Как измерить ток утечки конденсатора

Проверка электролитических конденсаторов без выпайки

Как измерить ток утечки конденсатора

Конденсатор способствует накоплению электрического заряда. И если он неисправен, данное свойство теряется.

Классифицируются они на:

  • электролитические, подключение которых в схему должно быть строго определённым;
  • неполярные, подключенные в любом порядке.

Так как конденсатор – составная часть любой электросхемы и его нерабочее состояние часто результат истечения его срока годности, то и тогда придет на помощь мультиметр, который уловит искажения в сигнале электроцепи.

Проверка исправности электролитического конденсатора

Проверка начинается с визуального осмотра детали. Взрыв – естественное явление при увеличенном давлении внутри корпуса электролитов, если они повреждены. Даже при небольшой взрывной мощности вред будет заключаться в разбрызгивании их содержимого вокруг.

Чтобы предотвратить это, в верхней части конденсаторов делается крестообразная насечка, которая способствует стравливанию внутри корпусного давления. Вспучивание и разрыв корпуса уже говорит о неисправности устройства.

В остальных случаях потребуется проверить работоспособность конденсатора мультиметром, который измерит сопротивление батарейки. Для этого производится подключение прибора к выводам конденсатора с соблюдением полярности.

До проверки конденсатора потребуется его разрядка, которая может быть осуществлена при замыкании выводов между собой. Предельное значение измерения – максимально возможное. Производится соединение плюсового выхода детали с ее красным аналогом на приборе.

Подключение минусового черного выхода – к другому выходу. Измеряя сопротивление, следят за постоянно увеличивающимися показаниями мультиметра. Не должно быть их уменьшений.

Контакты между выходами должны быть надежными. Процесс не должен быть прерван. Запрещено прикасание к ним из-за сопротивления человеческого тела, которое помешает зарядке и определению работоспособности детали.

Результаты проверочной работы:

  • Показания равны 0 и отсутствует их увеличение или оно незначительно. Значит, имеется замыкание между обкладками. И если конденсатор подключить к рабочей схеме, произойдет короткое замыкание.
  • Заметное увеличение показаний прибора, но без достижения ими бесконечности. Значит, есть ток утечки, при значительном снижении емкости изделия. Результат – неэффективная работа элемента без полного выполнения им своего функционального назначения. Сигнал будет искажен.

Напряжение мультиметра – до 1,5 В, а в рабочих схемах с конденсатором – значительно больше. Поэтому при наличии утечки у прибора и его установки при рабочем напряжении возможен полный его пробой.

Проверка исправности неполярных конденсаторов

  • При зарядке детали от мультиметра есть возможность проверки исправности элементов емкостью от 0,5 мкФ. При этом не важна полярность подключения. Более малая емкость не позволит заметить изменения на приборе. При показателях емкости, определяемых цифровым прибором, больше ее номинального значения элемент считается неисправным. Показания мультиметра верны при очевидном замыкании между обкладками.
  • Проверка детали с напряжением от 400 В возможна при ее зарядке от сети в точке, защищенной от короткого замыкания автовыключателя. Также должен быть подключен резистор последовательно с конденсатором, чье сопротивление от 100 Ом, чтобы ограничить первоначальный токовый бросок. В момент после зарядки и спустя время производится измерение напряжения на выводах детали. При этом важно долгое сохранение заряда. После потребуется разрядка элемента с помощью резистора, через который произошла его зарядка.

Как проверить конденсатор, не выпаивая его

К сожалению, при прогреве паяльным прибором при пайке восстановление свойств конденсаторной детали – явление редкое. И, к сожалению, нет универсального метода проверки его исправности без выпаивания данного элемента из схемы. Другие элементы, окружающие его, будут шунтировать его своим сопротивлением.

Поэтому:

  • После впаивания прошедшего проверку конденсаторного элемента возможно включение оборудование, которое подверглось ремонту, чтобы понаблюдать за изменениями в его работе. При улучшении или восстановлении работоспособности данного оборудования производится замена проверенной детали на новую;
  • Для сокращения времени на проверку производят выпаивание только 1-ого из выводов, что не всегда возможно для большинства деталей электролитического типа из-за особенности конструкции их корпуса;
  • При последовательном подключении проверяемого элемента с иным возможно определение его исправности прямо на плате, выпаяв его;
  • При сложной схеме с множеством конденсаторов определение неисправности конденсаторных деталей производится измерением напряжений на них. При отклонении данного показателя производится выпаивание подозрительного элемента и его проверка 1-им из вышеперечисленных способов.

Проверка емкости конденсаторов

При значениях конденсаторной емкости до 0,5 мкФ зарядка происходит с такой быстротой, что проследить за этим не под силу ни одному оборудованию. Для этого необходимо определение номинальности емкости детали с помощью измерителя емкости – LC-метра.

Для домашнего пользования возможно использование небольших цифровых измерителей емкости. У них есть щупы подключения, дисплей на жидких кристаллах и переключатель пределов измерения.

При существующем разбросе параметров измеренное значение детали должно входить в регламентируемый допуск. Иначе конденсаторный элемент неисправен.

Можно приобрести мультиметры со встроенной данной функцией. Есть модели со стандартными щупами для подключения проверяемых элементов и гнездами на их корпусе. Однако, пределы данных моделей ограничены.

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

Источник: https://crast.ru/instrumenty/proverka-jelektroliticheskih-kondensatorov-bez

Проверка конденсаторов различного типа мультиметром и без него

Как измерить ток утечки конденсатора

Конденсатор — электронный элемент, относящийся к категории пассивных. Его основная способность — медленно (с электротехнической точки зрения, в течение нескольких секунд) накапливать заряд, и при необходимости мгновенно отдавать. При отдаче происходит это разряд. В отличие от аккумулятора конденсатор отдает всю энергию импульсом, а не постепенно, после чего снова начинается цикл зарядки.

Основная характеристика этого элемента — ёмкость. Она измеряется в пФ и мкФ — пико- и микрофарадах. Кроме того, каждый конденсатор имеет определенные характеристики рабочего напряжения и напряжения пробоя, при котором он выходит из строя. Они либо указываются на корпусе числами, либо их приходится определять по каталогам, ориентируясь по типоразмеру и цветовой маркировке детали.

В силу своих конструктивных особенностей конденсаторы относятся к категории элементов, которые наиболее часто выходят из строя на электронной плате. Поэтому любой ремонт устройства, содержащего электронику (от микроволновки до системной платы ПК) начинается с проверки этих элементов на работоспособность — визуально, с помощью мультиметра или других приборов.

Самый простой способ

Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.

При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их.

Для данной группы элементов характерно «вздутие». Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения.

Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать.

Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.

В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко.

Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.

