе после включения зажигания светодиод или лампа должны светиться, а после пуска двигателя — гаснуть, поскольку напряжение на контакте «30» и общем выводе «61» дополнительных диодов становится одинаковым, и ток через контрольную лампу не протекает.
Если светодиодная лампа продолжает гореть после пуска двигателя, то это означает, что генераторная установка неисправна, т. е. либо вообще не выдаёт напряжение, либо оно ниже напряжения аккумуляторной батареи. В этом случае напряжение на разъёме «61» будет ниже напряжения на контакте «30», поэтому в цепи между ними протекает ток, заставляя светиться светодиодную лампу, что свидетельствует о неисправности генератора.
***
Каждая фаза трехфазной обмотки генератора состоит из шести последовательно соединенных катушек. Фазные обмотки соединены между собой по схеме «звезда» или «двойная звезда».
Свободные концы каждой из трех фаз подключены к встроенному в корпус генератора выпрямителю, который состоит из трех моноблоков, соединенных в схему двухполупериодного выпрямителя.
Моноблок состоит из оребренного корпуса (для эффективного охлаждения), контактной шайбы, полупроводниковой кремниевой шайбы, герметизирующей заливки и двух выводов.
В каждом моноблоке, являющемся одновременно радиатором и токопроводящим зажимом средней точки, установлено по две полупроводниковые кремниевые шайбы.
Три моноблока выпрямителя размещены на задней крышке генератора, со стороны противоположной приводу, и соединены между собой параллельно.
Обмотка каждой из фаз генератора соединена с соответствующим моноблоком выпрямителя так, чтобы переменный ток подводился между двумя полупроводниковыми шайбами.
Выводы всех моноблоков выпрямителя с одной стороны соединены с корпусом генератора («масса), а с другой – изолированной положительной клеммой генератора.
Схема подключения фазных обмоток генератора к двухполупериодному выпрямителю показана на рис. 4.
Вал ротора вращается на двух шариковых подшипниках, размещенных в крышках генератора. Между крышками зажимается статор с обмотками. На переднем конце вала ротора посредством шпоночного соединения устанавливается шкив ременной передачи для привода генератора. Между передней крышкой и приводным шкивом на валу ротора размещен охлаждающий вентилятор.
В торцовых крышках генератора выполнены окна для прохода воздуха, который охлаждает детали генератора и выпрямительный блок.
***
Снятие и установка генератора
Для снятия генератора с автомобиля понадобятся ключи гаечные рожковые (или накидные) 8 мм, 10 мм, 17 мм и 19 мм, головка 13 мм, плоская отвертка (для снятия хомутов) и монтажная лопатка.
- Отсоедините минусовый провод от клеммы аккумуляторной батареи (ключ 10 мм).
- Аккуратно снимите пластмассовые ленточные хомуты с патрубка воздухозаборника и жгута проводов стартёра и генератора.
- Разъедините штекерный разъём обмотки возбуждения генератора.
- Отверните гайку с вывода «30» генератора (ключ 10 мм).
- Отверните гайку крепления генератора к натяжной планке (ключ 17 мм).
- С помощью монтажной лопатки подведите генератор к двигателю и снимите приводной ремень.
- Отверните три болта защиты картера (головка 13 мм) и снимите её.
- Снимите правый брызговик двигателя, отвернув пять самонарезных винтов (ключ 8 мм).
- Отверните гайку с нижнего болта крепления генератора к кронштейну (ключ 19 мм).
- Снимите генератор вместе с патрубком воздухозаборника, немного наклонив его так, чтобы он прошёл вниз между лонжероном и нижним кронштейном крепления генератора.
Установка генератора производится в обратной последовательности.
***
Регулятор напряжения
Дистанционное образование
- Группа ТО-81
- Группа М-81
- Группа ТО-71
Олимпиады и тесты
Источник: http://k-a-t.ru/mdk.01.01_elektro/22-generator/index.shtml
Автомобильный генератор
Автомобильный генератор – электрическая машина, преобразующая механическую энергию в электрический ток. В автомобиле генератор используется для зарядки аккумуляторной батареи и питания электрооборудования при работающем двигателе. В качестве автомобильного генератора применяется генератор переменного тока.
