Как найти общее сопротивление 3 резисторов

Как посчитать сопротивление: параллельная, последовательная и комбинированная цепь

Как найти общее сопротивление 3 резисторов

Решая задачи в области электроники и электрики, приходится сталкиваться с различными вычислениями. Чаще всего они связаны с упрощением электрических схем. Для этого используется метод эквивалента, когда часть цепи заменяется на один элемент с характеристиками, аналогичными ей. Но чтобы это сделать, необходимо знать, как посчитать сопротивление участка цепи и какие виды соединений бывают.

Ток — это упорядоченное движение носителей заряда под действием электрического поля. Способность вещества проводить ток называют электропроводимостью. Чем больше носителей частиц имеет материал, тем большей проводимостью он обладает. В зависимости от этой характеристики все вещества разделяют на три вида:

  1. Проводники. Характеризуются хорошей электропроводностью. К ним относят металлы и их сплавы, а также электролиты.
  2. Диэлектрики. Вещества, практически не проводящие электрический ток. В основном это газы, каучук, минеральные масла, пластмассы.
  3. Полупроводники. Материалы, обладающие двумя видами проводимости одновременно — дырочной и электронной. Это вещества, имеющие ковалентную связь: кремний, германий, селен.

Величина, обратная электропроводимости, называется электрическим сопротивлением. То есть это физическая величина, препятствующая прохождению тока. Кроме способности любого материала ограничивать количество проходящих через него зарядов, существует специальный радиоэлемент, ограничивающий силу тока — резистор.

Таким образом, существует два понятия сопротивления: радиоэлемент и физическая величина.

Сопротивление радиоэлемента

Термин «резистор» произошёл от латинского слова resisto — «сопротивляемость». Все резисторы делятся на постоянные и переменные. Последние позволяют изменять своё сопротивление. На схемах и в литературе такая радиодеталь подписывается латинской буквой R. Единицей измерения считается Ом. Графически резистор обозначается в виде прямоугольника с двумя выводами от середины краёв. Кроме номинального сопротивления, он характеризуется рассеиваемой мощностью и классом точности.

По своей сути это пассивный радиоэлемент, преобразующий часть электрической энергии в тепловую. Тем самым он ограничивает ток, линейно преобразовывая его силу в напряжение и наоборот. Главный параметр, описывающий сопротивление, находится согласно закону Ома для участка цепи по следующей формуле: R = U/I, где:

  • R — электрическое сопротивление, Ом.
  • U — разность потенциалов приложенная к элементу, В.
  • I — сила тока, преходящая через резистор, А.

Но тут следует отметить, что этот закон справедлив только для резистивных цепей. То есть для тех, при расчёте которых ёмкостью и индуктивностью пренебрегают. Если же эту формулу применить к реактивным элементам, то для катушки индуктивности сопротивление будет равным нулю, а для конденсатора — бесконечным. Но это верно для постоянного тока и напряжения.

При переменных величинах напряжение на индуктивности не будет равно нулю, как и ток, проходящий через конденсатор. Такие случаи сопротивлением уже не описываются, поскольку оно предполагает постоянные значения тока и напряжения.

Удельный параметр вещества

Чтобы различать понятие и элемент, было введено название удельное электрическое сопротивление. Обозначается оно греческим символом ρ. В Международной системе единиц эта величина измеряется в Омах, умноженных на метр. Зависит она исключительно от свойства материала.

Для расчёта электрического сопротивления однородного вещества используется формула: R = ρ* l/S, где:

  • l — длина проводника, м;
  • S — площадь поперечного сечения, м2.

Поэтому в физическом смысле удельное сопротивление материала — это величина, обратная удельной проводимости, представляющая собой сопротивление однородного проводника единичной длины и площади поперечного сечения. А значит, она численно равна импедансу участка электрической цепи, выполненному из вещества длиною один метр и площадью поперечного сечения один метр квадратный.

