Особенности применения основных видов силовых диодов
- 6 мая 2019 г. в 12:03
- 151
Большое значение при проектировании преобразовательных устройств имеет правильный выбор типа силовых полупроводниковых приборов. В процессе расчетов проектировщик должен учитывать множество различных причин, влияющих на нормальную работу преобразователя:
- возникновение недопустимых перенапряжений при коммутации
- перегрев приборов из-за повышения температуры внутри конструкции преобразователя за счет нагрева силовых элементов схемы
- недостаточно мощный сигнал управления
Игнорирование хотя бы одной из этих причин исключает нормальную работу преобразователя.
Силовые полупроводниковые диоды предназначены для применения в преобразователях электроэнергии, а также в цепях постоянного и переменного тока различных силовых установок. Исходя из типа приборов, диоды могут применяться в качестве выпрямительных и для защиты от коммутационных перенапряжений, в системах возбуждения мощных турбогенераторов и синхронных компенсаторов, в низковольтных выпрямителях сварки и гальванического оборудования, в автомобильных и тракторных электрогенераторах.
Диоды низкочастотные (штыревое исполнение)
Диоды Д161-200, Д161-250, Д161-320, Д171-400 предназначены для применения в электротехнических и радиоэлектронных устройствах в цепях постоянного и переменного тока частотой до 500 Гц. Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц и многократные удары длительностью 2-15 мс с ускорением 147 м/с2. Это диоды прямой полярности, при этом анодом диодов является медное основание, катодом — гибкий вывод.
Диоды низкочастотные (таблеточное исполнение)
Диоды Д133-400, Д133-500, Д133-800, Д143-630, Д143-800, Д143-1000, Д253-1600 предназначены для применения в цепях постоянного и переменного тока частотой до 500 Гц в электротехнических устройствах общего назначения.
Диоды устойчивы к воздействию синусоидальной вибрации в диапазоне частот 1-100 Гц с ускорением 49м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2.
Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.
Диоды низкочастотные лавинные предназначены для применения в устройствах общего назначения частотой до 500 Гц.
Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц с ускорением 49м/с2, многократных ударов длительностью 2-15 мс с ускорением 147 м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2. Диоды ДЛ 161-200, ДЛ 171-320 имеют штыревое исполнение.
Анодом диодов является медное основание, катодом — гибкий вывод. Диоды ДЛ 123-320, ДЛ133-500 имеют таблеточное исполнение. Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.
Диоды быстровосстанавливающиеся (частотные)
Диоды ДЧ 261-250 и ДЧ 261-320 (штыревое исполнение), диоды ДЧ 243-500, 253-1000 и др. (таблеточное исполнение) применяются в статических преобразователях электроэнергии, а также в других цепях постоянного и переменного тока частоты 2000 Гц и выше, в различных силовых установках, в которых требуются малые времена обратного восстановления и малые заряды восстановления. Эти диоды отличаются высокой нагрузочной способностью по току при высоких частотах.
Промышленные области применения основных типов силовых диодов:
- диоды Д 161, Д171 предназначены для применения в неуправляемых и полууправляемых выпрямительных мостах, в маломощной сварочной аппаратуре.
- диоды Д 123, Д133, Д143, Д153, Д173 используются в мощных электроприводах постоянного тока в промышленности и транспорте, в мощных сварочных аппаратах.
- диоды ДЛ161, ДЛ171, ДЛ123, ДЛ133, ДЛ143, ДЛ153, ДЛ173 предназначены для применения в выпрямителях для электролиза и гальваники, в источниках постоянного тока, в неуправляемых и полууправляемых выпрямительных мостах.
- диоды ДЧ261, ДЧ133, ДЧ143, ДЧ153 используются в мощных электроприводах постоянного тока в промышленности и транспорте, в выпрямителях для электрометаллургии, в инверторах, в преобразователях частоты для транспорта, в источниках бесперебойного питания.
Источник: https://www.elec.ru/articles/osobennosti-primeneniya-osnovnyh-vidov-silovyh-dio/
Обзор отечественных и иностранных диодов
Как известно мир электроники и электротехники является самым быстрорастущими и быстро развивающимся в мире. Практически каждый прибор в доме наполовину состоит из электроники и радиотехники.
Если взять электронику и радиотехнику с точки зрения экономики, то начиная с 1970 года, когда стали появляться частные радиоэлектронные компании в Европе и Америке то курсы ихних акций никогда ни разу не падали, а только лишь подымались. Особенно это касается крупных компьютерных компаний.
Зачастую наши электроприборы и компьютеры ломаются по различным причинам, а именно износ, человеческий фактор, перегрев и многое другое.Как известно самые частые неисправности, связанны с различными транзисторами и конденсаторами. Третье же место занимают диоды. И сегодня мы поговорим именно об этих приборах, а точнее об их характеристиках.
Первое что следует сказать, это то, что диод это такой прибор, предназначенный для пропуска в цепи питания. Они не просто пропускают ток, а преобразуют его из переменного тока в постоянный, то есть из бытовой розетки идёт переменный ток, а диод его преобразует в постоянный.