Генератор располагается, как правило, в передней части двигателя и приводится от коленчатого вала. На гибридных автомобилях генератор выполняет функции стартера, т.н. стартер-генератор. Аналогичная схема используется в некоторых конструкциях системы стоп-старт. Ведущими производителями генераторов являются фирмы Bosch, Denso, Delphi.
Различают два типа конструкций автомобильных генераторов – традиционную и компактную. Помимо геометрических размеров, данные конструкции имеют отличия в компоновке вентилятора, устройстве корпуса, приводного шкива, выпрямительного узла. Вместе с тем, можно выделить следующее общее устройство автомобильного генератора, включающее ротор, статор, щеточный узел, выпрямительный блок, регулятор напряжения. Все элементы помещены в корпус.
Основное предназначение ротора – создание вращающегося магнитного поля. Для этого на валу ротора находится обмотка возбуждения, помещенная в две полюсные половины. Каждая из полюсных половин имеет по шесть выступов — клювов. На валу ротора расположены два контактных кольца, через которые осуществляется питание обмотки возбуждения. Кольца, как правило, медные, реже стальные или латунные. Выводы обмотки возбуждения припаяны непосредственно к кольцам.
В зависимости от конструкции на валу ротора размещается одна или две крыльчатки вентилятора, а также закрепляется ведомый приводной шкив. Подшипниковый узел ротора представлен двумя шариковыми необслуживаемыми подшипниками. На валу со стороны контактных колец также может устанавливаться роликовый подшипник.
Статор служит для создания переменного электрического тока. Конструктивно он объединяет металлический сердечник и обмотки. Сердечник набирается из стальных пластин. Для навивки обмоток в сердечнике выполнено 36 пазов. В пазах укладывается три обмотки, образующие т.н. трехфазное соединение. Различают петлевой или волновой способ укладки обмоток в пазы. Соединение обмоток между собой может осуществляться по двум схемам:
- схема «звезда» (одни концы обмоток соединены в одной точке, другие являются выводами);
- схема «треугольник» (последовательное кольцевое соединение концов обмоток, выводы из точек соединения).
В корпусе размещается большинство конструктивных элементов генератора. Корпус представляет собой две крышки – переднюю (со стороны приводного шкива) и заднюю (со стороны контактных колец). Крышки стянуты между собой с помощью болтов.
Крышки изготавливаются, как правило, из алюминиевого сплава – легкого, немагнитного и легко рассеивающего тепло.
На поверхности крышек выполнены вентиляционные окна, а также две (двухлапное крепление генератора) или одна (однолапное крепление генератора) крепежные лапы.
Щеточный узел обеспечивает передачу тока возбуждения на контактные кольца. Узел включает две графитные щетки, пружины их прижимающие и щеткодержатель. На современных генераторах щеткодержатель объединен с регулятором напряжения в единый неразборный узел.
Выпрямительный блок служит для преобразования синусоидального напряжения, вырабатываемого генератором, в напряжение постоянного тока бортовой сети автомобиля. Выпрямительный блок представляет собой пластины, выполняющие роль теплоотводов, на которых смонтированы диоды. Блок содержит шесть силовых полупроводниковых диодов, по два на каждую фазу, один на «положительный», другой – на «отрицательный» вывод генератора.
На некоторых генераторах обмотка возбуждения подключена через отдельную группу, состоящую из двух диодов. Данные выпрямители препятствуют протеканию тока разряда аккумуляторной батареи через обмотку при неработающем двигателе. При соединении обмоток по типу «звезда» на нулевом выводе устанавливается два дополнительных силовых диода, что позволяет увеличить мощность генератора до 15%.
Включение выпрямительного блока в схему генератора производится на специальных монтажных площадках с помощью пайки, сварки или болтового соединения.