Для каждого вещества удельное сопротивление известно и является справочной величиной. Например, для меди — 0,01724 Ом*мм2/м, алюминия — 0,0262 Ом*мм2/м, висмута — 1,2 Ом*мм2/м, нихром — 1,05 Ом*мм2/м. Эти данные получены при температуре t = 20 °C, так как материалы обладают свойством изменять свою удельную характеристику при изменениях температуры. Так, проводимость металлов увеличивается при снижении температуры, а полупроводников — уменьшается.

Эквивалентная схема

При расчётах сопротивления электрических цепей широко используется понятие «эквивалентная схема замещения». Её назначение — упростить сложную схему до вида, состоящую из минимума элементов. Иными словами, каждый сложный радиоэлемент можно представить в виде соответствующих ему эквивалентных простых радиодеталей: резистор, ёмкость, индуктивность, источники тока и напряжения. Это позволяет не только математически описать любую схему, но и рассчитать её параметры.

При этом обычно радиоэлементы идеализируются, то есть их паразитные параметры не учитываются. Так и для подсчёта сопротивления цепи каждый компонент представляется как идеальный резистор. После чего схема перерисовывается, и в результате на ней остаются только подключённые разными способами друг к другу резисторы.

Существует два вида подключения:

  • последовательное;
  • параллельное.

Основными элементами электрической цепи являются узел, ветвь и контур. Узел — это место соединения двух и более ветвей. Ветвь — это последовательный участок цепи между двумя узлами, а контур — любая замкнутая цепь.

Последовательное соединение состоит из элементов, при котором все компоненты цепи связаны так, что участок цепи, образованный из них, не имеет ни одного узла.

А при параллельном соединении все компоненты электрической цепи контактируют между собой в двух узлах. При этом эти узлы напрямую не связаны.

Расчёт импеданса

Методы вычисления общего сопротивления зависят от способа соединения резисторов. При расчётах общего импеданса за основу берутся законы Кирхгофа.

Так, первый его закон гласит: сумма токов в узле равна нулю. Или, если его перефразировать, значение тока, втекающего в узел, равно сумме токов, вытекающих из этого узла. Второй закон связан с электродвижущей силой, и его формулировка звучит так: сумма разности потенциалов в контуре равна сумме падений разности потенциалов на каждом резисторе в цепи.

При последовательном соединении все элементы располагаются друг за другом без ответвлений. Так как согласно правилу Кирхгофа в любом месте ветви сила тока одинаковая I = I1 = In, то падение напряжения на первом элементе: U1 = I*R1, а на n: Un = I*Rn, где:

  • In — сила тока, протекающая через резистор, А.
  • Un — значение падения напряжения на резисторе, В.
  • Rn — величина сопротивления элемента, Ом.

Общая разность потенциалов равна сумме всех напряжений, поэтому можно записать: U = U1++Un = I*(R1++Rn) = IRo.

В результате формула для расчёта сопротивления цепи в этом случае будет выглядеть следующим образом:

Ro = R1 ++ Rn, где:

  • Ro — общее сопротивление ветви.
  • R1 — значение импеданса первого элемента.
  • Rn — величина сопротивления n-го элемента.

Если цепь параллельная то это значит, что на этом участке несколько ветвей расходятся, а после опять соединяются. Получается, что сила тока в каждой ветви будет своя, а величина напряжения одинакова. Поэтому Uo = U1== Un, а Io = I1++In. Используя закон Ома, можно записать:

Uo/Ro = U1/R1++Un/Rn, или

1/Ro = 1/R1+1/Rn.

В итоге эквивалентное сопротивление при параллельном соединении рассчитывается как произведение значений резисторов, делённое на сумму их произведений. Для двух резисторов формулу для нахождения общего сопротивления можно записать в виде: Ro = (R1*R2) / (R1+R2).

Браузерный онлайн-калькулятор

Если элементов в цепи немного, то, упрощая схему, довольно легко посчитать, используя формулы для параллельного и последовательного включения резисторов, общий импеданс цепи. Но если в схеме много элементов, да ещё она такая, что содержит и то, и другое соединение (комбинированная), проще воспользоваться браузерными онлайн-калькуляторами.

В их основе используются всё те же формулы для расчёта эквивалентного резистора, но все вычисления происходят автоматически. Существует огромное количество предложений таких калькуляторов. Но при этом все они работают одинаково.

