Для чего служит ротор генератора

Общее устройство генератора

Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию. Генераторы могут генерировать постоянный или переменный ток.

Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.

На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.

Как работает генератор?

Чтобы ответить на вопрос, — как работает генератор? — мы рассмотрим Принцип работы генератора.

Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой).

Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора.

Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.

Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Источник: https://www.autoezda.com/elect/1119-общее-устройство-генератора.html

Особенности генераторов переменного тока

Генератор переменного тока — это электромеханическая машина, которая вырабатывает электрическую энергию (переменного тока), преобразуя механическую. Конструкция такого генератора независима, рассчитана на долгий срок службы, а также проста в обращении и уходе. Система управления включает:

  • автоматический регулятор напряжения;
  • защитные цепи;
  • инструменты мониторинга выхода.

Автоматический регулятор напряжения служит для стабилизации и поддержания стационарного напряжения в допустимой норме. Например, он пропорционально понижает уровень напряжения с уменьшением нагрузки, и соответственно повышает с её увеличением. Эта функция обеспечивает стабильную работу агрегата и защищает от резких перепадов нагрузок.

Конструкция и принцип работы генератора переменного тока

Основные детали, составляющие генератор переменного тока, — статор и ротор.

Статор — неподвижная часть генератора. Сердечник статора изготавливают из изолированных листов стали, которые варят под определенным давлением. Благодаря этому сердечник выдерживает повышенные нагрузки, а также импульсы и вибрации. Пазы, которые содержат провода статорной обмотки, располагают на внутренней поверхности статора.

Ротор — это подвижная часть генератора. Его изготавливают из железа, а его наконечники (полюсные наконечники магнитных полюсов) — из листового железа. Этот механизм расположен на конце обмотки вала, который держит блок. Блок ротора выполняет следующие функции:

  • запускает систему вращения магнитного поля;
  • включает диодную систему возбудителя (вращение плоскости поляризации);
  • активирует охлаждающую систему (вентилятор).

Количество оборотов ротора для частоты 50 Гц может быть от 150 до 3000 в минуту.

Принцип работы генератора переменного тока основан на законе электромагнитной индукции: индуцирование электродвижущей силы происходит в проволочной рамке, которая находится в однородном вращающемся или неподвижном магнитном поле.

Применение генератора переменного тока

Генератор переменного тока — это составляющая часть электростанции. Можно выделить два основных типа электрогенераторов:

  • промышленные генераторы;
  • бытовые генераторы.

Промышленные генераторы — это мощные электростанции, которые используют для энергоснабжения учреждений особой важности, например, больниц, производственных предприятий и детских садов. Также их применяют на строительных площадках.

Бытовые генераторы — менее мощные станции. Их используют для электропитания загородных домов, коттеджей и дачных участков. В зависимости от цели использования необходимо подобрать подходящую мощность генератора и учесть такие характеристики, как тип системы охлаждения, тип топлива, наличие АВР (автомата ввода резерва) и другие.

Чтобы ваш генератор служил долго и был надежным источником электричества, необходимо регулярно осматривать его на предмет повреждений и износа деталей. Подробные процедуры по уходу описаны в инструкциях по эксплуатации генераторов, а также в нашей статье.

Основные части генератора переменного тока — ротор и статор, — не требуют замены. Детали, которые могут изнашиваться, это:

  • подшипник ротора (его ресурс составляет 40 000 моточасов);
  • токосъемные щетки (ресурс — 40 000);
  • автоматический регулятор напряжения.

Если у вас остались вопросы про генераторы переменного тока или вам нужна помощь по подбору оборудования, пишите нам на адрес [email protected] или позвоните по номеру 8 (800) 555-06-29. Вы также можете оставить заявку в форме обратной связи.

Источник: https://www.sklad-generator.ru/informacija/statji/generator-peremennogo-toka/

Как работает генератор переменного тока?


Назад в библиотеку

Xia Yuanqing , Li Shengfei

Автор перевода: А.В.Цмыкайло
Источник:http://www.learnengineering.org

Генераторы являются рабочей лошадкой отрасли электрогенерации. Она способна генерировать мощность переменного тока на определенной частоте. Они также называются синхронными генераторами. Это видео дает подробное и иллюстративное введение в работу генераторов.

Основной принцып

Электричество производится в генераторах электромагнитной индукцией. Чтобы генерировать электричество в катушке, катушка должна вращаться относительно магнитного поля, или магнитное поле должно вращаться относительно катушки.

Рисунок 1–Два метода получения электроэнергии: вращающаяся катушка и концепция вращающегося магнитного поля

В случае генераторов используется последний подход. Причина поворотного подхода с магнитной подачей будет обсуждаться на предстоящих сессиях.

Основные части и работа

Катушки ротора и арматуры являются 2 основными частями генератора переменного тока. Ротор создает вращающееся магнитное поле. Арматурные катушки являются стационарными, а вращающийся магнитный поток, связанный с ротором, индуцирует электричество в катушках якоря.

Рисунок 2–Катушки ротора и арматуры представляют собой две основные части альтернативного

Вид ротора, показанный здесь, известен как ротор соленосного полюса . Чтобы получить более полное представление о его работе, рассмотрим ротор с четырьмя полюсами. Катушки ротора возбуждаются источником питания постоянного тока. Магнитное поле, созданное вокруг него, будет таким, как показано.

Рисунок 3–А 4 полюса ротора выступа полюса и магнитного поданной производится вокруг него, когда возбуждается источником питания постоянного тока

Ротор вращается с помощью первичного двигателя. Это приводит к тому, что поток ротора также вращается вместе с ним с той же скоростью.

Такой вращающийся магнитный поток теперь пересекает катушки якоря, которые установлены вокруг ротора. Это создаст переменную ЭДС через обмотку.

Рисунок 4–Когда ротор вращается, электричество становится индуцированным в катушках якоря

Частота индуцированной ЭДС

Поскольку 4-полюсный ротор имеет 2 пары полюса NS, когда ротор поворачивается на пол-оборота, индуцированная ЭДС занимает один полный цикл. Поэтому ясно, что частота индуцированной ЭДС прямо пропорциональна числу полюсов и скорости вращения ротора. Нетрудно установить, что частота индуцированных ЭДС f (Гц), скорость вращения ротора N (об / мин) и число полюсов P связаны следующим соотношением.

Из этого соотношения ясно, что частота произведенной электроэнергии синхронизирована с механической скоростью вращения.

Производство трехфазной электроэнергии

Для создания трехфазного переменного тока в обмотку статора помещается еще 2 таких катушки якоря, которые имеют разность фаз 120 градусов с первой.

Рисунок 5–Для производства трехфазного электричества введено еще 2 арматурных крыла, которые находятся на 120 градусов от первого

Обычно один конец этих трех катушек соединен звездой, а с других концов — трехфазное электричество. Нейтральный кабель может быть нарисован от конца, соединенного звездой.

Когда следует использовать ротор с заземляющим полюсом?

Из приведенного выше уравнения видно, что для производства электричества на 60 Гц 4-полюсный ротор должен работать со скоростью 1800 об / мин. Такой огромный RPM вызовет огромную центробежную силу на полюсах ротора, и он может выйти из строя механически сверхурочно.

Рисунок 6–Роторы с меньшим количеством полюсов требуют высоких оборотов, что, в свою очередь, вызывает огромную центробежную силу на полюсах ротора

Таким образом, характерные полюсные роторы обычно имеют 10-40 полюсов; что требует более низких оборотов. Или роторные полюсные роторы используются, когда первичный двигатель вращается с относительно низкой скоростью (120-400 об / мин), например, с водяными турбинами и двигателями IC.

Ядро сердечника и сердечник статора

Ядро полюса используется для эффективного переноса магнитного потока, и они изготовлены из довольно толстой стальной пластинки. Такая изолированная пластина уменьшает потери энергии из-за образования вихревого тока. На стороне статора также используется основная пластинка для усиления переноса магнитного потока.