Применение тестера для проверки

Настало время ответить на вопрос, как проверить конденсатор мультиметром. В первую очередь нужно оговорить сразу: мультиметром можно проверять только детали емкостью не менее 0,25 мкФ и не более 200 мкФ.

Эти ограничения базируются на принципах их работы, и вообще принципе самой проверки — для малоемкостных не хватит чувствительности прибора, а мощные, например, высоковольтный конденсатор, способны повредить как прибор, так и самого испытателя.

Дело в том, что любой конденсатор перед началом измерения емкости или проверки на короткое замыкание необходимо разрядить. Для этого оба его вывода замыкаются между собой любым проводником — куском провода, отверткой, пинцетом и так далее.

При этом в случае со слабым элементом происходит негромкий хлопок и вспышка. Но мощный, к примеру, пусковой конденсатор (особенно советского производства, для пуска люминесцентных ламп) даст вспышку, сравнимую по мощности со вспышкой электросварки. Металлический проводник даже может оказаться оплавлен.

Поэтому необходимо использовать либо отвертку или пассатижи с изолированной рукояткой, либо электротехнические резиновые перчатки. В противно случае можно получить электрический удар.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.

Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.

Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Нет разъема для измерения емкости

Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током.

Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор. Проверка полярного элемента отличается только необходимостью соблюдать полярность.

Алгоритм следующий:

  • разрядить элемент, закоротив его ножки;
  • выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
  • подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
  • коснуться черным щупом минуса детали, а красным — плюса;
  • наблюдать за показаниями прибора.

Обратите внимание, что электролитический тип всегда полярен, все остальные — неполярные.

Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается.

Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.

Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.

Что означают результаты проверки

При проверке конденсатора мультиметром методом максимального сопротивления можно получить три варианта результатов.

Сопротивление росло быстро и достигло «1» — бесконечности. Означает, что элемент исправен.

Сопротивление очень мало либо вовсе отсутствует. Это означает пробой обкладок конденсатора между собой. Установка на плату приведет к короткому замыканию.

Сопротивление растет до значительного порога, но не до «1». Это означает наличие утечки по току. Конденсатор «условно работоспособен», его использование в приборе приведет к искажениям сигнала, помехам и другим негативным последствиям.

Кроме того, в последнем случае нет гарантии, что при включении «условно рабочего» элемента в схему не произойдет окончательного пробоя.

Проверка на вольтаж

Конденсатор должен выдавать определенное напряжение — оно указано на корпусе или в ТТХ по каталогу. Перед использованием в работе можно проверить его фактическую способность выдавать положенный разряд.

Для этого конденсатор заряжается напряжением ниже номинального в течение нескольких секунд. Для высоковольтного, на 600 В, подойдет напряжение в 400 В, для низковольтного на 25 В — 9 В, и тому подобное.

После этого мультиметр переводится на измерение постоянного (!) напряжения, и подключается к испытываемой детали. Начальное значение на экране и есть значение разряда.

Обратите внимание, что цифры на экране будут очень быстро уменьшаться — конденсатор разряжается.

Если начальное значение на дисплее мультиметра меньше номинала — элемент не держит заряда. Учтите, что в любом случае разряжается он быстро.

Источник: https://evosnab.ru/instrument/test/proverka-kondensatorov

Транзисторметр Mega328

Как измерить ток утечки конденсатора

Транзисторметр – это прибор, который может измерять индуктивность, емкость, сопротивление, ESR конденсаторов, показывает целостность диодов, транзисторов, полевых транзисторов и многое другое! А стоит такой прибор  даже меньше 10 долларов!

ЭТО ИНТЕРЕСНО:  Что такое ПН в сварке

Вот так выглядит наш транзисторметр

Измерение сопротивления

Чтобы не покупать батарейку крону на 9 вольт,  мы будем подавать напряжение с блока питания. Для начала давайте замеряем номиналы резисторов. Первым делом возьмем резистор на 0,5 Ом:

В клеммник между номерами 1 и 3 я вставил резистор. На дисплее транзисторметр показал значение сопротивления. Погрешность, конечно, неплохая)

Берем резистор на 10 Ом. Интересно, что он нам покажет? На этот раз я затолкал его в выводы в 2 и 3.

Очень неплохо.

Берем на 1 кОм:

Для такого прибора погрешность не такая уж и большая, да и не факт, что резистор у нас ровно на 1 кОм. Все-таки он ведь не прецизионный (точный). 

Возьмем резистор на 100 кОм:

Нормально!

На 10 МОм:

Супер!

Измерение емкости

Взял конденсатор на 10 пикофарад:

Транзисторметр пишет “неизвестный либо поврежденный радиоэлемент”. Чтобы замерять маленькие величины, можно параллельно замеряемому конденсатору добавить другой конденсатор большой емкости, например 100 пикофарад, а затем вычесть это значение.

Берем конденсатор чуть-чуть больше номиналом: 27 пикофарад

Показывает ;-)

Беру конденсатор на 1 микрофарад керамический

Показывает ;-). Тут уже видим такие параметры, как эквивалентное последовательное сопротивление (ЭПС), на буржуйский лад ESR.

Также видим такой параметр, как Uloss. Если в дословном переводе, то получается как “напряжение потери”.  Честно говоря, я так и до конца не понял, что это за параметр и почему он измеряется в процентах? Хотелось бы услышать в комментариях, что все-таки за параметр Uloss? Но мне кажется, что этот параметр связан как-то с током утечки.

Все вы знаете, что идеальных радиоэлементов не существует. Все реальные радиоэлементы обладают какими-то паразитными параметрами, и конденсатор, конечно же, не исключение. Диэлектрик конденсатора, который находится между его обкладками, а также сам корпус конденсатора тоже обладают каким-то конечным сопротивлением. Сумму сопротивления корпуса и диэлектрика я показал одним резистором “R диэлектрика”.

Как раз именно через это сопротивление и разряжается конденсатор. Получается, чем меньше это сопротивление, тем бОльшая сила тока течет через него, и наоборот. Эта сила тока называется током утечки конденсатора. Следовательно, чем больше ток утечки, тем хуже сам конденсатор. Поэтому, производители и разработчики радиоэлектронных компонентов стараются делать так, чтобы ток утечки был минимальным.

Реальная картина всех паразитных параметров конденсатора выглядит так:

Для электролитического конденсатора такой же емкости в 1мкФ, утечка и ESR уже будут больше:

Замеряем конденсатор емкостью в 10 мкФ:

Меряет нормально.

Взял на 470мкФ, он мне показал 420 мкФ. Хм

Ну возьмем с компьютерного сгоревшего блока питания еще один конденсатор емкостью в 2200мкФ. Транзисторметр показал 1785 мкФ.