В цифрах это выглядит примерно так: Из бытовой розетки в чайник идёт напряжение в 220в(вольт), то диод будет преобразовывать его в постоянный ток в размере 22 А(ампер). Диоды встречаются практически во всей бытовой технике.
Первым диодом, который мы сегодня опишем, является диод Д 242
Данный диод отечественного производства. Изготавливается в России. Имеет пропускную способность в 100 В при скорости в 1,1 кГц. Данный диод может преобразовать лишь 100 В., то есть всего 10 А постоянного напряжения.
Если данный диод напрямую подключить к розетке в 220 В, то пропускной мощности диода, скорее всего не хватит и сгорит, даже может расплавиться. Скорость в 1,1 кГц является весьма низкой, то есть могут быть скачки напряжения. Но, так или иначе, если, к примеру, ставить 2 или 3 таких диода, то и преобразование тока и пропускная способность будут весьма приличными.
Хотя на деле обычно так и происходит. Данный диод весит всего 18 г и выполнен в металлическом корпусе с жёсткими прочными выводами. Также имеет аналог, то есть в случае отсутствии диода д 242 его можно заменить диодами д 243, д 245 и д 246.
Следующий в нашем списке диод КД 202В
Стоит также отметить, что диод отечественного производства, и изготовлен по тем же технологиям что и предыдущий, то есть он в металлическом корпусе с жёсткими выводами, но он уже весит всего 7 грамм.
Также следует отметить, что данный диод по пропускной способности гораздо мощнее диода д 242. Это значит, что напряжение он будет пропускать гораздо быстрее и прибор, на который будет ставиться этот диод, будет более устойчив к мелким перепадам напряжения.
Пропускает через себя он также 100В. Аналоговым диодом является диод 2д202в.
Следующий в списке диод Д 226
Это диод уже другой. Он имеет сплавной. Корпус состоит уже с металло-стеклянных материалов. Его пропускная способность и напряжение в разы выше двух предыдущих диодов. Он пропускает через себя 300 В переменного тока. Если сравнивать с двумя предыдущими то диоды кд 202 в и д 242 пропускали через себя всего 100 в переменного тока, и на прибор к которому подключается 220 В ( то есть обычная розетка) их необходимо ставить минимум 3 таких диода.
Диод д226 способен в одиночку пропустить и преобразовать напряжение в 220 В. При этом стоит отметить, что при работе данного диода уже важна температура. Например, если при температуре от -60 С до +50 С он способен пропускать через себя 300 В, то уже от +50 С до +80 С он сможет пропустить лишь 250 В.
Следующий диод в нашем списке это 1N4007
Он является самым распространенным среди всех остальных диодов. Данный диод уже импортный и выпускается в США. Возможно, он приобрёл свою популярность именно потому, что его ставят на блоки питания всей импортной бытовой аппаратуры. Так как на российском рынке практически не осталось отечественной электроники, то он, разумеется, будет самым используемым.
Но помимо этого его также «любят» и за высокие характеристики, которые откровенно говоря, в разы превосходят отечественные диоды. Данный диод выпускается уже в пластиковом корпусе, что делает его более устойчивым к влажности и воздействию воды. Массу его весьма сложно определить, так как он практически «пушинка» в руке.
Имея такую низкую массу, данный диод имеет пропускную способность в 1000 В. Данный диод будет пропускать самое чистое напряжение, которое может быть. Учитывая его пропускную способность в наше время, он является самым устойчивым к перепадам напряжения. Так же хочется сказать, что данный диод является самым современным.
На этом, пожалуй, всё. Как видно иностранные диоды весьма превосходят отечественные диоды во всех смыслах.
Но это уже не от того что отечественные электронщики не могут придумать диод, а скорее от того что после распада Советского Союза сфера электроники очень сильно затормозилась, если не остановилась совсем.
Хотя может быть и такое что отечественная электроника работает только для «самих себя», то есть в узком направлении выпускает ту или иную продукцию, которая не будет использоваться обычным потребителям, например оборонная и сталелитейная промышленность.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Источник: https://elektronchic.ru/elektronika/obzor-diodov.html
Разновидности полупроводниковых диодов
Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Условное графическое обозначение стабилитрона представлено на рис. 1.44, а.
В указанном режиме при значительном изменении тока стабилитрона напряжение изменяется незначительно. Говорят, что стабилитрон стабилизирует напряжение. Изобразим для примера вольт-амперные характеристики кремниевого стабилитрона Д814Д (рис. 1.45).
В стабилитронах может иметь место и туннельный, и лавинный, и смешанный пробой в зависимости от удельного сопротивления базы. В стабилитронах с низкоомной базой (низковольтных, до 5,7 В) имеет место туннельный пробой, а в стабилитронах с высокоомной базой (высоковольтных) — лавинный пробой.