Регулятор напряжения предназначен для поддержания напряжения генератора в определенных пределах. Современные генераторы оснащаются полупроводниковыми электронными (интегральными) регуляторами напряжения. Различают следующие конструкции электронных регуляторов:
- гибридное исполнение – электронные приборы и радиоэлементы используются в электронной схеме вместе с толстопленочными микроэлектронными элементами;
- интегральное исполнение – все компоненты регулятора напряжения, кроме выходного каскада, выполнены с помощью тонкопленочной микроэлектронной технологии.
Стабилизация напряжения, необходимая при изменении частоты вращения коленчатого вала двигателя и нагрузки, осуществляется автоматически за счет воздействия на ток в обмотке возбуждения. Регулятор управляет частотой импульсов тока и их продолжительностью.
Регулятор напряжения осуществляет изменение напряжения, подводимого для зарядки аккумуляторной батареи, в зависимости от температуры воздуха (т.н. термокомпенсация напряжения). Чем ниже температура воздуха, тем большее напряжение подводится к аккумуляторной батарее.
Привод генератора осуществляется посредством ременной передачи и обеспечивает вращение ротора со скоростью в 2-3 раза превышающую частоту вращения коленчатого вала. В зависимости от конструкции генератора в передаче используется клиновый или поликлиновый ремень. Область применения клинового ремня ограничена размерами ведомого шкива (при определенном диаметре шкива клиновый ремень быстро изнашивается).
Поликлиновый ремень более универсальный, т.к. применим при небольших диаметрах ведомого шкива, и следовательно с его помощью может быть реализовано большее передаточное число. На современных моделях генераторов привод осуществляется поликлиновым ремнем.
На автомобилях может устанавливаться т.н. индукторный (бесщеточный) генератор. Такой генератор имеет ротор, представляющий собой набор спрессованных тонких пластин из трансформаторного железа (ротор из магнитомягкой пассивной ферромассы). Обмотка возбуждения помещена на статоре. Электродвижущая сила в индукторном генераторе получается путем изменения магнитной проводимости воздушного зазора между ротором и статором.
Работа автомобильного генератора
При повороте ключа в замке зажигания, ток от аккумуляторной батареи через щеточный узел и контактные кольца поступает на обмотку возбуждения. В обмотке наводится магнитное поле. С вращением коленчатого вала двигателя начинает вращаться ротор генератора.
Магнитное поле ротора пронизывает обмотки статора, на выводах которых возникает переменное напряжение. При достижении определенной частоты вращения генератор переходит в режим самовозбуждения, т.е. обмотка возбуждения запитывается непосредственно от генератора.
Выпрямительный блок преобразует переменное напряжение в напряжение постоянного тока. В таком состоянии генератор обеспечивает требуемый ток для зарядки аккумуляторной батареи и питания потребителей.
При изменении частоты вращения коленчатого вала двигателя и нагрузки в работу включается регулятор напряжения. Он регулирует время включения обмотки возбуждения.
При возрастании частоты вращения генератора и уменьшении внешней нагрузки время включения обмотки возбуждения уменьшается, наоборот, при уменьшении частоты вращения и увеличения нагрузки – увеличивается.
В случае, когда потребляемый ток превышает возможности генератора, в работу включается аккумуляторная батарея. Для контроля работоспособного состояния генератора на панели приборов имеется контрольная лампа (лампа контроля заряда).
Параметры генератора
К основным параметрам генератора относятся: номинальное напряжение, номинальный ток, номинальная частота вращения, частота самовозбуждения, коэффициент полезного действия.
В зависимости от конструкции электрической системы автомобиля номинальное напряжение составляет 12 или 24 В. За номинальный ток принимается максимальный ток отдачи при номинальной частоте вращения, которая составляет 6000 об/мин. Зависимость величины силы тока от частоты вращения генератора называется токоскоростной характеристикой. Помимо номинальных значений токоскоростная характеристика включает другие характерные точки:
- минимальная рабочая частота вращения и минимальный ток (минимальный ток составляет 40-50% от номинального тока);
- максимальная частота вращения и максимальный ток (максимальный ток превышает номинальный ток не более 10%).