Ну я думаю, то что уже более-менее меряет такие величины – это очень даже хорошо. Значит конденсатор рабочий. Покупной LC-метр у меня меряет максимум до 200мкФ, а этот все-таки старается и выдает неплохой результат, не говоря уже о возможности мерять ESR  и утечку. Да и тем более для конденсаторов большой емкости важнее всего такая величина как ток утечки и ESR.

Проверка диодов

Диоды и светодиоды тоже проверяет на “ура”.

Прибор нам сразу выдал обозначение, где у него анод, а где катод. Также мы видим падение напряжение на PN-переходе 674милливольта и емкость PN-перехода 12 пикофарад. Если емкость есть и она приличная, значит такие диоды используются в низко- и среднечастотных схемах.

Проверяем светодиод:

Он выдал нам номинальное значение напряжения свечения, а также емкость PN-перехода.

Измерение индуктивности

Также прибор отлично меряет индуктивность. Берем катушку индуктивности, витки которой спрятаны внутри радиоэлемента:

Если смотреть по цветовым полоскам, то у нас катушка на 1 миллигенри.

Замеряем

1,02 миллигенри. Также выдало сопротивление обмотки катушки 4,2 Ома.

Проверим с помощью нашего LC-метра, так ли это:

Почти верно.

Проверка биполярных транзисторов

Итак, имеем транзистор КТ814Б. Прибор выдал такие параметры, как проводимость транзистора, определил все его выводы, выдал коэффициент усиления бета (hFE) = 314 и даже падение напряжения 605 милливольт на переходе эмиттер-база. Ну разве не чудо?

Давайте проверим еще один транзистор КТ819Б

Красота!

КТ805АМ

Супер! Да и по даташиту тоже все сходится ;-)

Проверка полевых транзисторов

Прибор проверяет даже полевые транзисторы.

Заключение

Прибором я очень доволен, так как он позволяет сэкономить время и выдает очень много различных параметров.  Диапазон измерения вполне нормальный для такого прибора, что вполне хватит как начинающему так и профи радиолюбителю.

Брал я этот прибор с Алиэкспресса.

Выбирайте на ваш вкус и цвет!

Источник: https://www.ruselectronic.com/universalnyj-r-l-c-transistor-metr/

Что такое ток утечки конденсатора и как его уменьшить

Конденсатор является наиболее распространенным компонентом в электронике и используется почти во всех электронных устройствах. Есть много типов конденсаторов, доступных на рынке для различных целей в любой электронной схеме.

Они доступны во многих различных значениях емкости от 1 пикофарадного до 1-фарадного конденсатора и суперконденсатора (ионистора).

Конденсаторы также имеют различные типы характеристик, такие как рабочее напряжение, рабочая температура, допуск на номинальное значение и ток утечки.

Ток утечки конденсатора является критическим фактором для применения, особенно если он используется в силовой электронике или аудиоэлектронике. Различные типы конденсаторов обеспечивают разные значения тока утечки. Помимо выбора идеального конденсатора с надлежащей утечкой, цепь также должна иметь возможность контролировать ток утечки. Итак, сначала мы должны иметь четкое понимание тока утечки конденсатора.

Ток утечки конденсатора имеет прямую связь с диэлектриком конденсатора. Давайте посмотрим на следующее изображение.

Это изображение представляет собой внутреннюю конструкцию алюминиевого электролитического конденсатора. Алюминиевый электролитический конденсатор состоит из нескольких частей, которые заключены в компактную герметичную упаковку. Эти части: анод, катод, электролит, диэлектрический слой изолятора и т. д.

Диэлектрический изолятор обеспечивает изоляцию проводящей пластины внутри конденсатора. Но поскольку в этом мире нет ничего идеального, изолятор не является идеальным изолятором и имеет допуск на изоляцию. Из-за этого через изолятор будет проходить очень небольшое количество тока. Этот ток называется током утечки.

Такое протекание тока может быть продемонстрировано с помощью схемы простого конденсатора и резистора.

Резистор имеет очень высокое значение сопротивления, которое можно идентифицировать как сопротивление изолятора, а конденсатор используется для воспроизведения фактического конденсатора. Поскольку резистор имеет очень высокое значение сопротивления, ток, протекающий через резистор, очень низкий, как правило, в нескольких наноампер. Сопротивление изоляции зависит от типа диэлектрического изолятора, поскольку различные типы материалов изменяют ток утечки.

Низкая диэлектрическая постоянная обеспечивает очень хорошее сопротивление изоляции, что приводит к очень низкому току утечки. Например, конденсаторы полипропиленового, пластикового или тефлонового типа являются примером низкой диэлектрической проницаемости. Но для этих конденсаторов емкость меньше. Увеличение емкости также увеличивает диэлектрическую проницаемость. Электролитические конденсаторы обычно имеют очень высокую емкость, и ток утечки также высок.

От чего зависит ток утечки конденсатора

Ток утечки конденсатора обычно зависит от следующих четырех факторов: диэлектрический слой, температура окружающей среды, температура хранения, приложенное напряжение. Рассмотрим влияние этих факторов на ток утечки.

Конструкция конденсатора требует химического процесса. Диэлектрический материал является основным разделением между проводящими пластинами. Поскольку диэлектрик является главным изолятором, ток утечки имеет с ним большие зависимости.

Поэтому, если диэлектрик закаливается в процессе производства, это будет непосредственно способствовать увеличению тока утечки. Иногда в диэлектрических слоях присутствуют примеси, что приводит к слабости слоя. Более слабый диэлектрик уменьшает ток, что также способствует медленному процессу окисления.

Не только это, но и неправильное механическое напряжение также способствуют диэлектрической слабости в конденсаторе.

Конденсатор имеет рейтинг рабочей температуры. Максимальная рабочая температура может варьироваться от 85 градусов Цельсия до 125 градусов Цельсия или даже больше. Поскольку конденсатор представляет собой химически составленное устройство, температура имеет прямую связь с химическим процессом внутри конденсатора. Ток утечки обычно увеличивается, когда температура окружающей среды достаточно высока.

Хранение конденсатора в течение длительного времени без напряжения – плохо для конденсатора. Температура хранения также является важным фактором для тока утечки. Когда конденсаторы хранятся, оксидный слой подвергается воздействию материала электролита.

Оксидный слой начинает растворяться в материале электролита. Химический процесс отличается для разных типов электролита.

Электролит на водной основе нестабилен, тогда как инертный электролит на основе растворителя обеспечивает меньший ток утечки из-за уменьшения окислительного слоя.

Каждый конденсатор имеет номинальное напряжение. Поэтому использование конденсатора выше номинального напряжения – это плохо. Если напряжение увеличивается, ток утечки также увеличивается. Если напряжение на конденсаторе выше номинального напряжения, химическая реакция внутри конденсатора создает газы и разлагает электролит.