Основными являются следующие параметры стабилитрона: uст— напряжение стабилизации (при заданном токе в режиме пробоя); iст.мин — минимально допустимый ток стабилизации;
iст.макс— максимально допустимый ток стабилизации;
rт — дифференциальное сопротивление стабилитрона (на участке пробоя), rт = du / di;
αuст (ТКН) — температурный коэффициент напряжения стабилизации.
Величины u ст, iст.мин и iст.макс принято указывать как положительные.
Не рекомендуется использовать стабилитрон при обратном токе, меньшем по модулю, чем i ст.мин, так как стабилизация напряжения при этом будет неудовлетворительной (дифференциальное сопротивление будет чрезмерно большим). Если же обратный ток по модулю превысит i ст.макс, то стабилитрон может перегреться, начнется тепловой пробой и прибор выйдет из строя. Чем меньше величина rт, тем лучше стабилизация напряжения.
По определению α u ст — это отношение относительного изменения напряжения стабилизации к абсолютному изменению температуры окружающей среды при постоянном токе стабилизации.
Пусть при температуре t1 напряжение стабилизации было равно u ст1 . Тогда при температуре t2 напряжение стабилизации u ст2 можно в соответствии с определением α u ст вычислить по формуле uст2=uст1+uст1· αuст· ( t2 — t1)
У стабилитронов с туннельным пробоем коэффициент аист отрицателен: α uст< 0. У стабилитронов с лавинным пробоем коэффициент αu ст положителен: α uст> 0.
Иногда стабилитрон с лавинным пробоем включают последовательно с диодом, работающим в прямом направлении. У диода соответствующий температурный коэффициент отрицательный, и он компенсирует положительный коэффициент стабилитрона.
Для стабилитрона Д814Д (при t = 25 ° С): iст.мин= 3 мА,iст.макс= 24 мА, rт — не более 18 Ом,αu ст — не более 0,00095 1/ ° С.
Для примера применения стабилитрона обратимся к схеме так называемого параметрического стабилизатора напряжения (рис. 1.46).
Легко заметить, что если напряжение uвх настолько велико, что стабилитрон находится в режиме пробоя, то изменения этого напряжения практически не вызывают изменения напряжения ивых (при изменении напряжения uвх изменяется только ток i, а также напряжение uR: uR = i · R).
В режиме пробоя отсутствует инжекция неосновных носителей, и поэтому нет накопления избыточных зарядов. Вследствие этого стабилитрон является быстродействующим прибором и хорошо работает в импульсных схемах.
Стабистор
Это полупроводниковый диод, напряжение на котором при прямом включении (около 0,7 В) мало зависит от тока (прямая ветвь на соответствующем участке почти вертикальная). Стабистор предназначен для стабилизации малых напряжений.
Диод Шоттки
В диоде Шоттки используется не p-n-переход, а выпрямляющий контакт металл-полупроводник. Условное графическое обозначение диода Шоттки представлено на рис. 1.44, б.
Обратимся к соответствующей зонной диаграмме (рис. 1.47), которую полезно сравнить с зонной диаграммой для невыпрямляющего контакта.
Для выпрямляющего контакта металл-полупроводник n-типа характерно то, что контактная разность потенциалов φмп = φм — φп положительна: φмп > 0.
Энергетические уровни, соответствующие зоне проводимости, в полупроводнике заполнены больше, чем в металле. Поэтому после соединения металла и полупроводника часть электронов перейдет из полупроводника в металл.
Это приведет к уменьшению концентрации электронов в полупроводнике n -типа. Возникнет область полупроводника, обедненная свободными носителями электричества и обладающая повышенным удельным сопротивлением.
В области перехода появятся объемные заряды и образуется потенциальный барьер, препятствующий дальнейшему переходу электронов из полупроводника в металл.
Если подключить источник внешнего напряжения плюсом к металлу, а минусом к полупроводнику n-типа, то потенциальный барьер понизится и через переход начнет протекать прямой ток. При противоположном подключении потенциальный барьер увеличивается и ток оказывается очень малым.
При работе диода Шоттки отсутствуют инжекция неосновных носителей и соответствующие явления накопления и рассасывания, поэтому диоды Шоттки — очень быстродействующие приборы, они могут работать на частотах до десятков гигагерц ( 1 ГГц = 1 · 109 Гц).
У диода Шоттки может быть малый обратный ток и малое прямое напряжение (при малых прямых токах) — около 0,5 В, что меньше, чем у кремниевых приборов.
Максимально допустимый прямой ток может составлять десятки и сотни ампер, а максимально допустимое напряжение — сотни вольт.
Для примера изобразим прямые ветви вольт-амперных характеристик (рис. 1.48) кремниевого диода КД923А с барьером Шоттки (диода Шоттки), предназначенного для работы в импульсных устройствах.
Для него iпр.макс= 100 мА,u обр.макс= 14В (при t < 35°C), время жизни носителей заряда — не более 0,1 не, постоянный обратный ток при uобр =10 В и t = 25°С — не более 5 мкА.