Рисунок 7– Сердечник полюса и статора усиливает передачу магнитного потока, и они изготовлены из ламинированной стальной пластинки

Самовозбужденный генератор

Постоянный ток подается на ротор через пару колец скольжения. Именно по этой причине в генераторе переменного тока используется подход с вращающимся магнитным полем.

Если бы использовался метод вращающейся катушки, кольца скольжения должны были быть установлены вместе с катушками якоря для сбора электричества. Но перенос такого высоковольтного электричества через проскальзывающее кольцо довольно непрактичен.

Вполне возможно передавать ток возбуждения постоянного тока низкого напряжения через кольца скольжения.

Этот постоянный ток подается либо от внешнего источника, либо от небольшого генератора постоянного тока, который установлен на одном и том же первичном двигателе. Такие генераторы называются самовозбужденными.

Рисунок 8–Кольца скольжения используются для подачи постоянного тока на катушку ротора; этот постоянный ток может исходить от встроенного генератора постоянного тока

С изменением выходного напряжения клеммы генератора нагрузки будет изменяться. Желательно поддерживать напряжение на клемме в заданном пределе. Автоматический регулятор напряжения помогает в достижении этого.

Регулирование напряжения может быть легко достигнуто путем управления полевым током. Если напряжение на клеммах ниже желаемого предела, AVR увеличивает ток возбуждения, таким образом, напряженность поля. Это приведет к увеличению напряжения на клеммах.

Если напряжение на клеммах ниже указанного предела, выполняется обратное.

Источник: http://masters.donntu.org/2017/etf/tsmykaylo/library/doklad9.htm

Автомобильный генератор: устройство, назначение и неисправности

Генератор предназначен для питания электрическим током всех потребителей и для подзарядки аккумуляторной батареи при работе двигателя на средних и больших оборотах. На современные автомобили устанавливается генератор переменного тока. Он включен в электрическую цепь автомобиля параллельно аккумуляторной батарее. Однако питать потребителей и заряжать батарею генератор будет только в том случае, если вырабатываемое им напряжение превысит напряжение аккумуляторной батареи.

А произойдет это тогда, когда двигатель автомобиля начнет работать на оборотах выше холостых, так как напряжение, вырабатываемое генератором, зависит от скорости вращения его ротора.

При этом, по мере увеличения частоты вращения ротора генератора, вырабатываемое им напряжение может превысить требуемое. Поэтому генератор работает в паре с регулятором напряжения.

Регулятор напряжения является электронным прибором, который ограничивает вырабатываемое генератором напряжение и поддерживает его в пределах 13,6 – 14,2 вольта.

Устройство автомобильного генератора

Основные части генератораГенератор в разрезеСтатор и ротор

Статор (неподвижная часть генератора) представляет собой обмотки с магнитопроводом, в которых образуется электрический ток. Ротор – вращающаяся часть генератора. Ротор состоит из обмоток возбуждения с полюсной системой, вала и контактных колец.

Кольца выполняются чаще всего из меди, с опрессовкой их пластмассой. Для снижения износа и предотвращения окисления они могут изготавливатья из латуни или нержавеющей стали. К кольцам присоединяются выводы обмотки возбуждения. Питание к обмоткам подается через щетки (скользящие контакты), которые прижимаются к кольцам с помощью пружин.

Щетки бывают двух типов — меднографитные и электрографитные. Последние имеют более высокое электрическое сопротивление, что снижает выходные характеристики генератора, зато они обеспечивают значительно меньший износ контактных колец. Существуют и бесщеточные генераторы, у которых на роторе расположены постоянные магниты, а обмотки возбуждения – на статоре.

Отсутствие щеток и контактных колец повышает надежность генератора, но увеличивает массу и шумность при работе.

При вращении ротора напротив катушек обмотки статора появляются попеременно разнополярные полюсы, т. е. направление и величина магнитного потока, пронизывающего катушку, меняется, что и приводит к появлению в ней переменного напряжения. Так как потребители электрической сети автомобиля работают на постоянном напряжении, в схему генератора вводится диодный выпрямитель.

Диодный мост и регулятор напряженияКонструкция и привод генераторов

Электронные регуляторы напряжения, как правило, встроены в генератор (“таблетка”) и объединены со щеточным узлом. Иногда они располагаются отдельно в подкапотном пространстве. Регуляторы изменяют ток возбуждения путем изменения времени включения обмотки ротора в питающую сеть.

Устройства необслуживаемые, необходимо лишь контролировать надежность контактов. Существуют регуляторы напряжения, наделенные функцией термокомпенсации, – они измененяют напряжение зарядки в зависимости от температуры воздуха в подкапотном пространстве для обеспечения оптимального заряда АКБ.

ЭТО ИНТЕРЕСНО:  Как заряжаются никель кадмиевые аккумуляторы

Чем ниже температура воздуха, тем большее напряжение подводится к батарее, и наоборот.

Генераторы выпускаются в двух конструктивных исполнениях – “классическом”, с вентилятором у приводного шкива, и компактном, с двумя вентиляторами внутри генератора. Так как “компактные” генераторы имеют привод с более высоким передаточным отношением, их называют еще высокоскоростными генераторами.

Генератор устанавливается на специальном кронштейне двигателя и приводится в действие от шкива коленчатого вала через ременную передачу. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива генератора, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

На современных моделях, как правило, привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра. Привод генератора может осуществляться как отдельно, так и одним ремнем вместе с насосом охлаждающей жидкости (“помпой”).

Натяжение ремня регулируется либо отклонением корпуса генератора, либо (в случае применения поликлинового ремня) натяжными роликами при неподвижном генераторе.

Возможна ли замена генератора одной марки на другой? Вполне, если выполняются следующие условия:

  • энергетические характеристики заменяющего генератора не ниже, чем у заменяемого;
  • передаточное число от двигателя к генератору одинаково;
  • габаритные и крепежные размеры заменяющего генератора позволяют установить его на двигатель. Большинство генераторов зарубежного производства имеют однолапное крепление, а отечественные крепятся за две лапы, поэтому замена “иномарочного” генератора отечественным потребует замены кронштейна;
  • электрические схемы генераторных установок аналогичны.

Неисправности автомобильного генератора

ВИДИМАЯ НЕПОЛАДКА ПРИЧИНА СПОСОБ УСТРАНЕНИЯ
Контрольная лампа заряда не горит при включении зажигания Разряжен либо неисправен аккумулятор Зарядить или заменить аккумулятор
Перегорела лампа на приборной панели Заменить
Нет контакта провода массы с задней частью генератора Проверить надежность контакта массы, очистить и подтянуть болты крепления провода массы
Нарушение целостности провода между выводом подключения лампы на генераторе и приборной панелью Проверить вольтметром или омметром по электрической схеме
Не подсоединены разъемы между генератором и приборной панелью Проверить и, если требуется, заменить разъемы
Щетки неплотно прилегают к контактным кольцам (“зависли” либо износились) Проверить длину (min=5 мм) и свободу перемещения щеток в щеткодержателе
Дефект регулятора напряжения Заменить регулятор напряжения
Сильный износ роторных колец Проверить и, если требуется, заменить роторные кольца
Обрыв обмоток ротора генератора Проверить ротор, при необходимости заменить.
Контрольная лампа заряда гаснет при увеличении оборотов двигателя, но на аккумуляторе зарядки нет Ослабло натяжение клинового ремня Натянуть клиновой ремень
Обрыв диодов диодного моста Проверить и заменить диодный мост
Дефект регулятора напряжения Проверить и, если требуется, заменить реле регулятор напряжения
Провод между генератором и аккумулятором имеет плохой контакт Проверить и заменить провод, после чего проверить диодный мост в генераторе.
Контрольная лампа заряда не гаснет при увеличении оборотов двигателя Ослабло натяжение клинового ремня Натянуть клиновой ремень
Неисправность диодного моста или обмотки статора Проверить и заменить диодный мост или обмотку
Дефект регулятора напряжения Проверить и, если требуется, заменить реле регулятор напряжения
Провод между генератором и контрольной лампой имеет контакт с массой Найти и устранить замыкание или заменить жгут проводов, после чего проверить диодный мост в генераторе
Контрольная лампа заряда горит при выключенном зажигании Короткое замыкание диода Проверить диоды, и заменить диодный мост
Аккумулятор выкипает Неисправность реле регулятора напряжения Заменить реле регулятор и проверить диоды, при необходимости заменить диодный мост