Источник: http://systemsauto.ru/electric/alternator.html
Автомобильный генератор :
В последнее время на грузовых автомобилях устанавливают трехфазные генераторы переменного тока с возбуждением от электромагнитов. Магнитный поток в таком генераторе создается обмоткой возбуждения, по которой пропускается постоянный электрический ток. При пуске двигателя постоянный ток используется от аккумуляторной батареи, а при работе двигателя вырабатываемый генератором переменный ток преобразуется выпрямителями в постоянный.
В зависимости от положения обмотки возбуждения трехфазные генераторы автотракторного электрооборудования подразделяют на две группы: с неподвижной и с вращающейся обмоткой возбуждения.
Генератор с неподвижной обмоткой возбуждения
Генераторы этой группы (рис. 1) применяются наиболее широко на тракторах и зерноуборочных комбайнах. Это объясняется их надежностью, простотой устройства и несложным техническим обслуживанием.
Рис. 1. Генератор с неподвижной обмоткой возбуждения:1 — выводные зажимы переменного тока, 2 — фазная обмотка статора, 3 — статор,4 — катушка возбуждения, 5 — втулка катушки возбуждения, 6 — выпрямитель переменного тока,7 — вентилятор, 8 — диоды, 9 — шкив привода генератора, 10, 12 — передняя и задняя крышки,
11 — ротор с пакетом пластин, 13 — выводной зажим «Ш» постоянного тока.
Генератор представляет собой закрытую бесконтактную трехфазную динамо-машину со встроенным выпрямителем. В генераторе смонтированы статор 3, крышки 10 и 12, ротор 11 и выпрямитель 6.
Статор собран из пластин, изготовленных из электротехнической стали. Он имеет девять полюсов, на которые надеты катушки обмотки 2 статора. Три последовательно соединенные катушки образуют фазу, концы фаз через зажимы соединены с выпрямителем, а начала соединены звездой.
С обеих сторон к статору закреплены крышки. К задней крышке 12 прикреплены две колодки с выводными зажимами, на одной из них имеются зажимы постоянного тока с буквами Ш (шунт, т. е. обмотки возбуждения генератора), В (выпрямитель) и М (масса), а на второй — два зажима 1 с обозначением ~ (переменный ток).
На крышках отлиты лапы для крепления генератора.
Ротор генератора в поперечнике имеет вид шестилучевой звезды. Пластины ротора изготовлены из электротехнической стали и жестко посажены на вал, который вращается на двух шарикоподшипниках закрытой конструкции, не требующих замены смазки и установленных в крышках. Обмотка возбуждения неподвижно закреплена на стальной втулке и питается постоянным током через зажимы М и Ш.
Рис 2. Схемы генераторной установки:1 — обмотка возбуждения ротора, 2 — магнитопровод ротора, 3 — щетка, 4 — контактное кольцо,5 — реле-регулятор, 6 — включатель зажигания, 7 — аккумуляторная батарея, 8 — амперметр,
9 — диод с положительной полярностью, 10 — диод с отрицательной полярностью, 11 — обмотка статора.
При вращении ротора лучи звездочки движутся около торца сердечника обмотки возбуждения. Магнитный поток, созданный этой обмоткой, переходит через воздушный зазор с втулки 5 на звездочку ротора и намагничивает его. В свою очередь магнитный поток ротора пересекает витки фазных катушек 2 и наводит в них индуктированную ЭДС переменного тока, который преобразуется в постоянный с помощью выпрямителя.
Выпрямитель собран из шести диодов 8, которые запрессованы в специальной пластине — теплоотводе (держателе диодов). Выводы диодов попарно соединены с фазами генератора. Оребренный алюминиевый корпус выпрямителя 6 закреплен винтами на передней крышке генератора.
Привод генератора осуществляется ремнем через шкив 9, закрепленный на валу шпонкой и гайкой. К шкиву со стороны генератора прикреплен вентилятор 7, который служит для охлаждения генератора и выпрямителя. В генераторе отсутствует щеточно-коллекторный узел.
Генератор с вращающейся обмоткой возбуждения
Генераторы этой группы (рис. 2) устанавливают на автомобилях. Они состоят из статора, ротора и выпрямительного блока.