Варикап
Это полупроводниковый диод, предназначенный для работы в качестве конденсатора, емкость которого управляется напряжением. Условное графическое обозначение варикапа представлено на рис. 1.44, в.
На варикап подают обратное напряжение. Барьерная емкость варикапа уменьшается при увеличении (по модулю) обратного напряжения. Характер изменения емкости у варикапа такой же, как и у обычного диода.
Туннельный диод
Это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении. Характерной особенностью туннельного диода является наличие на прямой ветви вольт-амперной характеристики участка с отрицательным дифференциальным сопротивлением. Условное графическое обозначение туннельного диода представлено на рис. 1.44, г.
Для примера изобразим (рис. 1.49) прямую ветвь вольт-амперной характеристики германиевого туннельного усилительного диода 1И104А (iпр.макс= 1мА — постоянный прямой ток,
uобр.макс = 20 мВ), предназначенного для усиления в диапазоне волн 2 10 см (это соответствует частоте более 1 ГГц).
Общая емкость диода в точке минимума характеристики составляет 0,81,9 пФ. Полезно отметить, что проверка диода тестером не допускается. Туннельные диоды могут работать на очень высоких частотах — более 1 ГГц.
Наличие участка с отрицательным дифференциальным сопротивлением на вольт-амперной характеристике обеспечивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основного элемента генераторов.
В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.
Обращенный диод
Это полупроводниковый диод, физические явления в котором подобны физическим явлениям в туннельном диоде, поэтому зачастую обращенный диод рассматривают как вариант туннельного диода. При этом участок с отрицательным дифференциальным сопротивлением на вольт-амперной характеристике обращенного диода отсутствует или очень слабо выражен.
Обратная ветвь вольт-амперной характеристики обращенного диода (отличающаяся очень малым падением напряжения) используется в качестве прямой ветви «обычного» диода, а прямая ветвь — в качестве обратной ветви. Отсюда и название — обращенный диод.
Условное графическое обозначение обращенного диода представлено на рис. 1.44, д.
Изобразим для примера вольт-амперные характеристики германиевого обращенного диода 1И104А (рис. 1.50), предназначенного, кроме прочего, для работы в импульсных устройствах (постоянный прямой ток iпр.макс — не более 0,3 мА, постоянный обратный ток i обр.макс — не более 4 мА (при t < 35°С), общая емкость в точке минимума вольт-амперной характеристики 1,2 1,5 пФ).
Источник: https://pue8.ru/silovaya-elektronika/829-raznovidnosti-poluprovodnikovykh-diodov.html
В каких устройствах используется в электротехнике диоды — вместе мастерим
- Прямой вариант
- На устройство подаётся электрический ток, под воздействием которого образуется электрическое поле в области между двумя электродами. Его направление будет противоположным по отношению к внутреннему диффузионному полю.
- Затем происходит резкое сужение запирающего слоя, которое получается из-за значительного снижения напряжения электрического поля.
- Следствием этого станет способность большинства электронов свободно перемещаться из одной области (n-типа) в другую (p-типа).
- Во время этого процесса показатели дрейфового тока не изменятся, так как они зависят только от количества заряженных частиц, находящихся в области p-n перехода.
- Электроны способны перемещаться из n-области в p-область, что приводит к дисбалансу их концентрации. В одной из областей будет недостаток частиц, а в другой — избыток.
- Из-за этого часть электронов перемещается вглубь полупроводника, что становится причиной разрушения его электронейтральности.
- В этом случае полупроводник стремится к восстановлению своей нейтральности и начинает получать заряд от подключённого источника питания. Всё это приводит к образованию тока во внешней электроцепи.
- После включения источника питания в области p-n перехода образуется электрическое поле. Его направление будет одинаковым с внутренним диффузионным полем.
- Из-за этого будет происходить расширение запирающего слоя.
- Находящееся в области p-n перехода поле будет ускорять движение электронов, но оставлять неизменными показатели дрейфующего тока.
- Из-за всех этих действий будет постепенно нарастать обратное напряжение, которое поспособствует стремлению электрического тока к максимальным значениям.
- Электрический пробой. Это одна из наиболее распространённых поломок, которые встречаются у диодов. Она является обратимой, так как не приводит к разрушению диодного кристалла. Исправить её можно путём постепенного снижения подаваемого напряжения.
- Тепловой пробой. Такая неисправность более губительна для диода.
Она возникает из-за плохого теплоотвода или перегрева в области p-n перехода. Последний образуется только в том случае, если устройство питается от тока с чрезмерно высокими показателями. Без проведения ремонтных мероприятий проблема только усугубится. При этом произойдёт рост колебания атомов диодного кристалла, что приведёт к его деформации и разрушению.
- Обрыв.
При возникновении этой неисправности устройство прекращает пропуск электрического тока в обоих направлениях. Таким образом, он становится изолятором, блокирующим всю систему. Для устранения поломки нужно точно определить её местонахождение. Для этого следует применять специальные высокочувствительные тестеры, которые повысят шанс обнаружить обрыв.