Правила эксплуатации генератора (по Остеру)

И напоследок несколько “вредных” советов, как быстро и без проблем “сжечь” генератор:

  1. Самый лучший и быстрый способ – “Переплюсовка”. Поменяйте местами провода от клемм аккумуляторной батареи, при этом возможен не только оптический эффект (яркая вспышка внутри генератора, легкое дымовое облако), но также звуковой (от щелчка до хлопка и шипения), обонятельный (почувствуете непередаваемый аромат горящих проводов!), и, наконец, тактильный (ожог 1-3 степени – подбирается экспериментально!) После применения этого способа диодный мост выгорает с вероятностью 99%, статор – 60%, реле-регулятор – 20%, провода – 10%, автомобиль целиком – 0,01%! Способ очень эффективен при “прикуривании”. Возможны побочные эффекты – выгорание бортовых компьютеров, сигнализации, музыки и т.д. Большой плюс – не требует специальных навыков и знаний, легко осваивается начинающими.
  2. Способ “Мойка”. Помойте двигатель своей машины. Особенно тщательно помойте генератор, проследите, чтобы потоки воды прополоскали все внутренности агрегата. Ни в коем случае не продувайте генератор после мойки! Сразу же заводите машину и включите побольше нагрузок – весь свет, обогрев, музыку. Если эффект не произошел – повторите попытку. Эффект появится, поверьте!!! Плюс – сгоревший генератор будет чистым.
  3. “Дедовский” метод – сдёргивание плюсовой клеммы аккумулятора на работающем двигателе вроде бы для проверки зарядной системы. Процент сгоревших релюшек увеличивается до 50-70%. Способ требует определенной сноровки – главное, чтобы было побольше искр! Возникающие в цепях высоковольтные коммутационные процессы рано или поздно должны будут сжечь хоть что-нибудь в Вашем генераторе, или, в крайнем случае, в машине! Как всегда, рекомендуется включить побольше всяких там нагрузок – свет, печки, подогрев. Способ не очень эффективен на старых машинах, но главное – верить, что так и будет!
  4. “Лужа” – способ, которым пользуется множество автолюбителей, даже не подозревая об этом. При этом многие искренне уверены, что автомобиль и его агрегаты, включая генератор, по водонепроницаемости должен быть сродни подводной лодке. Дерзайте! Как много неисследованных глубин ждут своих первооткрывателей! И еще простой совет – лужу надо проезжать на возможно максимальной скорости, тщательно следя, чтобы брызги равномерно захлестывали подкапотное пространство. Отсутствие защитных кожухов и поддонов во многом облегчит Вашу непростую задачу. Очень большой плюс – способом можно пользоваться практически ежедневно, не выходя из машины!
  5. Способ “Меломан”. Для очень крутых! Поставьте в Вашу машинку супер магнитолку, парочку CD чейнджеров, пару-тройку ламповых усилителей ватт по 200-300, сабвуфер ватт на 500, ну колонок с десяток, лучше полтора. Вообще, чем больше – тем лучше! Баксов на 12-25 тысяч! (Это не враки – случай зафиксирован!) Включайте! Если через пару минут генератор все ещё работает, а характерного дыма и запаха все еще нет – значит Вы поставили слишком дешёвую аппаратуру!
  6. “Аккумуляторный” способ – наиболее коварный и таинственный из всех, поскольку его осознание требует понимания химических и физических процессов (ну хотя бы закон Ома, что уже не всем дано!) А если по-простому – используйте давно просроченный аккумулятор, не моложе трех-пяти лет. Чем старше – тем больше вероятность, что в аккумуляторе окажется короткозамкнутая банка. При этом аккумулятор может подавать признаки жизни – заводить машину, подзаряжаться от зарядного устройства и т.д., но при этом он становится мощной паразитной нагрузкой в цепи генератора. Возможно, что силы тока будет хватать на работу инжектора, но при включении дальнего света и обогрева генератор будет греться так, что его можно использовать для приготовления яичницы в походных условиях! Главное – не обращать на это внимания, и способ когда-нибудь сработает!

Источник: https://avtonov.info/avtomobilnyj-generator-ustrojstvo-naznachenie-i-neispravnosti

Статор генератора: рождающий ток

Каждое современное транспортное средство оснащается электрическим генератором, который вырабатывает ток для работы бортовой электросистемы и всех ее приборов. Одна из основных частей генератора — неподвижный статор. О том, что такое статор генератора, как он устроен и работает — читайте в этой статье.

Назначение статора генератора

В современных автомобилях и других транспортных средствах применяются синхронные трехфазные генераторы переменного тока с самовозбуждением. Типичный генератор состоит из неподвижного статора, закрепленного в корпусе, ротора с обмоткой возбуждения, щеточного узла (подводящего ток к обмотке возбуждения) и выпрямительного блока. Все детали собраны в относительно компактную конструкцию, которая монтируется на двигателе и имеет ременной привод от коленчатого вала.

Статор — неподвижная часть автомобильного генератора, несущая на себе рабочую обмотку. В процессе работы генератора именно в обмотках статора возникает электрический ток, который преобразуется (выпрямляется) и подается в бортовую сеть.

Статор генератора имеет несколько функций:

• Несет на себе рабочую обмотку, в которой генерируется электрический ток; • Выполняет функцию корпусной детали для размещения рабочей обмотки; • Играет роль магнитопровода для повышения индуктивности рабочей обмотки и правильного распределения силовых линий магнитного поля;

• Выступает в роли теплоотвода — отводит чрезмерное тепло от нагревающихся обмоток.

Все статоры имеют принципиально одинаковую конструкцию и не отличаются разнообразием типов.

Конструкция статора генератора

Конструктивно статор состоит из трех основных частей:

• Кольцевой сердечник; • Рабочая обмотка (обмотки);

• Изоляция обмоток.

Сердечник собирается из железных кольцевых пластин с пазами с внутренней стороны. Из пластин формируется пакет, жесткость и монолитность конструкции придается сваркой или клепкой. В сердечнике выполняются пазы для укладки обмоток, а каждый выступ — это ярмо (сердечник) для витков обмотки.

Сердечник собирается из пластин толщиной 0,8-1 мм, изготовленных из специальных марок железа или ферросплавов с определенной магнитной проницаемостью.

На внешней стороне статора могут присутствовать ребра для улучшения отвода тепла, а также выполняться различные пазы или углубления для стыковки с корпусом генератора.

В трехфазных генераторах используется три обмотки — по одной на фазу. Каждая обмотка изготавливается из медного изолированного провода большого сечения (диаметром от 0,9 до 2 мм и более), которая в определенном порядке укладывается в пазах сердечника. Обмотки имеют выводы, с которых снимается переменный ток, обычно число выводов составляет три или четыре, но бывают статоры с шестью выводами (каждая из трех обмоток имеет свои выводы для выполнения соединений того или иного типа).

В пазах сердечника располагается изоляционный материал, защищающий изоляцию провода от повреждения. Также в некоторых типах статоров в пазы могут вкладываться изоляционные клинья, которые дополнительно выполняют роль фиксатора витков обмоток. Статор в сборе дополнительно может подвергаться пропитке эпоксидными смолами или лаками, что обеспечивает целостность конструкции (предотвращает сдвиг витков) и улучшает ее электроизоляционные свойства.

Статор жестко монтируется в корпусе генератора, причем сегодня чаще всего используется конструкция, в которой сердечник статора выполняет роль корпусной детали.