Если конденсатор хранится в течение длительного времени, например, в течение многих лет, конденсатор необходимо восстановить в рабочее состояние, обеспечив номинальное напряжение в течение нескольких минут. На этой стадии окислительный слой снова накапливается и восстанавливает конденсатор в функциональной стадии.

Как уменьшить ток утечки конденсатора

Как обсуждалось ранее, конденсатор имеет зависимости от многих факторов. Первый вопрос: как рассчитывается срок службы конденсатора? Ответ заключается в подсчете времени до истечения электролита. Электролит расходуется окислительным слоем. Ток утечки является основным компонентом для измерения степени загрязнения окислительного слоя. Следовательно, уменьшение тока утечки в конденсаторе является основным ключевым компонентом для срока службы конденсатора.

Производство или производственная установка – это первое место в жизненном цикле конденсаторов, где конденсаторы тщательно изготавливаются для обеспечения низкого тока утечки. Необходимо принять меры предосторожности, чтобы диэлектрический слой не был поврежден.

Второй этап – хранение. Конденсаторы должны храниться при надлежащей температуре. Неправильная температура влияет на электролит конденсатора, что еще более ухудшает качество окислительного слоя. Убедитесь, что конденсаторы хранятся при надлежащей температуре окружающей среды, меньше максимальной величины.

На третьем этапе, когда конденсатор припаян на плате, температура пайки является ключевым фактором. Потому что для электролитических конденсаторов температура пайки может стать достаточно высокой, превышающей температуру кипения конденсатора. Температура пайки влияет на диэлектрические слои на свинцовых выводах и ослабляет окислительный слой, что приводит к высокому току утечки.

Чтобы преодолеть это, каждый конденсатор поставляется с паспортом, где производитель указывает безопасную температуру пайки и максимальное время выдержки. Нужно быть осторожным с этими оценками для безопасной работы соответствующего конденсатора.

Это также применимо к конденсаторам поверхностного монтажа (SMD), пиковая температура пайки оплавлением или волной не должна превышать максимально допустимого значения.

Поскольку напряжение на конденсаторе является важным фактором, напряжение на конденсаторе не должно превышать номинальное напряжение.

Не менее важна балансировка конденсатора в последовательном соединении. Последовательное соединение конденсаторов представляет собой сложную работу по балансировке тока утечки.

Это связано с дисбалансом тока утечки, делением напряжения и разделением между конденсаторами.

Раздельное напряжение может быть различным для каждого конденсатора, и может быть вероятность того, что напряжение на конкретном конденсаторе может быть больше, чем номинальное напряжение, и конденсатор начнет работать со сбоями.

Чтобы преодолеть эту проблему, два отдельных резистора добавляются параллельно конденсаторам, чтобы уменьшить ток утечки. На рисунке ниже показана методика балансировки, при которой два последовательно соединенных конденсатора уравновешиваются с помощью высококачественных резисторов.

Используя метод балансировки, можно регулировать разницу напряжения, которая влияет на ток утечки.

digitrode.ru

Источник: http://digitrode.ru/articles/2023-chto-takoe-tok-utechki-kondensatora-i-kak-ego-umenshit.html

Проверка электролитических конденсаторов

Исправность электролитическихконденсаторов проверяют внешним осмотром и измерением сопротивления утечки.

При проверке внешнего вида конденсатора выясняют:

1) обозначены ли величины номинальной емкости и рабочего напряжения, месяц и год изготовления;

2) не загрязнена ли поверхность конденсатора, не имеет ли она забоин и вмятин глубиной более 0,2 мм;

3) облужены ли выводы конденсатора и не имеют ли они надломов, трещин и забоин.

После осмотра конденсатора проверяют контактный узел вывода. Выполняют это приложением к контактному лепестку или к проволочным выводам небольшого усилия, направленного по оси вывода. Растяжение узла не должно вызывать появления каких-либо повреждений.

Электрические испытания заключаются в наблюдении за зарядом конденсатора ог гальванических элементов, питающих омметр, и измерении сопротивления утечки конденсатора (см. рис. 1.18).

Если конденсатор исправен, то стрелка прибора сначала быстро отклоняется вправо, доходя до отметки 0 шкалы (в зависимости от емкости конденсатора), а затем относительно медленно движется влево и устанавливается над одной из отметок участка шкалы -> ∞.

Если же конденсатор потерял емкость или имеет значительную утечку, то в первом случае стрелка прибора почти не отклоняется вправо, во втором — отклоняется до нуля или почти до нуля, а затем устанавливается против отметки, расположенной на участке 0 шкалы.

Чем меньше емкость конденсатора, тем на меньший угол отклоняется стрелка вправо в момент присоединения тестера к конденсатору, а чем больше утечка, тем, во-первых, медленнее движется стрелка влево после своего возвращения, и, во-вторых, тем дальше устанавливается она в конце заряда от знака .

Наглядное представление о величине утечки конденсатора дает ток его подзаряда. Если зарядить конденсатор, а затем отключить его от источника напряжения, то вследствие несовершенства изоляции между обкладками напряжение на конденсаторе со временем уменьшается.

Чтобы достичь прежнего значения напряжения, необходимо подзарядить конденсатор. Чем больше ток, требующийся для восстановления первоначального напряжения на конденсаторе, тем, очевидно, больше энергии потерял конденсатор при своем саморазряде и, следовательно, тем больше его ток утечки.

Испытание электролитических конденсаторов на утечку методом подзаряда производят следующим образом

Подготавливают ампервольтомметр (например, комбинированный прибор типа Ц435) для измерения сопротивлений на шкале «Rх Х 100».

Затем присоединяют проводники омметра к конденсатору и выжидают, пока стрелка прибора не установится над одной из крайних отметок левой части шкалы.

После этого отключают от конденсатора на несколько секунд один из проводников прибора и, снова присоединяя его к конденсатору, замечают бросок стрелки вправо. Чем больше угол, на который отклоняется стрелка при подзарядке конденсатора, тем больше ток утечки.

При отборе конденсаторов по току утечки руководствуются следующим:

1) измерению тока утечки предшествует выдержка конденсаторов под номинальным рабочим напряжением в течение:

— 0,5 часа при хранении конденсаторов до б месяцев

— 1,0 » » до 1,0 года

— 3,0 часов » свыше 1,0 »

2) ток утечки измеряют при номинальном рабочем напряжении и температуре +15° +25°С;

ЭТО ИНТЕРЕСНО:  Зачем нужен конденсатор для пуска двигателя

3) отсчет производят через 1 минуту после приложения напряжения к конденсатору;

4) ток утечки растет с увеличением емкости конденсатора и приложенного к нему напряжения. Так, для конденсаторов КЭ-1, КЭ-2 и КЭ-3 ток утечки не должен превышать величины:

Iут = 0,0001 СU + Iо,

где С — номинальная емкость, мкФ,

U — номинальное рабочее напряжение В,

— ток, равный: 0,2 мА для конденсаторов емкостью до 5 мкФ,

0,1 мА для конденсаторов емкостью от 8 до 50 мкФ,

0 мА для конденсаторов емкостью более 50 мкФ.