- Утечка.
Под этой поломкой понимают нарушение целостности корпуса, вызванного физическим или иным воздействием на прибор.
- Корпус . Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
- Катод . Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
- Подогреватель . Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
- Анод . Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
- Кристалл . Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.
- Полная взаимозаменяемость;
- Отличные пропускные параметры;
- Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.
- Первая буква определяет материал, из которого изготовлен прибор;
- Наименование устройства;
- Цифра, определяющая назначение;
- Напряжение прибора;
- Число, которое определяет прочие параметры (зависит от типа детали).
- Сопротивление при прямом подключении – 0 Ом;
- Тепловой потенциал – VG = +-0,1 В.;
- На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.
Этот способ включения диода в электрическую цепь называют наиболее простым и часто используемым. В его основе лежит подсоединение положительного полюса к области p-типа, а отрицательного — к n-типа.
Описание работы диода при прямом подключении:
Обратный метод
Этот способ подключения диода к общей схеме используется гораздо реже. В его основе лежит изменение полярности внешнего источника питания, который участвует в процессе передачи напряжения.
Особенности функционирования диода при обратном включении:
Возможные неисправности
Во время работы устройств с диодами могут возникать различные поломки. Это происходит из-за старения элементов или их амортизации.
Специалисты по ремонту различают 4 вида неисправностей.
Среди них такие:
Диод — важный элемент конструкции, который обеспечивает исправную и бесперебойную работу устройства. При правильном выборе этого элемента и обеспечении оптимальных условий работы можно избежать каких-либо неисправностей.
Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.
Особенности устройства
Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.
Диод состоит из следующих основных элементов:
Источник: https://vmeste-masterim.ru/v-kakih-ustrojstvah-ispolzuetsja-v-jelektrotehnike.html
Конвертер величин
Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.
Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.
Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.
Инфракрасный | Арсенид галлия (GaAs) | 850-940 нм | |
Красный | Арсенид-фосфид галлия (GaAsP) | 620-700 нм | 1.6—2.0 В |
Оранжевый | Арсенид-фосфид галлия (GaAsP) | 590-610 нм | 2.0—2.1 В |
Желтый | Арсенид-фосфид галлия (GaAsP) | 580-590 нм | 2.1—2.2 В |
Зеленый | Фосфид алюминия-галлия (AlGaP) | 500-570 нм | 1.9—3.5 В |
Синий | Нитрид индия-галлия (InGaN) | 440-505 нм | 2.48—3.6 В |
Белый | Диоды с люминофором или трехцветные RGB | Широкий спектр | 2.8—4.0 В |
Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:
Вольтамперные характеристики типичных светодиодов различных цветов
Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов.
Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения.
Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.
Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает.
Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя.
Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.
Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня
Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:
Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.
После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.
Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле
Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с
Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.
А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:
Тогда общее потребление будет равно
КПД схемы включения светодиода с ограничительным резистором:
Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:
Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами
Светодиодные массивы
Одиночный светодиод можно зажигать с помощью токоограничительного резистора.
Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания.
Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.
Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.
Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду.
Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств.
Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.
Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи.
Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются.
В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.
При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.
Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них.
При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении.
Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.
В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.
Расчет токоограничительных резисторов
Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как
Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как
Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.
Количество цепей с максимальным количество светодиодов в цепи Nstrings:
Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :
Если Nremainder LEDs = 0, то дополнительной цепи не будет.
Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:
Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:
Общая мощность PLED, рассеиваемая всеми светодиодами:
Мощность, потребляемая всеми резисторами:
Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.
Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.
Рассчитаем общую мощность, потребляемую всеми резисторами:
Рассчитаем общую мощность, потребляемую светодиодным массивом:
Рассчитаем ток, который должен обеспечить источник питания:
И наконец, рассчитаем КПД нашего массива:
Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.
Источник: https://www.translatorscafe.com/unit-converter/ru-RU/calculator/led-resistor/?vs=12amp;if=20amp;vf=2amp;nt=30
Как работает стабилитрон
Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.
Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.
В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.
Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.
Стабилитрон или диод Зенера
Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:
Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.
Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза
Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.
Напряжение стабилизации
Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?
Давайте возьмем стакан и будем наполнять его водой
Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.
Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой.
Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан.
Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.
Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.
Маркировка стабилитронов
Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:
Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.
Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:
5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?
Катод у зарубежных стабилитронов помечается в основном черной полосой
Как проверить стабилитрон
Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.
Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.
Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:
где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение
Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:
Uвх=Uвых.стаб +Uрезистора
Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.
Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл
Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем блок питания, а справа замеряем мультиметром полученное напряжение:
Теперь внимательно следим за показаниями мультиметра и блока питания:
Так, пока все понятно, еще добавляем напряжение Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.
Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!
Еще добавляем Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.
Вольт-амперная характеристика стабилитрона
Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:
где
Iпр – прямой ток, А
Uпр – прямое напряжение, В
Эти два параметра в стабилитроне не используются
Uобр – обратное напряжение, В
Uст – номинальное напряжение стабилизации, В
Iст – номинальный ток стабилизации, А
Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.