Реализуется это просто: статор зажимается между двумя крышками корпуса генератора, которые стягиваются шпильками — такой «сэндвич» позволяет создавать компактные конструкции с эффективным охлаждением и простотой обслуживания.

Популярностью пользуется и конструкция, при которой статор объединен с передней крышкой генератора, а задняя крышка выполнена съемной и обеспечивает доступ к ротору, статору и другим деталям.

Типы и характеристики статоров

Статоры генераторов отличаются числом и формой пазов, схемой укладки обмоток в пазах, схемой подключения обмоток и электрическими характеристиками.

По числу пазов под витки обмоток статоры бывают двух типов:

• С 18 пазами;
• С 36 пазами.

Сегодня наиболее часто используется конструкция с 36 пазами, так как она обеспечивает лучшие электрические характеристики. Генераторы со статорами с 18 пазами сегодня можно встретить на некоторых отечественных автомобилях ранних выпусков.

По форме пазов статоры бывают трех типов:

• С открытыми пазами — пазы прямоугольного сечения, в них требуется дополнительная фиксация витков обмоток; • С полузакрытыми (клиновидными) пазами — пазы суживаются кверху, поэтому витки обмоток фиксируются вставкой изоляционных клиньев или кембриков (трубок из ПВХ);

• С полузакрытыми пазами для обмоток с одновитковыми катушками — пазы имеют сложное сечение под укладку одного или двух витков провода большого диаметра или провода в виде широкой ленты.

По схеме укладки обмоток статоры бывают трех типов:

• С петлевой (петлевой распределенной) схемой — провод каждой обмотки укладывается в пазы сердечника петлями (обычно один виток укладывается с шагом в два паза, в эти пазы укладываются витки второй и третьей обмоток — так обмотки приобретают сдвиг, необходимый для генерации трехфазного переменного тока); • С волновой сосредоточенной схемой — провод каждой обмотки укладываются в пазы волнами, обходя их то с одной, то с другой стороны, причем в каждом пазу лежит по два витка одной обмотки, направленных в одну сторону;

• С волновой распределенной схемой — провод также укладывается волнами, однако витки одной обмотки в пазах направлены в разные стороны.

При любом типе укладки каждая обмотка имеет шесть витков, распределенных по сердечнику.

Независимо от способа укладки провода, существует две схемы соединения обмоток:

• «Звезда» — в этом случае обмотки соединены параллельно (концы всех трех обмоток соединены в одной (нулевой) точке, а их начальные выводы свободны);
• «Треугольник» — в этом случае обмотки соединены последовательно (начало одной обмотки с концом другой).

При соединении обмоток «звездой» наблюдается более высокий ток, данная схема применяется на генераторах мощностью не более 1000 Вт, которые эффективно работаю на малых оборотах. При соединении обмоток «треугольником» ток снижается (в 1,7 раз относительно «звезды»), однако генераторы с такой схемой подключения лучше работают на высоких мощностях, а для их обмоток можно использовать проводник меньшего сечения.

Часто вместо «треугольника» используется схема «двойная звезда», в этом случае статор должен иметь уже не три, а шесть обмоток — по три обмотки соединяются «звездой», и две «звезды» подключаются к нагрузке параллельно.

Что касается характеристик, то для статоров наибольшее значение имеет номинальное напряжение, мощность и номинальный ток в обмотках. По номинальному напряжению статоры (и генераторы) делятся на две группы:

• С напряжением в обмотках 14 В — для транспортных средств с напряжением бортовой сети 12 В;
• С напряжением в обмотках 28 В — для техники с напряжением бортовой сети 24 В.

Генератор вырабатывает более высокое напряжение, так как в выпрямителе и стабилизаторе неизбежно происходит падение напряжения, а на входе в бортовую электросеть наблюдается уже нормальное напряжение в 12 или 24 В.

Большинство генераторов для автомобилей, тракторов, автобусов и прочей техники имеет номинальный ток от 20 до 60 А, для легковых автомобилей достаточно 30-35 А, для грузовиков — 50-60 А, для тяжелой техники выпускаются генераторы с током до 150 и более А. При этом мощность генераторов колеблется от 400 до 2500 Вт.

Принцип работы статора генератора

Работа статора и всего генератора основана на явлении электромагнитной индукции — возникновении тока в проводнике, который движется в магнитном поле или покоится в переменном магнитном поле. В автомобильных генераторах используется второй принцип — проводник, в котором возникает ток, покоится, а магнитное поле постоянно изменяется (вращается).

При запуске двигателя ротор генератора начинает вращаться, одновременно на его возбуждающую обмотку подается напряжение от аккумуляторной батареи. Ротор имеет многополюсный стальной сердечник, который при подаче тока на обмотку становится электромагнитом, соответственно, вращающийся ротор создает переменное магнитное поле.

Силовые линии этого поля пересекают статор, расположенный вокруг ротора.

Сердечник статора определенным образом распределяет магнитное поле, его силовые линии пересекают витки рабочих обмоток — в них за счет электромагнитной индукции генерируется ток, который снимается с выводов обмотки, поступает на выпрямитель, стабилизатор и в бортовую сеть.

ЭТО ИНТЕРЕСНО:  Можно ли заряжать аккумулятор в квартире

При увеличении оборотов двигателя часть тока от рабочей обмотки статора подается на обмотку возбуждения ротора — так генератор переходит в режим самовозбуждения и уже не нуждается в стороннем источнике тока.

В процессе работы статор генератора испытывает нагрев и электрические нагрузки, также он подвергается негативным воздействиям окружающей среды. Это с течением времени может привести к ухудшению изоляции между обмотками и электрическому пробою. В данном случае статор нуждается в ремонте или полной замене. При регулярном техническом обслуживании и своевременной замене статора генератор будет служить надежно, стабильно обеспечивая автомобиль электрической энергией.

Еще в этом разделе

Источник: http://www.autoopt.ru/articles/products/22729780/

Генератор — основные неисправности

ВНИМАНИЕ! ВНИМАНИЕ! Возобновляем полную работоспособность! Правила работы в режиме повышенной готовности в РФ.

Во время движения автомобиля частота оборотов вала генератора достигает 10-14 тысяч оборотов в минуту. Это самая большая скорость вращения среди всех узлов автомобиля, в 2-3 раза превышающая частоту оборотов двигателя.

Срок службы у генератора примерно в два раза меньше, чем у двигателя: примерно 160 тыс.километров пробега.

Генераторы бывают двух видов:

  • генератор переменного тока (используется на большинстве легковых автомобилей)
  • генератор постоянного тока (используется на большинстве автомобилей, работающих в автохозяйствах)

Генератор переменного тока

Генератор переменного тока состоит из двух основных частей: статора с неподвижной обмоткой, в которой индуцируется переменный ток, и ротора, создающего подвижное магнитное поле, а также крышек, приводного шкива с вентилятором и встроенного выпрямительного блока.

Переменный ток генератора выпрямляется двухполупериодным трехфазным выпрямителем с полупроводниковыми диодами.

Генераторы переменного тока имеют ряд преимуществ по сравнению с генераторами постоянного тока. Ротор генератора переменного тока может вращаться с большей частотой, чем якорь генератора постоянного тока.

При большой частоте вращения якоря генератора постоянного тока ухудшается контакт между щетками и ламелями коллектора вследствие колебаний щеток при скольжении их по коллектору. Кроме того, под действием центробежных сил возможен выход обмоток из пазов якоря.

Для того чтобы напряжение при увеличении частоты вращения якоря не изменялось, необходимо пропорционально уменьшать магнитный поток возбуждения. При применении в генераторе электромагнитов это можно обеспечить, уменьшая силу тока в обмотках возбуждения. На этом принципе основано регулирование напряжения автомобильных генераторов. Оно осуществляется с помощью электромагнитных вибрационных реле, называемых реле-регулятором.

Диагностика реле-регулятора генератора осуществляется с помощью диагностических стендов, где определяют напряжение включения генератора и зарядный ток. Напряжение, регулируемое реле-регулятором должно быть в пределах 13,9 — 14,5 В.