Статор представляет собой кольцо, набранное из пластин электротехнической стали. На его внутренней поверхности имеется 18 полюсов, на каждой из которых надета обмотка 11 из пяти витков. Таким образом, в каждой фазе есть шесть катушек, которые соединены между собой последовательно. Концы фаз соединены с выводными зажимами, а начала — звездой.
Магнитное поле создается обмоткой 1 возбуждения и двенадцатиполюсным магнитопроводом 2, которые находятся на роторе. Обмотка возбуждения закреплена на втулке ротора а ее выводы припаяны к контактным кольцам 4. Питание в обмотку возбуждения подается от аккумуляторной батареи 7 через включатель зажигания, реле-регулятор 5, щетки 3 и контактные кольца.
При вращении ротора генератора магнитное поле ротора пересекает силовыми линиями проводники обмотки 11 статора и в них индуктируется переменный электрический ток. Переменный ток поступает в кремниевый трехфазный выпрямительный блок. В выпрямительном блоке происходит выпрямление электрического тока и во внешнюю цепь подается постоянный электрический ток. Контроль за работой генератора осуществляется с помощью амперметра 8, установленного на щитке приборов.
Частота вращения коленчатого вала двигателя, а следовательно, и ротора генератора во время работы непостоянна. В результате этого непостоянно и напряжение тока, вырабатываемого генератором. Чем больше частота, тем напряжение выше, и наоборот, чем меньше частота, тем напряжение ниже. Такие колебания не создают нормальных условий для работы потребителей тока.
Для поддержания постоянного напряжения в сети, вырабатываемого генератором независимо от частоты вращения коленчатого вала, и защиты генератора от перегрузок применяют реле-регулятор 5.
Контактно-транзисторный реле-регулятор
Вышеописанные генераторы работают в паре с контактно-транзисторными реле-регуляторами (рис. 3). Реле-регулятор состоит из устройства для регулирования напряжения, реле 5 защиты и переключателя 11 посезонной регулировки. Все три устройства смонтированы на основании 1. На нем находятся два изолированных зажима В и Ш и один неизолированный М.
Устройство для регулирования напряжения генератора состоит из электромагнитного регулятора напряжения РН, транзистора 6, резисторов Ry, Яд, ЯТ,Кб и полупроводниковых диодов Д1 и Дг.
Транзистор является исполнительным элементом, регулирующим ток возбуждения генератора, а следовательно, и напряжение тока.
Транзистором управляет электромагнитный регулятор напряжения вибрационного типа, чувствительным элементом которого является обмотка 2 совместно с противодействующей пружиной 3, а управляющим элементом — нормально-разомкнутые контакты, включенные между плюсовым зажимом регулятора (зажим В) и базой транзистора. Через контакты регулятора проходит ток управления транзистором (ток базы), напряжение которого незначительно — в пределах 1,5-2,5 В, что обеспечивает долговечность контактов.
Напряжение тока регулируется следующим образом.
Когда частота вращения коленчатого вала двигателя, а следовательно, и вала генератора невелика и напряжение генератора не достигло необходимого значения, электромагнитное усилие, создаваемое обмоткой регулятора PH0 недостаточно для преодоления усилия пружины 3 и притягивания якоря 4 регулятора к сердечнику.
В этом случае транзистор открыт, так как имеется ток перехода «эмиттер-база», являющийся током управления транзистора и определяемый сопротивлением R в цепи базы транзистора Ток базы транзистора протекает от зажима В через диод Д1, электроды эмиттер — база, резистор R0 и «массу».
Следовательно, ток возбуждения протекает по цепи от зажима В через запирающий диод Д1, электроды эмиттер — коллектор транзистора основную обмотку реле защиты РЗ0 зажим Ш, обмотку возбуждения генератора ОВГ на «массу». Сопротивления элементов в цепи обмотки возбуждения незначительны, поэтому происходит возбуждение генератора.
Когда напряжение генератора соответствует регулируемому, ток обмотки регулятора напряжения возрастает до значения, при котором начинает работать регулятор напряжения, т. е. якорь притягивается к сердечнику, и контакты замыкаются.