Imax – максимальный ток стабилитрона, А
Imin – минимальный ток стабилитрона, А
Iст, Imax, Imin – это сила тока, которая течет через стабилитрон при его работе.
Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.
Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне.
Самое главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением.
На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).
Заключение
Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:
Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).
В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.
На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.
Источник: https://www.ruselectronic.com/printsip-raboty-stabilitrona/
Классификация диодов
Учитывая различные особенности характеристик и конфигурации диодов, их можно группировать по различным признакам. Приведём наиболее часто употребляемые классификации.
Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные предназначены для преобразования переменного напряжения (тока) в постоянное.
По материалу проводимости диоды можно разделить на вакуумные (ламповые) и полупроводниковые.
Хотя вакуум, как таковой, не совсем корректно называть материалом, тем не менее, это среда, в которой происходит движение электронов, а значит, вакуум обладает проводимостью, и его можно рассматривать как вполне материальный объект, обладающий конкретными электрическими свойствами.
По конфигурации p-n перехода
В зависимости от того, какое исполнение имеет p-n переход полупроводникового диода, их можно разделить на точечные и плоскостные. По технологии изготовления p-n перехода их можно разделить на сплавные, диффузионные и эпитаксиальные.
По назначению
Если рассматривать функции, выполняемые диодами в различных узлах электронных и электрических схем, можно разделить их по назначению на две больших группы: Выпрямительные и специальные.
По частоте и форме переменного напряжения
Все диоды имеют предельную частоту, при которой они могут работать без отклонения их электротехнических характеристик за допустимые пределы. Ряд предельных рабочих частот различных диодов очень обширный, поэтому частотная классификация условна:
В зависимости от частоты и формы переменного напряжения:
— Низкочастотные диоды;
— Высокочастотные диоды;
— Импульсные диоды.
Специальные типы
Вольтамперная характеристика диода на различных участках имеет свои особенности. Некоторые электротехнические параметры диода на отдельных участках его ВАХ так же имеют уникальные свойства, на которых основана работа того или иного типа диода. На основе этих особенностей существует классификация специальных типов:
— Диоды Шоттки;
— СВЧ-диоды;
— Стабилитроны;
— Стабисторы;
— Варикапы;
— Светодиоды;
— Фотодиоды;
— Pin диод;
— Лавинный диод;
— Лавинно-пролётный диод;
— Диод Ганна;
— Туннельные диоды;
— Обращённые диоды.
По мощности
В зависимости от конструктивных особенностей, разные диоды способны рассеивать в пространство различную мощность, которая ограничивается тепловым разрушением материала проводимости или p-n перехода. Таким образом, диоды делят на:
— Маломощные;
— Средней мощности;
— Большой мощности (силовые).
Источник: https://volt-info.ru/klassifikaciya-diodov
Полупроводниковые диоды
Полупроводниками являются вещества, занимающие промежуточное положение между проводниками и изоляторами, по своим электропроводящим свойствам. В полупроводниках, как и в металлах ток представляет из себя упорядоченное движение заряженных частиц.
Однако, вместе с перемещением отрицательных зарядов(электронов) в полупроводниках имеет место упорядоченное перемещение положительных зарядов, т. н. — дырок.
Дырки получаются при участии ионов вещества полупроводника — атомов с сбежавшими электронами. В реальности, ионизированные атомы не покидают своего места, в кристаллической решетке. На самом деле, имеет место поэтапное изменение состояния атомов вещества, когда электроны перескакивают с одного атома, на другой. Возникает процесс, внешне выглядящий, как упорядоченное движение неких условных положительно заряженных частиц — дырок.
В обычном, чистом полупроводнике соотношение дырок и свободных электродов 50%:50%.
Но стоит добавить в полупроводник небольшое количество вещества — примеси, как это соотношение претерпевает значительные изменения. В зависимости от особенностей добавленного вещества полупроводник приобретает либо ярко выраженную электронную проводимость(n-тип), либо его основными носителями становятся дырки(p-тип).
Полупроводниковый переход(p-n) формируется на стыке двух фрагментов полупроводникового материала, имеющих разную проводимость. Он представляет из себя крайне тонкую область, обедненную носителями обоих типов. p-n переход имеет незначительное сопротивление, когда направление тока — прямое, и очень большое, когда направление тока — обратное.
Обычный полупроводниковый диод состоит из одного полупроводникового перехода, снабженного двумя выводами — анодом(положительным электродом) и катодом — отрицательным электродом. Соответственно, диод обладает свойством односторонней проводимости — он хорошо проводит ток в прямом направлении и плохо в обратном.
Что это означает на практике?
Представим себе электрическую цепь, состоящую из батарейки и лампочки накаливания, подключенной последовательно через полупроводниковый диод. Лампочка будет гореть только в том случае, если анод (положительный электрод) подключен к плюсу источника питания (батарейки) а катод (отрицательный электрод) к минусу — через накальную нить лампочки.