Следует проверять натяжение ремня привода генератора. При проскальзывании ремня генератор не развивает полной мощности, что приводит к разряду аккумуляторной батареи.

В генераторах также проверяют износ щеток, усилие пружин щеткодержателей и состояние контактных колец и подшипников ротора.

Высоту щеток измеряют при снятом щеткодержателе. Если щетки износились до высоты 8 — 10мм, их заменяют.

Усилие пружин щеткодержателей должно соответствовать нормам марки Вашего автомобиля, например, для ВАЗ — 4,2± 0,2 Н (420±20гс).

Контактные кольца должны быть чистыми, без следов масла.

Состояние подшипников можно проверить, вращая вал ротора от руки при снятых щетках. Вал должен вращаться легко, без заеданий, шумов и стуков.

Основные неисправности генератора и способы их устранения

Генератор не дает зарядного тока (амперметр показывает разрядный ток при номинальной частоте вращения коленчатого вала двигателя)
Пробуксовка приводного ремня Натянуть ремень, убедившись в исправности подшипников
Зависание щеток Очистить щеткодержатель, щетки от грязи, проверить усилие щеточных пружин
Подгорание контактных колец Зачистить и при необходимости проточить контактные кольца
Обрыв цепи возбуждения Устранить обрыв цепи
Задевание ротора за полюса статора Проверить подшипники, места посадки. Поврежденные детали заменить
Неисправность регулятора напряжения Заменить регулятор напряжения
Обрыв в цепи \»генератор-аккумулятор\» Устранить обрыв
Генератор дает зарядный ток, но не обеспечивает хорошего заряда аккумуляторной батареи
Плохой контакт \»массы\» генератора с \»массой\» регулятора напряжения Проверить целостность провода, идущего на \»массу\», и надежность контакта
Срабатывание реле защиты регулятора напряжения из-за замыкания в цепи возбуждения генератора на \»массу\» Найти место замыкания и устранить неисправность
Износ щеток Заменить щетки новыми
Зависание щеток Очистить щеткодержатель, щетки от грязи
Загрязнение и замасливание контактных колец Протереть кольца тканью, смоченной бензином
Неисправность регулятора напряжения Проверить и при необходимости заменить регулятор напряжения
Витковое замыкание или обрыв цепи одной из фаз статорной обмоткиНеисправность (пробой) диодов выпрямительного блока Разобрать генератор, проверить состояние статорной обмотки (отсутствие обрыва и замыкания). Статор с неисправной обмоткой заменить
Слабое натяжение ремня Отрегулировать натяжение ремня
Повышенная шумность генератора
Износ или разрушение подшипников Заменить подшипники
Ослабление гайки шкива генератора Подтянуть гайку
Износ посадочного места подшипника Заменить крышку генератора
Межвитковое замыкание обмотки статора (\»вой\» генератора) Заменить статор

Источник: http://www.hondaworld.ru/honda_repair_17.htm

Синхронный двигатель с постоянными магнитами

Дмитрий Левкин

Главное отличие между синхронным двигателем с постоянными магнитами (СДПМ) и асинхронным электродвигателем заключается в роторе.

Проведенные исследования1 показывают, что СДПМ имеет КПД примерно на 2% больше, чем высоко эффективный (IE3) асинхронный электродвигатель, при условии, что статор имеет одинаковую конструкцию, а для управления используется один и тот же частотный преобразователь.

При этом синхронные электродвигатели с постоянными магнитами по сравнению с другими электродвигателями обладают лучшими показателями: мощность/объем, момент/инерция и др.

Конструкции и типы синхронного электродвигателя с постоянными магнитами

Синхронный электродвигатель с постоянными магнитами, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Синхронный электродвигатель со встроенными постоянными магнитами

Обычно ротор располагается внутри статора электродвигателя, также существуют конструкции с внешним ротором — электродвигатели обращенного типа.

Конструкции синхронного двигателя с постоянными магнитами: слева — стандартная, справа обращенная.

Ротор состоит из постоянных магнитов. В качестве постоянных магнитов используются материалы с высокой коэрцитивной силой.

Электродвигатель с неявно выраженными полюсами имеет равную индуктивность по продольной и поперечной осям Ld = Lq, тогда как у электродвигателя с явно выраженными полюсами поперечная индуктивность не равна продольной Lq ≠ Ld.

Сечение роторов с разным отношением Ld/Lq. Черным обозначены магниты. На рисунке д, е представлены аксиально-расслоенные роторы, на рисунке в и з изображены роторы с барьерами.

Статор состоит из корпуса и сердечника с обмоткой. Наиболее распространены конструкции с двух- и трехфазной обмоткой.

    В зависимости от конструкции статора синхронный двигатель с постоянными магнитами бывает:
  • с распределенной обмоткой;
  • с сосредоточенной обмоткой.

Распределенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 2, 3,., k.

Сосредоточенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 1. При этом пазы расположены равномерно по окружности статора. Две катушки, образующие обмотку, можно соединить как последовательно, так и параллельно. Основной недостаток таких обмоток — невозможность влияния на форму кривой ЭДС [2].

    Форма обратной ЭДС электродвигателя может быть:
  • трапецеидальная;
  • синусоидальная.

Форма кривой ЭДС в проводнике определяется кривой распределения магнитной индукции в зазоре по окружности статора.

Известно, что магнитная индукция в зазоре под явно выраженным полюсом ротора имеет трапециидальную форму. Такую же форму имеет и наводимая в проводнике ЭДС. Если необходимо создать синусоидальную ЭДС, то полюсным наконечникам придают такую форму, при которой кривая распределения индукции была бы близка к синусоидальной. Этому способствуют скосы полюсных наконечников ротора [2].

Принцип работы синхронного двигателя

Принцип действия синхронного электродвигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора. Концепция вращающегося магнитного поля статора синхронного электродвигателя такая же, как и у трехфазного асинхронного электродвигателя.

Принцип работы синхронного двигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора.

Вращающееся магнитное поле синхронного электродвигателя

Магнитное поле ротора, взаимодействуя с синхронным переменным током обмоток статора, согласно закону Ампера, создает крутящий момент, заставляя ротор вращаться (подробнее).

Постоянные магниты, расположенные на роторе СДПМ, создают постоянное магнитное поле. При синхронной скорости вращения ротора с полем статора, полюса ротора сцепляются с вращающимся магнитным полем статора. В связи с этим СДПМ не может сам запуститься при подключении его напрямую к сети трехфазного тока (частота тока в сети 50Гц).

Управление синхронным двигателем с постоянными магнитами

Для работы синхронного двигателя с постоянными магнитами обязательно требуется система управления, например, частотный преобразователь или сервопривод. При этом существует большое количество способов управления реализуемых системами контроля. Выбор оптимального способа управления, главным образом, зависит от задачи, которая ставится перед электроприводом. Основные методы управления синхронным электродвигателем с постоянными магнитами приведены в таблице ниже.

Управление Преимущества Недостатки Синусоидальное Скалярное Векторное Полеориентированное управление С датчиком положения Без датчика положения Прямое управление моментом Трапециидальное Без обратной связи С обратной связью С датчиком положения (датчиками Холла) Без датчика
Простая схема управления Управление не оптимально, не подходит для задач, где нагрузка меняется, возможна потеря управляемости
Плавная и точная установка положения ротора и скорости вращения двигателя, большой диапазон регулирования Требуется датчик положения ротора и мощный микроконтроллер системы управления
Не требуется датчик положения ротора. Плавная и точная установка положения ротора и скорости вращения двигателя, большой диапазон регулирования, но меньше, чем с датчиком положения Бездатчиковое полеориентированное управление во всем диапазоне скоростей возможно только для СДПМ с ротором с явно выраженными полюсами, требуется мощная система управления
Простая схема управления, хорошие динамические характеристики, большой диапазон регулирования, не требуется датчик положения ротора Высокие пульсации момента и тока
Простая схема управления Управление не оптимально, не подходит для задач, где нагрузка меняется, возможна потеря управляемости
Простая схема управления Требуются датчики Холла. Имеются пульсации момента. Предназначен для управления СДПМ с трапециидальной обратной ЭДС, при управлении СДПМ с синусоидальной обратной ЭДС средний момент ниже на 5%.
Требуется более мощная система управления Не подходит для работы на низких оборотах. Имеются пульсации момента. Предназначен для управления СДПМ с трапециидальной обратной ЭДС, при управлении СДПМ с синусоидальной обратной ЭДС средний момент ниже на 5%.