Рис. 3.
Контактно-транзисторный реле-регулятор:а — устройство, б — схема включения генератора и реле регулятора в цепь;1 — основание, 2 — обмотка регулятора напряжения, 3 — пружина, 4- якорь регулятора напряжения с контактом,5 — реле защиты, 6 — транзистор, 7 — крышка, 8 — винт подсоединения провода массы регулятора,9 — зажим подсоединения провода обмотки возбуждения ротора генератора (В),10 — зажим подсоединения провода фазных обмоток статора генератора (Ш),11 — переключатель (винт) посезонной регулировки напряжения тока, 12 — генератор,13 — регулятор напряжения, РЗ — регулятор защиты, ППР — переключатель посезонной регулировки,
РН0 — основная обмотка регулятора напряжения, РЗу. Р30. РЗВ — обмотки реле защиты: удерживающая, основная и вспомогательная, Др. ДГ. Д1 — диоды (гасящего контура, разделительный и запирающий), ОВГ — обмотка возбуждения генератора. ВМ — выключатель «массы», К — коллектор, Э — эмиттер, Б — база, М, В, Ш — зажимы генератора и реле-регулятора, Rб, RT, R, RS -резисторы.
При этом транзистор запирается, вследствие того, что его база соединяется контактами с «плюсом», а потенциал эмиттера ниже потенциала «плюса» на величину падения напряжения на запирающем диоде Д1, обусловленного протеканием через диод тока.
При запирании транзистора резко падает ток возбуждения и в обмотке возбуждения возникает электродвижущая сила самоиндукции. Ток, вызванный самоиндукцией, замыкается гасящим диодом Дг, вследствие чего гасится перенапряжение на регулирующем элементе.
Включившиеся в цепь возбуждения ускоряющий резистор Ry и дополнительный резистор Яд уменьшают напряжение генератора, якорь регулятора отходит от сердечника, размыкая контакты, и транзистор снова открывается, обеспечивая поддержание напряжения генератора на заданном уровне (в пределах 13,2-14,0В при установке переключателя посезонной регулировки в положение «Л» — лето).
Ток возбуждения регулируется благодаря автоматическому изменению соотношения времени закрытого и открытого состояния транзистора при высокой частоте чередования этих состояний.
Устройство для защиты транзистора от коротких замыканий в цепи обмотки возбуждения состоит из реле 5 защиты и разделительного диода Др. Реле защиты имеет три обмотки: основную (сериесную) РЗт вспомогательную РЗ, и удерживающую РЗу. Нормально разомкнутые контакты реле защиты включены через разделительный диод Др параллельно контактам регулятора напряжжения.
При коротком замыкании цепи обмотки возбуждения на «массу» ток, идущий через основную обмотку Р30, увеличивается, а следовательно, усиливается и намагничивающая сила реле, в результате чего якорь реле притягивается к сердечнику и контакты замыкаются При этом через разделительный диод Др на базу транзистора подается «плюс», транзистор запирается, в цепь короткого замыкания включаются резисторы схемы и ток короткого замыкания падает. Одновременно через контакты реле защиты Р, получает питание удерживающая обмотка Ply, в результате чего якорь реле удерживается в притянутом состоянии. Транзистор будет заперт до тех пор, пока не будет отключен выключатель «массы» и не устранено короткое замыкание.
Переключатель посезонной регулировки напряжения тока представляет собой дополнительную обмотку, намотанную поверх основной обмотки регулятора напряжения Конец дополнительной обмотки через изолированную колодку присоединен к контактному диску.
Переключение осуществляется контактным винтом с диском. Для установки переключателя в положение «Л» (лето) контактный винт вывертывают, а в положение «3» (зима) ввертывают.
С помощью переключателя можно повышать напряжение тока, вырабатываемого генератором зимой, и снижать его летом на 0,8-1,2 В.
Неисправности генераторов
В генераторах переменного тока возможны следующие неисправности: отсутствие зарядного тока, наличие разрядного тока в амперметре при работе двигателя на средней и большой частотах вращения коленчатого вала выход из строя генератора или выпрямителя.