Это и является прямым включением полупроводникового диода. Если поменять полярность источника питания, включение диода окажется обратным — лампочка гореть не будет.
Обратите внимание как выглядит обозначение полупроводникового диода на схеме — треугольная стрелочка, указывающая прямое включение, совпадает с общепринятым в электротехнике направлением тока — от плюса источника питания, к минусу.
Вертикальная черточка примыкающая к ней символизирует преграду для движения тока в обратном направлении.
Существует одно обязательное условие для нормальной работы любого полупроводникового диода. Напряжение источника питания должно превышать некоторый порог (величину потенциала внутреннего смещения p-n перехода).
Для выпрямительных диодов он как правило — меньше 1 вольта, для германиевых высокочастотных диодов порядка 0,1 вольта, для светодиодов может превышать 3 вольта.
Это свойство полупроводниковых диодов можно использовать при создании низковольтных стабилизированных источников питания.
Если диод подключить обратно и постепенно повышать напряжение источника питания, в некоторый момент обязательно наступит обратный электрический пробой p-n перехода. Диод начнет пропускать ток и в обратном направлении, а переход окажется испорченным. Величина максимального допустимого обратного напряжения (Uобр.и.) широко разнится у различных типов полупроводниковых диодов и является очень важным параметром.
Вторым, не менее важным параметром можно назвать предельное значение прямого тока-Uпр. Этот параметр напрямую зависит от величины падения напряжения на переходе полупроводникового диода, материала полупроводника и теплообменных характеристик корпуса.
Заменим источник питания постоянного тока, на источник переменного тока, близкого напряжения.
Лампочка будет гореть, но более тускло, с небольшим мерцанием. Как известно, переменный ток частотой 50 гц. плавно меняет свое направление 50 раз в секунду. Диод пропустит полуволны направленные в его прямом направлении, и обрежет направленные в обратном.
На рисунке ниже, отрицательные полуволны для наглядности, изображены синим цветом, а положительные — красным.
Таким образом на лампочке окажется выпрямленное напряжение, пульсирующее с два раза, меньшей частотой. Результируещее напряжение при этом, окажется несколько ниже номинального. Для более качественного выпрямления переменного тока применяется так называемая, мостовая схема, из четырех диодов в однофазной цепи.
В трехфазной цепи переменного тока, положительная ветвь диодного мост выглядит вот — так:
Для надежной работы при проектировании источников питания выбираются полупроводниковые диоды с 50 % запасом по параметрам Uобр.и. и Jпр. Это связано с тем, что при работе на предельных токах надежность выпрямителя снижается, из-за нагрева p-n переходов.
Выходное напряжение обычного, нестабилизированного источника постоянного электрического тока подвержено колебаниям, из- за изменений напряжения на его входе. Рисунок. При подключении различных потребителей потребляющих разный ток напряжение так же меняется – возрастает при меньшей нагрузке, падает при большей.
Для нормальной работы электронных устройств необходимо это напряжение стабилизировать, сделав его величину независимой от вышеупомянутых факторов. Стабилитроны это полупроводниковые диоды, использующиеся для стабилизации напряжения в различных источниках питания. В отличии от обычных диодов работают при обратном включении, в режиме пробоя.
Это не наносит им вреда, если не превышается предел рассеивающей мощности, величина которого является производной, от падения напряжения на переходе и тока через него протекающего.
Итак, важнейшие параметры стабилитрона — это напряжение стабилизации и максимальный рабочий ток. Рабочий ток стабилитрона, ограничивается с помощью последовательно включенного резистора.
Трехэлектродные тиристоры(тринисторы) — полупроводниковые приборы, применяемые для регулирования мощности в сетях переменного и постоянного токов. Тиристор легко переходит из закрытого (непроводящего) состояния в открытое, при подаче на управляющий электрод открывающего импульса.
После того, как тиристор открыт, он остается в таком состоянии, пока протекающий через него ток не снизится до определенного порогового значения.
При работе в цепях переменного тока, подобное снижение происходит с каждой сменой полярности, при изменении фазы. В цепях постоянного тока, для отключения используются специальные схемы.
Помимо способности пропускать ток только в одном направлении, p-n переход обладает рядом других интересных особенностей. Например, способностью излучать(в т. ч. и в видимом диапазоне) при протекании тока в прямом направлении и генерировать эл. ток под воздействием излучения.
Эта особенность используется при реализации таких электронных элементов как светодиоды, фотодиоды и фотоэлементы. Кроме того, любой p-n переход обладает еще и электрической емкостью, а кроме того, возможностью ее изменять с помощью напряжения приложенного в обратном направлении.
Используя ее удалось создать такие полезные элементы как ВАРИКАПЫ.
Варикапы
Итак, p-n переход обладает электрической емкостью, величина которой зависит от его площади и ширины. Если подавать напряжение в обратном направлении — переход смещается, площадь остается неизменной, но ширина увеличивается. Емкость, при этом соответственно — уменьшается. Появляется возможность, изменяя величину приложенного напряжения, эту емкость регулировать. Электронные элементы(диоды, по сути) созданные на этом принципе называют — варикапами.