Популярные способы управления синхронным двигателем с постоянными магнитами

Для решения несложных задач обычно используется трапециидальное управление по датчикам Холла (например — компьютерные вентиляторы). Для решения задач, которые требуют максимальных характеристик от электропривода, обычно выбирается полеориентированное управление.

Трапециидальное управление

Одним из простейших методов управления синхронным двигателем с постоянными магнитами является — трапецеидальное управление. Трапециидальное управление применяется для управления СДПМ с трапециидальной обратной ЭДС.

При этом этот метод позволяет также управлять СДПМ с синусоидальной обратной ЭДС, но тогда средний момент электропривода будет ниже на 5%, а пульсации момента составят 14% от максимального значения.

Существует трапециидальное управление без обратной связи и с обратной связью по положению ротора.

Управление без обратной связи не оптимально и может привести к выходу СДПМ из синхронизма, т.е. к потери управляемости.

    Управление с обратной связью можно разделить на:
  • трапециидальное управление по датчику положения (обычно — по датчикам Холла);
  • трапециидальное управление без датчика (бездатчиковое трапециидальное управление).

В качестве датчика положения ротора при трапециидальном управлении трехфазного СДПМ обычно используются три датчика Холла встроенные в электродвигатель, которые позволяют определить угол с точностью ±30 градусов. При таком управление вектор тока статора принимает только шесть положений на один электрический период, в результате чего на выходе имеются пульсации момента.

Трапециидальное управление по датчикам Холла

Полеориентированное управление

Полеориентированное управление позволяет плавно, точно и независимо управлять скоростью и моментом бесщеточного электродвигателя. Для работы алгоритма полеориентированного управления требуется знать положение ротора бесщеточного электродвигателя.

    Существует два способа определения положения ротора:
  • по датчику положения;
  • без датчика — посредством вычисления угла системой управления в реальном времени на основе имеющейся информации.

Полеориентированное управление СДПМ по датчику положения

    В качестве датчика угла используются следующие типы датчиков:
  • индуктивные: синусно-косинусный вращающийся трансформатор (СКВТ), редуктосин, индуктосин и др.;
  • оптические;
  • магнитные: магниторезистивные датчики.

Полеориентированное управление синхронным двигателем с постоянными магнитами по датчику положения ротора

Полеориентированное управление СДПМ без датчика положения

Благодаря бурному развитию микропроцессоров с 1970-х годов начали разрабатываться бездатчиковые векторные методы управления бесщеточными электродвигателями переменного тока. Первые бездатчиковые методы определения угла были основаны на свойстве электродвигателя генерировать обратную ЭДС во время вращения.

Обратная ЭДС двигателя содержит в себе информацию о положении ротора, поэтому вычислив величину обратной ЭДС в стационарной системе координат можно рассчитать положение ротора.

Но, когда ротор не подвижен, обратная ЭДС отсутствует, а на низких оборотах обратная ЭДС имеет маленькую амплитуду, которую сложно отличить от шума, поэтому данный метод не подходит для определения положения ротора двигателя на низких оборотах.

    Существует два распространенных варианта запуска СДПМ:
  • запуск скалярным методом — запуск по заранее определенной характеристики зависимости напряжения от частоты. Но скалярное управление сильно ограничивает возможности системы управления и параметры электропривода в целом;
  • метод наложения высокочастотного сигнала – работает только с СДПМ у которого ротор имеет явно выраженные полюса.

Полеориентированное управление синхронным двигателем с постоянными магнитами без датчика положения ротора со скалярным запуском

На текущий момент бездатчиковое полеориентированное управление СДПМ во всем диапазоне скоростей возможно только для двигателей с ротором с явно выраженными полюсами.

Источник: https://engineering-solutions.ru/motorcontrol/pmsm/

Синхронный генератор переменного тока — что это? — ООО ПКФ «Энергодизельцентр»

Синхронный генератор (альтернатор) — устройство, с помощью которого осуществляется преобразование механической или других видов энергии в переменный ток.

Первые существенные попытки создания альтернаторов были предприняты еще М. Фарадеем и И. Пикси в 1831 году, но их изобретения не использовались на практике из-за слишком малой мощности. Впервые похожее устройство публично продемонстрировали в 1886 г. Немного ранее, в 1882 г., Д. Гордон разработал довольно мощный двухфазный генератор.

В 1891 г. известный сербский физик и ученый Н. Тесла запатентовал высокочастотный альтернатор. Трехфазное устройство с аналогичным принципом действия создал русский инженер М. Доливо-Добровольский, который в 1903 г. первым в мире запустил полноценную трехфазную электростанцию. Она обеспечивала электроэнергией зерновой элеватор в Новороссийске.

Из чего состоит генератор переменного тока

В стандартном альтернаторе обязательно присутствуют:

  • проводник тока;
  • «якорь» (магнитопровод);
  • магнитная система (обыкновенная, электрическая).

Электричество отправляется из якоря, благодаря угольным щеткам, которые прилегают к кольцу. Дополнительно к нему подсоединены концы проводника, что обеспечивает полноценную работу устройства.

Якорь является подвижной (вращающейся) частью генератора, а статор — статичный (неподвижный) элемент, в котором образуется магнитное поле. Если оно формируется с помощью электричества, то параллельно должен работать еще один генератор, который будет возбуждать действие. Возбудитель оснащен стандартными магнитами.

В зависимости от способа применения устройства и его разновидности якорь приводится в движение различными механизмами. На электростанциях эту функцию выполняют паровые или гидравлические (водяные) турбины. В бытовых условиях гораздо чаще используются устройства, в которых якорь приводится в движение с помощью двигателя внутреннего сгорания, вырабатывающего механическую энергию.

ЭТО ИНТЕРЕСНО:  Как правильно подобрать аккумулятор на автомобиль

Разновидности синхронных генераторов переменного тока

Базовая классификация альтернаторов включает следующие типы устройств:

  1. Высокочастотные генераторы рассчитаны на преобразование механической энергии в электричество высокой частоты. Приспособление работает за счет изменения магнитного потока с помощью воздействия вращающегося ротора на статичный статор. Высокая частотность достигается увеличением количества полюсов и разгоном вращения статора.

    Применяется в качестве источника питания электричеством для радиотелеграфных станций на расстояние до 3 километров. Для меньших промежутков они не подходят, поскольку требуется увеличение частотности. Устройства подразделяются на генераторы, производящие энергию непосредственно в машине, и агрегаты, в которых ток увеличивается за счет статических умножителей.

  2. Гидротурбинный генератор, как становится понятно из названия, функционирует за счет движения гидравлической турбины. Ротор в таких устройствах располагается на одном валу с турбинным колесом. Максимальная мощность подобных агрегатов достигает 100 000 кВт, что является внушительным показателем для электростанций, в особенности автономных. По размеру они ощутимо больше аналогичных аппаратов.

    Диаметр одного ротора может достигать пятнадцати метров. На мощность турбины значительное влияние оказывает скорость, с которой она вращается, маховый момент, характерный для ротора, и протяженность ЛЭП (линии электропередачи). Обмотка размещается непосредственно на статоре, охватывающем явный полюсный ротор, который закреплен на валу.

  3. Паротурбинный генератор, работающий с помощью паровой турбины.