Зарядный ток может отсутствовать при пробуксовке приводного ремня генератора, при обрыве провода в обмотке возбуждения или одной из фаз статора, выходе из строя одного из диодов выпрямителя.
Амперметр показывает разрядный ток при работе двигателя с большой или средней частотой вращения при недостаточном натяжении приводного ремня или плохом контакте в цепи обмотки возбуждения или в силовой цепи (генератор — реле-регулятор, батарея — масса), а также при обрыве в обмотке статора.
Выход генератора или выпрямителя из строя может произойти из-за короткого замыкания обмоток генератора между собой или пробоя изоляции между теплоотводом диодов прямой полярности и массой.
Генераторы и реле-регуляторы проверяет на специальном стенде мастер по наладке электрооборудования.
— в начало —
Источник: http://tezcar.ru/u-elec_gener.html
что это, значение, принцип работы
Автомобильный генератор — это агрегат, который преобразует механическую энергию ДВС в электрическую. В первую очередь он служит для энергоснабжения системы зажигания и осветительных приборов. Также он обеспечивает питанием разнообразные электронные системы: бортовой компьютер, ЭБУ двигателя, ABS, EBD, круиз-контроль и другие.
Виды автомобильных генераторов
В машинах применяются лишь электрогенераторы переменного тока, которые обладают большей мощностью при аналогичных размерах. Они различаются по габаритам, размерам шкива и следующим показателям:
- максимальная мощность;
- зависимость постоянного (выпрямленного) напряжения от нагрузки;
- зависимость тока в обмотке возбуждения от нагрузки;
- отношение выпрямленного напряжения к току возбуждения;
- зависимость электродвижущей силы от тока возбуждения при работе мотора на холостых оборотах (показатель холостого хода).
Автомобильный генератор: принцип работы
Принцип работы электрогенератора основан на явлении электромагнитной индукции. Электрическое напряжение в катушке статора возникает под воздействием переменного магнитного потока. Для его создания используется электромагнит — обмотка возбуждения, намотанная на вращающемся роторе.
Для запуска генератора на высоких оборотах достаточно остаточного магнитного поля на пластинах ротора. Это явление называется самовозбуждением генератора.
С учетом низких оборотов двигателя, для начального намагничивания ротора используется ток автомобильного аккумулятора. Он поступает к ротору через щетки, которые прижаты к контактным кольцам. После того, как ротор набирает необходимые обороты, питание осуществляется с выхода генератора.
Переменное выходное напряжение, снимаемое со статора, проходит через диоды. Поэтому в бортовую сеть поступает постоянное напряжение. Его величина зависит от трех факторов:
- скорость вращения;
- ток в обмотке ротора;
- мощность, потребляемая бортовыми приборами.
Для исправной работы приборов и нормального заряда АКБ необходимо поддержание стабильного напряжения в районе 14 вольт. За стабилизацию отвечает электронный регулятор, который увеличивает ток обмотки возбуждения при падении напряжения в бортовой сети и уменьшает его, когда напряжение растет.
Как проверить автомобильный генератор
Для проверки работоспособности электрогенератора нужно завести двигатель и измерить напряжение в бортовой сети. Оно должно составлять 13,5-14 вольт независимо от нагрузки.
Для проверки нужно увеличить обороты до 2000-3000 в минуту и контролировать напряжение, включая и выключая фары и салонный вентилятор.
Завышенное напряжение говорит о неисправности регулятора. Падение при росте энергопотребления — о неисправности генератора или других электросистем. В этом случае необходимо проверить каждый из элементов в отдельности:
- визуально убедиться в исправности щеток и контактных колец;
- проверить мультиметром работоспособность диодного моста;
- убедиться в отсутствии обрыва или замыкания в цепях обмоток ротора и статора.
Проверять сопротивление обмотки статора нужно при отключенном диодном мосте. Сопротивление между «нулем» и обмотками должно быть 0,3 Ом, между выводами — 0,2 Ом. Сопротивление обмотки возбуждения должно быть в пределах 2,3 — 5,1 Ом.