И в заключение несколько слов о шумах, вызываемых некоторыми неисправными электролитическими конденсаторами.

Иногда из-за плохих контактов в выводах конденсатора напряжение на нем не остается постоянным, а беспорядочно изменяется, несмотря на присоединение конденсатора к источнику постоянного напряжения. Эти колебания напряжения очень малы, но если они усиливаются, то на выходе устройства появляются шумы, мешающие приему полезных сигналов.

Испытание конденсатора на качество контактов в выводах проводят следующим образом

Собирают схему, изображенную на рис. 1.19.

После сборки схемы присоединяют проводники П1, и П2 к гнездам звукоснимателя радиоприемника, устанавливают делителем R1 напряжение, равное приблизительно Uраб, и слегка ударяют несколько раз пальцем по испытываемому конденсатору. Если последний исправен, то в громкоговорителе ничего не слышно, даже если перевести ручку «Громкость» в крайнее правое положение. Если же контакты в выводах конденсатора плохие, то в громкоговорителе возникают трески и шорохи.

Рис. 1.19. Схема устройства для испытания электролитического конденсатора на качество контактов в выводах:

З1 и 32 — зажимы, присоединяемые к выпрямителю с хорошо сглаженным напряжением, равным или превышающим рабочее напряжение (Uраб испытываемого конденсатора; R1 — двухваттный делитель напряжения сопротивлением 100 кОм;V — вольтметр постоянного тока, рассчитанный на измерение напряжения, равного рабочему напряжению конденсатора; С1 — испытываемый конденсатор; R2 — резистор сопротивлением 100 — 200 кОм; С2 — слюдяной керамический или бумажный конденсатор емкостью от 5000 пФ до 0,1 мкФ.

Источник: http://zadereyko.info/library/proverka_neispravnosti_elektroradiodetaley_11.htm

Что такое утечка тока и каковы причины её возникновения?

В идеальной электрической цепи сопротивление изоляции стремится к бесконечности. К сожалению, на практике не все так однозначно. Какой бы качественной не была изоляция провода или других токоведущих элементов оборудования, это конечная величина, а, следовательно, даже при штатной работе происходит незначительная утечка тока. Ситуация в корне меняется, когда этот параметр превышает установленные нормы, чем это грозит и как определить утечку Вы узнаете прочитав статью.

Что такое утечка тока и чем она опасна

Эквивалентная схема 3-х фазной электросети с изолированной нейтралью

Начнем с терминологии. Точное определение этого явления описано в ГОСТ 61140 2012 и ГОСТ 30331.1 2013, далее дословно: «Электрический ток, протекающий в землю, открытые, сторонние проводящие части и защитные проводники при нормальных условиях». Для более детального описания явления приведем в качестве примера эквивалентную схему 3-х фазной электрической сети IT (изолированная нейтраль).

Обозначения:

  • А, В, С – фазы сети.
  • Ra, Rb, Rс – величина активного сопротивления между землей и каждой фазой.
  • Са, Сb, Сс – параметры емкости линий относительно земли.
  • Ua, Ub, Uc – напряжение каждой из фаз по отношению к земле.
  • Ia, Ib, Ic – токи утечки.

В приведенном примере активное сопротивление Ra, Rb, Rс не стремиться к бесконечности, а вполне измеряемая величина. Соответственно и токоведущих проводников емкость относительно земли (Са, Сb, Сс) будет какую-то величину больше нуля. Следовательно, в токоведущих частях с напряжениями Ua, Ub, Uc будут образовываться токи утечки Ia, Ib, Ic.

Пути таких токов напрямую зависят от того, какой тип заземления используется в системе. В приведенном примере с изолированной нейтралью (IT), утечка происходит через изоляцию проводов в токопроводящие элементы оборудования. Из них по проводникам, соединенным с ЗУ, уходит в зону растекания (локальную землю).

В системах с глухозаземленной нейтралью (TN) ток утечки по шине PEN течет до ЗУ на вводе электропитания.

Опасность утечки

Пока ток утечки соответствует принятым нормам, он не представляет серьезной опасности. Когда сопротивление изоляции снижается, например, при ее повреждении, ток утечки резко возрастает и может стать опасным для человека. На 1-й части рисунка 2 схематически изображен путь тока утечки (Iу) при касании человеком корпуса электроустановки, в которой повреждена изоляция корпуса Rи

Рисунок 2. Опасность утечки

При заземлении корпуса электроустановки (см. 2-ю часть рис.2) поражение электротоком при касании не происходит, поскольку утечка пойдет по пути наименьшего сопротивления. Но в этом случае в месте крепления защитного проводника (отмечено на рисунке красным кругом) может наблюдаться интенсивное выделение тепла, что провоцирует возникновение пожара.

Причины возникновения утечки тока

Из приведенной выше информации мы выяснили, что утечка происходит всегда, даже при штатной работе электрического оборудования. Опасность представляет превышение нормальных показателей. Давайте рассмотрим ситуации, когда превышаются допустимые нормы дифференциальных токов, чтобы установить причины возникновения неисправности.

С электроприбора в квартире или доме

опасное напряжение может появиться на корпусе бытового электроприбора, например, накопительного нагревателя воды (бойлера) или стиральной машины. как правило, причина этого нарушение целостности одного из тенов или механическое повреждение изоляции. к чему приведет пробой на корпус, зависит от системы заземления жилого помещения. рассмотрим варианты с трехпроводным подключением стиральной машины в системе tn-c-s и двухпроводное подключение при заземлении tn-c.

рисунок 3. пробой на корпус в системах: а) tn-c-s; в) tn-c

как видно из рисунка в случае пробоя на заземленный корпус ток утечки будет на шину-pe, что приведет к срабатыванию электромагнитной или тепловой защиты автоматического выключателя, установленного на линию питания электроустановки.

при двухпроводном подключении утечка тока не вызовет срабатывание ав и стиральная машина будет продолжать работать, пока не образуется дифференциальный ток.

это может произойти в случае одновременного касания корпуса электроустановки и заземленного элемента конструкции здания или труб водоснабжения. ток утечки в этом случае пойдет от корпуса через тело человека на землю (см. в рис.3).

величины тока в образованной цепи будет недостаточно для срабатывания ав, но узо или диффавтомат обнаружит утечку и произведет отключение оборудования.