    Наибольшим распространением пользуются двухполюсные и четырехполюсные устройства. Ротор имеет форму внушительного по размеру цилиндра с пазами прямоугольного типа. В специальных пазах на внутренней стороне статора размещается обмотка переменного тока. В машинах, работающих медленно, устанавливается ротор в форме колеса или звезды.

    Если система замкнутая, то охладительные элементы располагаются непосредственно под генератором. В сравнении с предыдущим типом генераторов паротурбинные обладают значительно меньшими размерами.

Самое широкое распространение получили синхронные трёхфазные генераторы, мощности которых варьировались от минимальных значений до нескольких мегаватт.

Работа классических альтернаторов была основана на том, что на роторе располагались кольца и щетки, которые находились в непосредственном контакте со статором.

В большинстве случаев данный механизм был небезопасен, щётки при этом быстро изнашивались, а коллектор якоря требовал непрерывного поддержания в рабочем состоянии. Поэтому были разработаны бесщёточные синхронные генераторы, которые исключили все эти недостатки.

Работа синхронного бесщёточного трёхфазного генератора основана на применении системы независимого возбуждения и автоматических регуляторов напряжения (AVR). AVR помогает не допускать отклонений и скачков, поддерживая выходное напряжение генератора на постоянном уровне.

Если вдруг происходит значительный скачок напряжения, AVR примет всю нагрузку на себя и в первую очередь выйдет из строя, защитив тем самым остальные системы альтернатора.

AVR поставляются отдельно в качестве запасной части и заменить его не сложнее, чем поменять батарейки в любом устройстве.

Генераторы могут быть одноопорные с одним подшипником и двухопорные.

Если генератор вышел из строя, а двигатель находится в хорошем состоянии, то можно заказать генератор отдельно. Для заказа нужно обязательно знать наименование двигателя и присоединительные размеры генератора.

Основная градация здесь по стране производства двигателя — отечественный он или импортный, — поскольку для отечественных двигателей (ЯМЗ, ТМЗ или ММЗ) в большинстве разработаны свои типы для присоединения и стыковки генератора с двигателем (напрямую, через муфту или при помощи стыковочных колец). Импортные же двигатели стыкуются с альтернаторами по единой системе SAE.

Области применения генераторов переменного тока

Переменный ток используется повсеместно в различных отраслях человеческой деятельности. В отличие от постоянного, переменный ток можно передавать на большие расстояния с минимальными потерями.

Используя диодные выпрямители, при необходимости переменный ток можно без особых усилий преобразовать в постоянный, а наоборот сделать не получится. Многочисленные преимущества способствовали его широкому распространению.

Сейчас на переменном токе работает большинство современных бытовых устройств и гаджетов.

Востребованность синхронных генераторов растет с каждым годом. Это касается как больших стационарных агрегатов, так и мобильных (переносных), которые используются преимущественно в быту или на небольших объектах.

Альтернаторы применяются на всех видах электростанций. В промышленности и строительной отрасли они тоже незаменимы. С их помощью обеспечиваются электричеством:

  • административные и жилые сооружения;
  • школы, больницы, детские сады;
  • производственные и коммерческие предприятия;
  • торгово-развлекательные центры.

В удаленных, труднодоступных или не обеспеченных иными источниками энергии местах также используются генераторы переменного тока. Автономные дизельные и бензиновые электростанции тоже оснащаются синхронными генераторами. Отрасли применения альтернаторов не ограничены и продолжают расти.

Обслуживание альтернаторов необходимо производить регулярно, согласно рекомендациям производителя. Иначе велика вероятность возникновения неисправностей или выхода агрегата из строя.

ООО ПКФ «Энергодизельцентр» работает на рынке России и стран ближнего зарубежья более 17 лет. За это время нам удалось создать безупречную репутацию и выработать оптимальный подход сотрудничества. Мы специализируемся на производстве газопоршневых и дизельных электростанций на базе двигателей ЯМЗ.

У нас вы найдете:

  • дизельные и газопоршневые электростанции;
  • силовые установки;
  • комплектующие и аксессуары.

При производстве дизельных и газовых электростанций применяются только надёжные и зарекомендовавшие себя долгими годами стабильной работы генераторы отечественного и импортного производства:

  • БГ, БЭМЗ (Россия);
  • ГС, ОАО Электроагрегат (Россия);
  • Stamford, Cummins (Англия);
  • Marelli Motori (Италия);
  • Leroy Somer (Франция);
  • Linz (Италия) и др.

Доставка заказа осуществляется в пределах Российской Федерации. В странах СНГ также можно приобрести нашу продукцию. Специалисты компании «Энергодизельцентр» готовы помочь в выборе подходящего по характеристикам устройства. Эксперты ответят на любые интересующие вопросы, помогут оформить предварительный заказ. Чтобы получить бесплатную консультацию, необходимо набрать номер 8 800 550-76-40.

Источник: https://e-d-c.ru/info/articles/gazoporshnevye-elektrostantsii/sinkhronnyy-generator-peremennogo-toka-chto-eto-2019/

Турбогенератор | Газовые турбины и ГТУ

Турбогенератор — это турбина, соединенная с генератором, который преобразует механическую энергию движущейся жидкости, такой как жидкая вода, пар, природный газ или воздух в электричество.

Генератор состоит из движущейся части ротора и неподвижной части статора. Наружный слой ротора покрыт электромагнитами, а внутренняя стенка статора облицована витками медной проволоки.

Компания DMEnergy занимается поставкой, ремонтом и обслуживанием газотурбинных, паротурбинных и водотурбинных турбогенераторов.

Паровой электрогенератор

Паровой электрогенератор — преобразует горячую воду в пар под высоким давлением и часто с дополнительными змеевиками для перегрева пара. Паровые электрогенераторы используют конструкцию с прямоточным принудительным потоком для преобразования поступающей воды в пар в течение одного прохода через змеевик воды. Когда вода проходит через змеевик, тепло передается от горячих газов, что заставляет воду превращаться в пар.

Конструкция генератора не использует паровой барабан, в котором пар бойлера имеет зону отсоединения от воды, поэтому для достижения качества пара 99,5% требуется использование сепаратора пара / воды.

Паровые генераторы не используют большой сосуд высокого давления, как в жаровой трубе, они часто меньше по размеру и быстрее запускаются.

Однако это происходит за счет выработки энергии, так как генераторы имеют низкие скорости выключения и, следовательно, менее способны обеспечивать подачу пара в периоды переменного спроса.

Турбогенераторы для ТЭЦ

Компания DMEnergy поставляет и обслуживает турбогенераторы на ТЭЦ. Более того, мы можем оказать реинжиниринговые услуги с привлечением специалистов завода-производителя турбогенератора. Обычно турбогенератор — это синхронный генератор, непосредственно соединённый с турбиной тепловой электростанции.

Так как турбины, используемые на ТЭЦ, работающих на органическом топливе, имеют наилучшие технико-экономические показатели при больших частотах вращения, то турбогенератор, находящиеся на одном валу с турбинами, должен быть быстроходными. Любое оборудование со временем может выйти из строя и тогда потребуется диагностика и ремонт. Ремонт турбогенераторов ТЭЦ следует проводить силами квалифицированного персонала, предварительно проведя предварительные приготовления и испытательные работы

Испытания турбогенераторов

Испытание турбогенератора является важным и необходимым процессом. Испытания гарантируют, что соответствующая часть оборудования исправна и способна выполнять свои функции. Тестирование проводится в симуляциях, которые, как правило, очень похожи на практический сценарий, в котором работает турбогенератор.

Тестирование предоставляет экспериментальные данные, такие как эффективность, потери, характеристики, температурные пределы и т. д. Тепловые испытания турбогенераторов необходимы для определения тепловых характеристик и возможных нагрузок турбогенераторов.

Компания DMEnergy осуществляет как ввод в эксплуатацию, так и проводит шеф-монтажные и пусконаладочные работы.

Такие испытания проводится в первый год эксплуатации для определения температур стали статора, обмоток ротора и статора, проверки работы газоохладителя. Результаты испытаний сравниваются с техническими условиями и ГОСТ, и по ним устанавливаются допустимые в эксплуатации режимы работы генератора.