Онлайн-расчёт представляет собой программный код, в котором заложен алгоритм вычисления. Потребителю необходимо только в специальных ячейках указать, какой вид соединения используется, сколько элементов в контуре и сопротивления резисторов.

Далее надо нажать кнопку «Рассчитать» и через считанные секунды получить ответ.

Необходимо отметить, что, если даже это в программе не указано, все значения вводятся только в Международной системе единиц, сила тока — ампер, напряжение — вольт, сопротивление — Ом. Тогда и ответ получится в Омах.

Бонусом является и то, что многие такие программы сразу рассчитывают и мощность элемента. Для этого используется формула: P = U2/Ro = I2*Ro, Вт.

Практическое применение

Чаще всего на практике расчёт общего сопротивления цепи выполняют для того, чтобы узнать потребляемую мощность той или иной схемы. При этом, зная общее сопротивление, можно найти и такие важные параметры цепи, как ток и напряжение. Поэтому и рисуют эквивалентную схему электрической цепи. Простые цепи состоят только из последовательных или параллельных участков, но чаще встречаются комбинированные соединения.

Перед тем как приступить к расчёту эквивалентного сопротивления, вся электрическая цепь разделяется на простые контуры. Как только импеданс каждого такого контура будет подсчитан, схема перерисовывается, но вместо контуров рисуется уже резистор. Затем всё повторяется, и это происходит до тех пор, пока не останется один элемент.

Простое соединение

Пусть будет дана схема, состоящая из трёх резисторов, включённых последовательно. При этом сопротивление R1и R2 одинаковое и равно 57 Ом, а сопротивление R3 составляет один килоОм. Для расчёта общего сопротивления цепи сначала понадобится привести значение R3 согласно Международной системе единиц.

R3 = 1 кОм = 1000 Ом.

Так как соединение последовательное, используется формула: Ro = R1+R2+R3. Подставив известные значения, рассчитывается эквивалентное значение: Ro = 57+57+1000 = 1114 Ом.

Если же те же самые резисторы будут расположены параллельно друг другу, то для расчёта общего сопротивления уже используется другое выражение:

1/Ro = 1/R1 + 1/R2 +1/R3.

Ro = R1*R2*R3 / (R1*R2+R2*R3+R1*R3).

Подставив исходные данные в эту формулу, получим:

Ro = 57*57*1000/ (57*57 +57*1000+ 57*1000) = 3249000/117249 = 27,7 Ом.

Комбинированный контур

Необходимо вычислить мощность и эквивалентное сопротивление смешанной цепи, состоящей из четырёх резисторов. Резистор R1 =R2 =5 Ом, R3= 10 Ом, R4 =3 Ом. На схему подаётся питание пять вольт.

Первоначально понадобится упростить схему. Сопротивления R3 и R4 включены относительно друг друга параллельно. Поэтому находится их объединённое сопротивление:

Rp = (R3*R4)/(R3+R4).

Rp = (10*3)/ (10+3) = 2,3 Ом.

Теперь схему можно перерисовать в виде трёх последовательно включённых резисторов и найти общее сопротивление путём сложения их величин:

Ro = R1+R2+Rp = 5+5+2,3 = 12,3 Ом.

Зная эквивалентное сопротивление, используя закон Ома, несложно вычислить силу тока в цепи и мощность эквивалентного резистора:

I = U/R = 5/2,3 = 2,2 A.

P = I*U = 2,2*5= 11 Вт.

Таким образом, путём постепенного упрощения схемы можно свести цепь из последовательно и параллельно соединённых резисторов к одному элементу. А затем рассчитать его сопротивление и требуемую мощность.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/moschnost/soprotivlenie/kak-poschitat-obschee-soprotivlenie-cepi.html

Параллельное соединение резисторов

Как найти общее сопротивление 3 резисторов

> Теория > Параллельное соединение резисторов

Параллельные соединения резисторов, формула расчёта которых выводится из закона Ома и правил Кирхгофа, являются наиболее распространённым типом включения элементов в электрическую цепь. При параллельном соединении проводников два или несколько элементов объединяются своими контактами с обеих из сторон соответственно. Подключение их к общей схеме осуществляется именно этими узловыми точками.