в скрытой электропроводке в доме или квартире

причины утечки в скрытых проводках напрямую связаны со снижением уровня изоляции токоведущих жил кабеля. это может быть вызвано следующими причинами:

  1. превышение допустимого срока службы проводки. это довольно распространенное явление в домах возведенных 30-40 лет назад и более давних постройках. согласно нормативным документам (в частности всн 58 88) срок эксплуатации срытых электропроводок, выполненных кабелем с медными токоведущими жилами, не может превышать 40 лет. для алюминиевых проводов установлен срок службы не более 30 лет.
  2. нарушения режимов эксплуатации. если проводка подвергалась перегрузке, то велика вероятность разрушения изоляции вследствие нагрева токоведущих жил.
  3. механические повреждения изоляции провода. они могут быть нанесены из-за не соблюдения технологии монтажных работ или впоследствии при сверлении стен.

причины повреждения изоляции кабеля скрытой проводки

не следует надеяться на постоянную величину сопротивления изоляции, при малейших подозрениях следует проверить этот показатель.

в автомобиле

рассматриваемое нами явление нередко наблюдается и в электросети автомобиля. причем вероятность утечки может не зависеть марки авто и его состояния. результат потери тока во всех случаях приводит к одному итогу – разряду аккумулятора. предлагаем рассмотреть наиболее вероятные причины утечки тока в электрической сети автотранспортного средства.

с аккумулятора

основные функции акб заключаются в запуске мотора автомобиля и обеспечении питания внутренней сети, в тех случаях, когда генератор не справляется с этой задачей. подзарядка аккумуляторной батареи производится в процессе работы двигателя, также вращающего генератор. у припаркованной машины с выключенным двс разряд акб происходит за счет питания подключенной электроники (например, сигнализации) и допустимого тока утечки.

если недавно заряженный аккумулятор быстро разрядился, не спешите сваливать на него всю вину, вполне возможно, что произошло превышение допустимой величины утечки по следующим причинам:

  1. повреждение изоляции бортовой сети, кз в блоке предохранителей.
  2. неправильно подключенная электроника и/или сигнализация потребляет ток сверх установленной нормы.
  3. загрязнение или окисление клемм аккумулятора.
  4. подключение дополнительных электрических приборов.

плохой контакт клемм акб — одна из причин ее быстрого разряда

как измерить заряд автомобильного аккумулятора и его утечку, было описано на нашем сайте.

через генератор

как показывает практика, довольно часто причина утечки через генератор связана с «пробитием» одного из диодов выпрямительного блока. на представленном ниже рисунке приведена упрощенная схема подключения акб к генератору, в котором «пробит» один из силовых диодов.

путь тока утечки через поврежденный выпрямительный диод

как производить поверку генератора, можно прочитать на нашем сайте.

через сигнализацию

практически все современные системы охраны для понижения потребления электричества с целью снижения разряда батареи переходят в режим «сна». иногда может возникнуть сбой по или произойти другая неисправность, устранить которую довольно сложно. в результате сигнализация потребляет ток сверх допустимой нормы, что приводит к разряду акб. особенно в этом замечена китайская продукция.

с диодов, транзисторов, конденсаторов

в данных радиоэлементах всегда присутствует незначительный уровень тока утечки, его показатели указываются в даташит к каждому компоненту. при выходе из строя транзистора, диода или конденсатора этот показатель может существенно увеличиться.

последствия

Как мы уже говорили, протекание дифференциальных токов происходит даже при наличии изоляции должного уровня. Из-за их низкой величины не возникает деструктивных последствий. Ситуация в корне изменяется, когда утечка превышает допустимую норму. В таких случаях возможны следующие последствия:

  • Угроза поражения электротоком.
  • Вероятность возникновения пожара.
  • Протекание дифференциального тока в сети приводит к тому, что даже при отключенных потребителях электроэнергии по показаниям приборов учета будет наблюдаться расход электричества.
  • Электрический ток, проходя через неизолированные токопроводящие конструкции, вызывает их ускоренную коррозию. Что можно наглядно наблюдать на клеммах аккумуляторных батарей.
  • Утечка в бортовой сети автомашины может вызвать воспламенение проводки и практически всегда становится причиной разряда аккумуляторной батареи, что создает проблемы цепи зажигания.

Перечисленных последствий вполне достаточно, чтобы осознать опасность дифференциального тока, поэтому поговорим о способах защиты и устранении утечки.

Средства защиты

Самый надежный способ защиты в рассматриваемой ситуации – установка на линию питания УЗО или диффавтомата. Эти устройства произведут разрыв цепи питания, как только произойдет утечка, останется только приступить к ее поиску и устранению.

Не менее эффективно действует подключение корпусов электрических приборов к шине заземления (PE), если имеется такая возможность.

Найти подробную информацию по выбору и установке УЗО, АВ, диффавтоматов, а также получить сведения о заземлении электрооборудования, Вы сможете на нашем сайте.

Как проверить и найти ток утечки своими руками

Приведем несколько косвенных способов, позволяющих обнаружить утечку:

  • Если при отключении от сети всех постоянных потребителей электрической энергии, счетчик продолжить регистрировать расход электроэнергии, значит необходимо приступать к поиску и устранению неисправности. То есть, ищите утечку.
  • При наличии бойлера вода, поступающая с кранов, вызывает ощущение прохождения электричества.
  • Срабатывает защита УЗО или диффавтомата.
  • В системе TN-C-S происходит отключение АВ.
  • Быстро разряжается аккумулятор автомобиля.

Теперь перейдем к более точным измерениям, для этого могут понадобиться следующие инструменты:

  • Простой или бесконтактный пробник напряжения. С их помощью можно определить наличие напряжения на корпусе бытовых приборов или смесителях, то есть, обнаружить утечку.
  • Токоизмерительные клещи, вместо них можно использовать мультиметр с режимом амперметра. При помощи этих инструментов снимаются показания амперметра, что позволяет измерить дифференциальные токи. После проведения измерений показатели прибора (амперметра) сравниваются с допустимыми параметрами. Обратим внимание, что контакты амперметра могут быть не приспособлены для замера больших величин, в таких случаях токовые клещи более удобны.
  • Авометр (необходим для проверки изоляции). Диапазон измерения выставляется в мегаомах, если сопротивление несколько сот кОм, то это говорит о недостаточной изоляции.

И несколько видео по теме (пример того, как искать утечку тока в автомобиле):

Внимание! Измерение сопротивления должно проводиться при полном отключении источника питания, то есть нуля и фазы для переменно напряжения и плюса и минуса в системах постоянных токов. Рекомендуется перед проверкой изоляции провести замеры в режиме измерения постоянного или переменного напряжения (в зависимости от типа сети).