Испытания проводятся при нагрузках 60, 75, 90 и 100 % номинальной мощности. Изоляция турбогенератора главным образом определяет срок эксплуатации, надежность и безопасность всей системы.

С этой целью проводятся высоковольтные испытания турбогенераторов, которые выявляют все имеющиеся дефекты и части требующие замены.

Бандажное кольцо турбогенератора

Специалисты компании DMEnergy рекомендуют регулярно проводить бороскопическое обследование обмоток под бандажными кольцами. Сегодня большая часть энергии производится в турбогенераторах, которые работают со скоростью 3000 оборотов в минуту.

Вращающееся магнитное поле создается обмотками с переменной полярностью, которые вызваны постоянным током. Обмотки выступают из продольных канавок ротора на концах шара и образуют головку обмотки, которая должна быть защищена от центробежной силы.

Бандажные кольца ротора турбогенератора принимают на себя эту функцию.

Они являются компонентом, несущим наибольшую нагрузку в турбогенераторе. Бандажное кольцо турбогенератора выдерживает огромную центробежную силу в генераторах — до 3600 оборотов в минуту. Бандажные кольца генератора-ротора, которые вращаются вместе с ротором и обычно изготовлены из немагнитных стальных сплавов, являются наиболее напряженными компонентами во всей системе турбины и генератора-ротора.

Ротор турбогенератора

Ротор турбогенератора – это вращающийся электрический компонент в двигателе. Он содержит группу электромагнитов, организованных вокруг цилиндра, и их полюса обращены к полюсам статора.

Ротор расположен внутри статора и установлен на валу двигателя переменного тока.

Статор состоит из рамы статора для поддержки многослойного сердечника, обмоток и многослойного сердечника статора, снабженного вентиляцией для того, чтобы минимизировать потери на вихревые токи, его целью является поддержка обмотки статора.

Ротор вращающейся части состоит из вала ротора с прорезями для размещения обмотки возбуждения (обмотки ротора турбогенератора), который представляет собой единый цельный элемент, способный выдерживать высокие механические нагрузки и немагнитные стопорные кольца ротора для преодоления центробежной силы.

Основная задача ротора – поглощать механическую энергию вне генератора и использовать ее для создания вращательного движения. Ротор в турбогенераторе может быть прикреплен к набору лопаток ветряных турбин, комплекту лопаток реактивной или импульсной паровой турбины, лопаток гидротурбины или газового двигателя.

Выбег ротора турбогенератора – это необходимый эксплуатационный этап, по которому можно сделать вывод об исправности турбоагрегата.

Система возбуждения турбогенератора

Компания DMEnergy проводит диагностику системы возбуждения, а именно — проверку релейной защиты турбогенератора, АРН (автоматического регулятора напряжения), ARV (automatical regulator voltage), диодов обратного тока и диодного кольца.

Система, которая используется для подачи необходимого тока поля на обмотку ротора генератора, называется системой возбуждения.

Основным требованием к системе возбуждения является надежность при любых условиях эксплуатации, простота управления, обслуживания, стабильность и быстрый переходный процесс.

Требуемая величина возбуждения зависит от тока нагрузки, коэффициента мощности нагрузки и скорости машины. Система возбуждения – это единое целое, в котором каждый генератор имеет свой возбудитель.

Возбуждение турбогенератора в основном подразделяется на три типа:

  • система возбуждения постоянного тока;
  • система возбуждения переменного тока;
  • система статического возбуждения.

Для того чтобы добиться изменения тока возбуждения пропорционально току нагрузки генератора, используется токовый трансформатор. Система APH обеспечивает ток возбуждения даже при коротком замыкании.

Система возбуждения постоянного тока имеет два возбудителя — основной возбудитель и пилотный возбудитель. Выходной сигнал возбудителя регулируется автоматическим регулятором напряжения (система AVR) для управления напряжением выходной клеммы генератора.

Вход трансформатора тока в AVR обеспечивает ограничение тока генератора во время отказа.

Синхронный генератор переменного тока, который работает в паре с газовой турбиной, называют турбогенератором. задача – преобразование механической энергии вращения ротора турбины в электрическую. Главные компоненты электрогенератора – ротор и статор. Каждый из главных компонентов включает в себя различное число элементов и систем. Ротор – вращающийся элемент генератора, статор – неподвижный.

Механическая энергия преобразуется в электрическую через магнитное поле ротора в статоре. Магнитное поле создается несколькими путями: постоянными магнитами, током постоянного напряжения.

Различают несколько типов генераторов: 2-х полюсные (скорость вращения 3000 об/мин.), 4-x полюсные (1500 об/мин) и многополюсные. Генераторы также различаются по типу применяемой системы охлаждения.

Существуют модели с воздушным, водяным, масляным и даже водородным охлаждением. Также, не редко применение находят и комбинированные системы охлаждения.

Охлаждение турбогенератора

Воздушная пробка, протечки, поломка кулера и другие проблемы с охлаждением турбогенератора, приводят его перегреву и выходу из рабочего состояния. DMEnergy прекрасно справляется с решением этой проблемы.

Системы охлаждения турбогенераторов представлены несколькими способами: водородное, воздушное, охлаждение водой и водородно-водяное охлаждение. Турбогенераторы с водородным охлаждением — это турбогенератор с газообразным водородом в качестве теплоносителя.

Водородное охлаждение турбогенератора предназначено для создания атмосферы с низким сопротивлением и охлаждения для одноосных и комбинированных циклов в сочетании с паровыми турбинами.

Из-за высокой теплопроводности и других благоприятных свойств газообразного водорода, водородный турбогенератор — это наиболее распространенный сегодня тип в своей области. Турбогенераторы с воздушным охлаждением используют циркуляцию воздуха для снижения температуры.

В системах воздушного охлаждения двигатель забирает холодный воздух из атмосферы и выдувает его изнутри через разные части генераторной установки. Это удерживает генератор от перегрева.

Система воздушного охлаждения бывает либо с открытой вентиляцией, либо полностью закрытая. В системе с открытым воздухом используется атмосферный воздух, а выхлопные газы выпускаются обратно в атмосферу. В закрытой системе воздух рециркулирует внутри, чтобы охладить внутренние части генератора.

Водяное охлаждение применяется непосредственно для охлаждения обмоток статора и ротора турбогенераторов при помощи подачи воды. Конструкция турбогенераторов с полностью водяным охлаждением — взрывозащищена.

Турбогенераторы обладают высочайшей надежностью, улучшенной способностью к частым пускам и перегрузочной способности благодаря низким уровням нагрева и вибрации.

У турбогенераторов с водородно-водяным охлаждением процесс охлаждения распределяется следующим образом: обмотка ротора охлаждается при помощи пресной воды, а ротор с помощью водорода. Внешняя поверхность также охлаждается водородом.

Производители генераторов

Наша компания осуществляет сервис, ремонт, поставку как самого оборудования, так и сопутствующих комплектующих. Сотрудничаем с производителями напрямую. Благодаря этому поставляем гарантийное оригинальное оборудование для турбогенераторов по оптимальной цене прямо с завода производителя. Для услуг связанные с сервисом возможно договориться о выезде специалиста от самого производителя.

Один из ведущих производителей турбогенераторов на сегодняшний день – компания Brush Turbogenerators. Генераторы отличаются высоким качеством и развитой системой управления, которая позволяет осуществлять параллельную синхронную сбалансированную работу нескольких установок между собой и сетью, релейную защиту и интеграцию с системой управления ГТУ.

Так же большой популярностью пользуются генераторы такого производителя, как General Electric типа ELIN. Например турбогенератор ELIN 6FA, больше известный как GE 6F.03

Статья написана при участии господина Андрианова А., начальника электротехнического отдела компании DMEnergy.

Источник: https://dm.energy/gazovye-turbiny/komponenty-gtu/generator

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]