Также следует убедиться в исправности изоляции ротора — напряжение с контактных колец и обмотки не должно попадать на вал.
Источник: https://auto.ria.com/terms/generator/
Автомобильный генератор переменного тока
Генератор – это электрическая машина, преобразующая механическую энергию в электрическую. По конструкции генератор похож на двигатель, некоторые из них при определенных условиях выполняют функции генерации напряжения.
Генераторы постоянного тока
При вращении в магнитном поле в рамке индуцируется ЭДС. Если напряжение от рамки снимать через сплошные контактные кольца, обеспечивающие непрерывный контакт каждого из выводов с нагрузкой, то получается ток синусоидальной формы. Это происходит, так как вращающаяся обмотка то пересекает силовые линии поля под прямым углом, то движется параллельно им. При переходе рамки через положение, перпендикулярное линиям магнитного поля, ЭДС в ней меняет направление.
Если снимать напряжение с полуколец, к которым подключены выводы обмотки, то напряжение на выходе будет выпрямленным, но пульсирующим. При увеличении числа обмоток и количества ламелей коллектора, величина пульсаций уменьшается.
Принцип работы генератора постоянного тока
Генераторы постоянного тока редко используются. Они нужны там, где необходимы мощные источники постоянного тока. Одно из назначений: получение напряжения для обмоток возбуждения генераторов переменного тока.
Обязательно прочитайте статьи про автомобильные генераторы:
Генераторы переменного тока
Наибольшее распространение получили синхронные генераторы, у которых частота генерируемого напряжения совпадает с частотой вращения ротора. Асинхронные генераторы не стабильны и плохо переносят перегрузки по току. Они не терпят перемену нагрузок, пусковые токи электродвигателей, сварочные аппараты. Для устойчивой работы с ними необходим запас по мощности.
Режим генерации используется при работе асинхронных электродвигателей для торможения.
В роторе синхронного генератора располагается обмотка возбуждения, в нее через сплошные кольца и щеточный аппарат подается постоянный ток. Для мощных машин на электростанциях его источником служит генератор постоянного тока, называемый возбудителем. Он расположен на одном валу с генератором и турбиной, приводящей его во вращение.
Синхронный генератор на мощность 12 МВт
Регулировка выходного напряжения генератора на холостом ходу осуществляется изменением тока в роторе. При работе в составе энергосистемы током ротора регулируется коэффициент мощности.
Обмотки статора генератора в процессе работы нагреваются и требуют охлаждения. У машин небольшой мощности для отвода тепла используется вентилятор, установленный на валу. Для мощных агрегатов для охлаждения используется водород, имеющий большую теплопроводность. В целях безопасности такая система находится под избыточным давлением и окружена газоанализаторами, регистрирующими утечки.
Для зарядки аккумуляторной батареи автомобиля и питания его электрооборудования используется трехфазный генератор переменного тока. Ротор его с обмоткой возбуждения приводится во вращение шкивом, соединенный с коленвалом двигателя. На обмотку возбуждения через щетки и кольца подается ток, пропорциональный напряжению на аккумуляторной батарее. Его формирует электронное реле, контролирующее заряд аккумуляторной батареи и подающее сигнал на приборную панель в случае его отсутствия.
Устройство автомобильный генератор переменного тока
Напряжение от обмотки статора выпрямляется при помощи диодов и поступает к аккумуляторной батарее и потребителям.
Чаще всего в автомобильном генераторе выходят из строя щетки и электронное реле. Реже наблюдается пробой или обрыв диодов, износ подшипников.
Бензиновые генераторы переменного тока
Для работы в составе автономной бензиновой электростанции применяются синхронные или асинхронные генераторы трехфазного или однофазного переменного тока. Они приводятся во вращение двигателем внутреннего сгорания.
Для управления возбуждением в электростанциях служат блоки автоматики и управления. Они же защищают генератор от перегрузок по току и коротких замыканий.
Устройство бензинового генератора переменного тока
Источник: http://electric-tolk.ru/ustrojstvo-i-rabota-generatora/