Советуем также почитать:

Источник: https://www.asutpp.ru/chto-takoe-utechka-toka.html

Как проверить конденсатор мультиметром

Мультиметр – это  электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Измерение емкости в режиме сопротивления

Измерение в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

ЭТО ИНТЕРЕСНО:  Что такое резистор и Реостат

Измерение емкости конденсатора

Измерение ёмкости

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Важно! Напряжение проверяется в самом начале измерения. Это связано с тем, что при подключении конденсатор начинает терять заряд.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Еще одно видео:

Источник: https://arduinomaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/

Измерение параметров конденсаторов

См. также Измерение параметров катушек индуктивности

Общие сведения

Основными параметрами, характеризующими конденсаторы, являются их электрическая ёмкость и угол потерь.

В электронных устройствах применяются конденсаторы многих типов и различных назначений. Возможные значения их ёмкостей лежат примерно в пределах от 1 пФ до 1000 мкФ. В области высоких и сверхвысоких частот объектами измерений могут также явиться весьма малые межэлектродные ёмкости электронных приборов и паразитные ёмкости между различными элементами схемы (ёмкости монтажа).

Допустимая погрешность измерения ёмкостей конденсаторов зависит от области применения последних. Ёмкость конденсаторов, входящих в состав колебательных систем, должна определяться особенно тщательно, с погрешностью, по крайней мере, 1%. При выборе конденсаторов блокировочных, разделительных, связи и т. п. обычно допускается значительный (до 20-50%) разброс ёмкостей и измерение их можно производить простейшими методами.

Рис. 1. Эквивалентные схемы (а, б) и векторная диаграмма (в) цепи с конденсатором

В каждом конденсаторе, включённом в электрическую цепь, имеют место потери энергии, возникающие главным образом в материале диэлектрика, а также вследствие несовершенства изоляции между выводами.

С учётом потерь эквивалентную схему конденсатора можно представить в двух вариантах: либо в виде ёмкости С, включённой последовательно с сопротивлением потерь Rп (рис. 1, а), либо в виде той же ёмкости С, шунтированной сопротивлением утечки Rу (рис. 1, б).

При переходе от одной эквивалентной схемы к другой для пересчёта значения активного сопротивления пользуются формулой

Rу = 1/((2*π*f*C)2 * Rп) ,

где f — частота тока в цепи конденсатора.

Из векторной диаграммы на рис. 1, в, справедливой для обоих вариантов эквивалентных схем, следует, что в цепи с конденсатором из-за наличия потерь фазовый сдвиг φ между током I и напряжением U всегда меньше 90°. Потери в конденсаторе обычно характеризуют углом потерь δ = 90° — &phi, определяемым в соответствии с обозначениями на рис. 1 из формулы

tg δ = Uп/Uс = Iу/Iс = 2*π*f*C*Rп = 1/(2*π*f*C*Rу).

Потери в конденсаторе иногда выражают коэффициентом мощности cos φ или током утечки Iу, определяемым при стандартных условиях. Для большинства конденсаторов потери очень малы (tg δ < 0,001), поэтому можно считать

tg δ ≈ δ ≈ sin δ = sin (90° — φ) = cos φ .

Наибольшие потери имеют место в электролитических и бумажных конденсаторах, применение которых в основном ограничивается областью низких частот.

При некоторых методах измерений потери в конденсаторе определяются одновременно с измерением его ёмкости. При этом следует иметь в виду, что с повышением частоты потери заметно возрастают (что соответствует увеличению значения Rп и уменьшению Rу), тогда как ёмкость С практически не зависит от частоты. На очень высоких частотах возможно заметное возрастание действующей (измеренной по приборам) ёмкости конденсаторов из-за влияния индуктивности обкладок и подводящих проводов.

Параметры конденсатора (С, Rn, Ry, δ) зависят от внешних условий его работы — температуры, влажности, атмосферного давления, а также от приложенного к нему напряжения. Поэтому в ответственных случаях испытание конденсаторов осуществляется не только на их рабочих частотах, но и в условиях, близких к эксплуатационным.

Простейшие проверки конденсаторов можно производить и без специальных измерительных приборов. С помощью омметра или пробника легко обнаружить короткое замыкание или пробой между обкладками конденсатора (следует лишь учитывать, что пробой иногда проявляется только при значительном напряжении на конденсаторе, близком к его рабочему напряжению).

Проверка на обрыв неэлектролитических конденсаторов ёмкостью от 0,01 мкФ и выше проще всего производится включением конденсатора в цепь переменного тока, например осветительную или трансляционную, последовательно с какой-либо нагрузкой — лампой накаливания, громкоговорителем и т. п.

Нормальное или несколько ослабленное свечение лампы или звучание радиопередачи будет свидетельствовать об отсутствии обрыва.

Конденсатор, сопротивление утечки которого велико, способен удерживать длительное время без заметного уменьшения полученный им заряд; это позволяет простыми средствами оценить качество конденсаторов ёмкостью более 0,01 мкФ.

При подключении к такому конденсатору омметра стрелка измерителя последнего за счёт тока заряда несколько отклонится, а затем (при большом сопротивлении утечки) возвратится в исходное или близкое к нему положение. Последующие кратковременные подключения к конденсатору омметра, повторяемые с интервалом в несколько секунд, не должны вызывать отклонения стрелки измерителя.

При малом сопротивлении утечки заметное отклонение стрелки будет наблюдаться при каждом подключении омметра. Для проверки на утечку конденсаторов ёмкостью более 100 пФ можно применить головные телефоны, соединённые последовательно с низковольтной батареей.

При малом сопротивлении утечки каждое подключение индикатора к конденсатору вызывает щелчок в телефонах, тогда как при хорошем конденсаторе щелчок прослушивается лишь при первом подключении. Измерение значения сопротивления утечки (на постоянном токе) может производиться индукторными или электронными мегомметрами.

Электролитические конденсаторы следует подсоединять к испытательному прибору с учётом полярности включения источника питания. При измерении сопротивления утечки таких конденсаторов рекомендуется отсчёт производить через 10 мин после их включения под напряжение, когда процесс заряда можно считать завершившимся.

Для измерения параметров конденсаторов применяются методы вольтметра — амперметра, непосредственного измерения при помощи микрофарадметров, сравнения (замещения), мостовой и резонансный.

Напряжение, приложенное к конденсатору при любом его испытании, не должно превосходить допустимого рабочего напряжения. Если в процессе испытания конденсатор заряжается до значительного напряжения, необходимо производить его разряд по окончании испытания (например, с помощью кнопки, включённой параллельно конденсатору).