Варикапы используются в радиоаппаратуре вместо обычных конденсаторов переменной емкости для перестройки частоты колебательных контуров. Приемущество Применение варикапов позволило значительно снизить габариты и повысить эффективность блоков селекции радиоприемных устойств, относительно просто и недорого реализовать автоматизацию процессов настройки(проводимых ранее вручную).
Диоды Шоттки
Диод Шоттки(диод с барьером Шоттки) — полупроводниковый диод с малым падением напряжения(0,2—0,4 вольт) при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В диодах Шоттки в отличие от обычных диодов,вместо p-n перехода используется переход металл-полупроводник. Это дает ряд особых преимуществ — пониженное падение напряжения при прямом включении, очень маленький заряд обратного восстановления.
Последнее объясняется тем, что в отличии от обычных диодов диоды Шоттки работают только на основных носителях, а их быстродействие ограничивается лишь барьерной емкостью. Диоды Шоттки наиболее целесообразно использовать в быстродействующих импульсных цепях, для выпрямления малых напряжений высокой частоты, в высокочастотных смесителях, в ключах и коммутаторах.
Светодиоды
При протекании прямого тока через любой p-n переход(любого диода!) происходит генерация фотонов. Это является следствием циклической рекомбинации — восстановления атомов вещества в процессе перемещения основных носителей тока.
Электронные элементы служащие для генерации света и основанный на этом принципе называется соответственно — светодиодами. Светодиоды используют для индикации, передачи информации, в составе таких электронных приборов как оптопары.
К.П.Д. и яркость современных светодиодов настолько высоки, что на настоящий момент они являются наиболее перспективными источниками искуственного освещения. В зависимости от материала выбранного в качестве полупроводника светодиоды излучают на разных длинах волн.
ИК — диоды излучают в инфракрасной области, индикаторные и осветительные светодиоды в видимой части спектра(зеленые, красные, желтые и т. п.). Наиболее высоким К.П.Д. отличаются светодиоды излучающее в ультрафиолетовой области. Интересно, что как раз этот тип наиболее часто применяется для освещения.
Белый свет получается при использовании специального люминофора, преобразующего ультрафиолет.
Интенсивность излучения светодиода возрастает при увеличении тока протекающего через p-n переход, до определенного предела. После его достижения сетодиод выходит из строя. Поэтому, для нормальной работы необходимо ограничивать ток. Как правило, это реализуется с помощью последовательного подключения резистора.
Стабисторы
Существующие стабилитроны имеют ограничение по минимальному напряжению стабилизации(около 3 В). Что делать, если необходим источник стабилизированного напряжения до 3-х вольт? Использовать прямую ветвь Вольт — Амперной Характеристики диода(ВАХ). В области прямого смещения p-n-перехода напряжение на нем может иметь значение 0,72 В(в зависимости от материала полупроводника) и мало зависит от тока. Диоды специально используемые в этом качестве, называют — СТАБИСТОРАМИ.
Фотодиоды
Фотодиод — это светочувствительный полупроводниковый элемент с одним p-n переходом, обратный ток которого меняется в зависимости от уровня освещенности. Величина на которую происходит его изменение при этом, называется фототоком.
Фотодиоды используют для преобразования сигналов передаваемых в оптическом режиме в электрическую форму. Малая инерционость фотодиодов способствует приему передачи информации, с большой плотностью, например, в при передаче ее по оптоволоконным линиям. Кроме того фотодиоды могут использоваться в фотоприемниках дистанционного управления и т. д.
страницу
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
Источник: https://elektrikaetoprosto.ru/diod.html
Диоды (часть 1). Устройство и работа. Характеристики и особенности
Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.
Принцип действия
Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.
Диоды в состоянии покоя
Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.
Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».
Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.
Обратное включение
Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.
При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.
Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.
Обратный ток
Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.
При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.
Прямое включение
Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.
Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.
При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.
Прямое и обратное напряжение
Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.
Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.
Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.
Характеристика диодов
Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.
Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.
Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.
На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/diody/
Полупроводниковый диод: применение, принцип работы, типы
Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.
Устройство
Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.
Фото — полупроводниковый диод
Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:
Фото — обозначение диода
Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.
Основные преимущества полупроводникового диода:
Маркировка
Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.
Исходя из этого:
применение диодов
Принцип работы
Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики.
На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют.
В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.
Фото — принцип работы
Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме.
Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный.
Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.
Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.
Фото — характеристики полупроводников
ВАХ-характеристики
Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:
Если все параметры соответствуют, то получается такой график:
Фото — ВАХ идеального диода
Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.
На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:
Фото — ВАХ в реальном полупроводниковом диоде
Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц.
Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.
Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX.
Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод.
Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.
Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как IOP. Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.
Фото — отечественные диоды
Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор).
Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума.
Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.
Источник: https://www.asutpp.ru/poluprovodnikovyj-diod.html