Измерение ёмкостей методом вольтметра — амперметра

Метод вольтметра — амперметра применяют для измерения сравнительно больших ёмкостей. Питание измерительной схемы обычно производят от источника тока низкой частоты: F = 501000 Гц, поэтому оказывается возможным пренебречь активными потерями в конденсаторах, а также влиянием реактивных параметров измерительных приборов и паразитными связями.

Рис. 2. Схемы измерения ёмкостей методом вольтметра-амперметра

Схема измерений представлена в двух вариантах на рис. 2. Проверяемый конденсатор Сх включается в цепь переменного тока известной частоты F, и реостатом (или потенциометром) R устанавливают требуемое по условиям испытания либо удобное для отсчёта значение тока I или напряжения U. По показаниям приборов переменного тока V и можно рассчитать полное сопротивление конденсатора

Z = (R2+X2)0,5=U/I ,       (1)

где R и X = 1/(2*π*F*Cx) — соответственно его активная и реактивная составляющие.

Если потери малы, т. е. R

Источник: http://zpostbox.ru/izmerenie_parametrov_kondensatorov.html

Гост р мэк 60384-1-2003 конденсаторы постоянной емкости для электронной аппаратуры. часть 1. общие технические условия, гост р от 03 октября 2003 года №мэк 60384-1-2003

ГОСТ Р МЭК 60384-1-2003Группа Э20

ОКС 31.060.10

ОКП 62 0000

Дата введения 2005-01-01

1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации ТК 303 «Изделия электронной техники, материалы и оборудование»

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 3 октября 2003 г., N 278-ст

3 Настоящий стандарт представляет собой полный аутентичный текст международного стандарта МЭК 60384-1 (1999) «Конденсаторы постоянной емкости для электронной аппаратуры. Часть 1. Общие технические условия»

4 ВВЕДЕН ВПЕРВЫЕ

1 Область применения

Настоящий стандарт распространяется на конденсаторы постоянной емкости (далее — конденсаторы), предназначенные для использования в электронной аппаратуре.

Стандарт устанавливает термины, методы контроля и методы испытаний, используемые в групповых технических условиях и в технических условиях на конденсаторы конкретных типов, сертифицируемых в системах сертификации изделий электронной техники.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 26246.4-89 (МЭК 249-2-4-87) Материал электроизоляционный фольгированный общего назначения для печатных плат на основе стеклоткани, пропитанной эпоксидным связующим. Технические условия

ГОСТ 27484-87 (МЭК 695-2-2-80) Испытания на пожароопасность. Методы испытаний.

Испытания нагретой проволокой

ГОСТ 28198-89 (МЭК 68-1-88) Основные методы испытаний на воздействие внешних факторов. Часть 1. Общие положения и руководство

ГОСТ 28199-89 (МЭК 68-2-1-74) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание А: Холод

ГОСТ 28200-89 (МЭК 68-2-2-74) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания.

Испытание В: Сухое тепло

ГОСТ 28201-89 (МЭК 68-2-3-69) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Са: Влажное тепло, постоянный режим

ГОСТ 28203-89 (МЭК 68-2-6-82) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания.

Испытание Fc и руководство: Вибрация (синусоидальная)

ГОСТ 28208-89 (МЭК 68-2-13-83) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание М: Пониженное атмосферное давление

ГОСТ 28209-89 (МЭК 68-2-14-84) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания.

Испытание N : Смена температуры

ГОСТ 28210-89 (МЭК 68-2-17-78) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Q: Герметичность

ГОСТ 28211-89 (МЭК 68-2-20-79) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Т: Пайка

ГОСТ 28212-89 (МЭК 68-2-21-83) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания.

Испытание U: Прочность выводов и их креплений к корпусу изделия

ГОСТ 28213-89 (МЭК 68-2-27-87) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Еа и руководство: Одиночный удар

ГОСТ 28215-89 (МЭК 68-2-29-87) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Еb и руководство: Многократные удары

ГОСТ 28216-89 (МЭК 68-2-30-87) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Db и руководство: Влажное тепло, циклическое (12+12 часовой цикл)

ГОСТ 28229-89 (МЭК 68-2-45-80) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание ХА и руководство: Погружение в очищающие растворители

ГОСТ 28884-90 (МЭК 63-63) Ряды предпочтительных значений для резисторов и конденсаторов

3 Технические данные

3.1 Единицы измерения и обозначения

Единицы измерения, графические и буквенные обозначения, используемые в настоящем стандарте, — по [1], [2], [3], [4].

В случаях, когда требуются дополнительные данные, они должны соответствовать требованиям, установленным в вышеперечисленных документах.

3.2 Определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.2.1 тип: Группа конденсаторов, имеющих общие конструктивные признаки, одинаковая технология изготовления которых позволяет объединить их для сертификации или контроля соответствия качества.

Обычно на такие конденсаторы распространяются отдельные технические условия (далее — ТУ) на конденсаторы конкретных типов (далее — ККТ).

Примечание — Конденсаторы, описанные в разных ТУ на ККТ, в некоторых случаях могут рассматриваться как принадлежащие к одному и тому же типу.

3.2.2 вид: Деление типа, осуществляемое обычно по размерным признакам.

Вид может объединять конденсаторы нескольких вариантов исполнения, отличающиеся конструктивными особенностями.

3.2.3 категория: Деление вида по дополнительным общим характеристикам, относящимся к конкретному, определенному применению конденсаторов. Термин используют только в сочетании с одним или более словами, а не с одной буквой или цифрой (например, категория конденсаторов с длительным сроком службы).

3.2.4 семейство (электронных компонентов): Группа электронных компонентов, в которых появляется одно преобладающее физическое свойство и/или которые выполняют определенную функцию.

3.2.5 подсемейство (электронных компонентов): Группа компонентов в пределах одного семейства, изготавливаемых по единой технологии.

3.2.6 конденсатор для цепей постоянного тока: Конденсатор, предназначенный главным образом для применения в цепях постоянного напряжения.

Примечание — Конденсатор для цепей постоянного тока не допускается применять в цепях переменного тока.

3.2.7 полярный конденсатор: Конденсатор, предназначенный для применения под напряжением постоянного направления, подаваемым в соответствии с обозначенной полярностью.

3.2.8 неполярный конденсатор: Электролитический конденсатор, способный выдерживать переменное напряжение и (или) смену полярности подаваемого постоянного напряжения.

3.2.9 конденсатор для цепей переменного тока: Конденсатор, предназначенный главным образом для применения в цепях переменного напряжения.

3.2.10 импульсный конденсатор: Конденсатор, предназначенный для применения в импульсном режиме.

Примечание — Следует использовать определения, приведенные в [5] и [6].

Источник: http://docs.cntd.ru/document/1200034091

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как снять цоколь с люстры

Закрыть