Особенности включения

Включённые таким образом проводники нередко входят в состав сложных цепочек, содержащих, помимо этого, последовательное соединение отдельных участков.

Для такого включения типичны следующие особенности:

  • Общее напряжение в каждой из ветвей будет иметь одно и то же значение;
  • Протекающий в любом из сопротивлений электрический ток всегда обратно пропорционален величине их номинала.

В частном случае, когда все включённые в параллель резисторы имеют одинаковые номинальные значения, протекающие по ним «индивидуальные» токи также будут равны между собой.

Расчёт

Параллельное соединение резисторов

Сопротивления ряда соединённых в параллель проводящих элементов определяются по общеизвестной форме расчёта, предполагающей сложение их проводимостей (обратных сопротивлению величин).

Протекающий в каждом из отдельных проводников ток в соответствие с законом Ома, может быть найден по формуле:

I= U/R (одного из резисторов).

После ознакомления с общими принципами обсчёта элементов сложных цепочек можно перейти к конкретным примерам решения задач данного класса.

Пример №1

Нередко для решения стоящей перед конструктором задачи требуется путём объединения нескольких элементов получить в итоге конкретное сопротивление. При рассмотрении простейшего варианта такого решения допустим, что общее сопротивление цепочки из нескольких элементов должно составлять 8 Ом. Этот пример нуждается в отдельном рассмотрении по той простой причине, что в стандартном ряду сопротивлений номинал в 8 Ом отсутствует (есть только 7,5 и 8,2 Ом).

Решение этой простейшей задачи удаётся получить за счёт соединения двух одинаковых элементов с сопротивлениями по 16 Ом каждое (такие номиналы в резистивном ряду существуют). Согласно приводимой выше формуле общее сопротивление цепочки в этом случае вычисляется очень просто.

Из неё следует:

16х16/32=8 (Ом), то есть как раз столько, сколько требовалось получить.

ЭТО ИНТЕРЕСНО:  Как работает инверторный генератор

Таким сравнительно простым способом удаётся решить задачу формирования общего сопротивления, равного 8-ми Омам.

Пример №2

В качестве ещё одного характерного примера образования требуемого сопротивления можно рассмотреть построение схемы, состоящей из 3-х резисторов.

Общее значение R такого включения может быть рассчитано по формуле последовательного и параллельного соединения в проводниках.

В соответствии с указанными на картинке значениями номиналов, общее сопротивление цепочки будет равно:

1/R = 1/200+1/220+1/470 = 0,0117;

R=1/0,0117 = 85,67Ом.

В итоге находим суммарное сопротивление всей цепочки, получаемой при параллельном соединении трёх элементов с номинальными значениями 200, 240 и 470 Ом.

Важно! Указанный метод применим и при расчёте произвольного числа соединенных в параллель проводников или потребителей.

Также необходимо отметить, что при таком способе включения различных по величине элементов общее сопротивление будет меньше, чем у самого малого номинала.

Расчёт комбинированных схем

Параллельное соединение проводников

Рассмотренный метод может применяться и при расчёте сопротивления более сложных или комбинированных схем, состоящих из целого набора компонентов. Их иногда называют смешанными, поскольку при формировании цепочек используются сразу оба способа. Смешанное соединение резисторов представлено на размещенном ниже рисунке.

В приведённом выше примере требуется посчитать суммарное значение номиналов цепи, состоящей из трех резисторов.

Для упрощения расчета сначала разбиваем все резисторы по типу включения на две самостоятельные группы. Одна из них представляет собой последовательное соединение, а вторая – имеет вид подключения параллельного типа.

Из приведённой схемы видно, что элементы R2 и R3 соединяются последовательно (они объединены в группу 2), которая, в свою очередь, включена в параллель с резистором R1, принадлежащим группе 1.

Для элементов из группы 2 значение общего сопротивления находится как сумма R2 и R3:

R (2+3) = R2 + R3.

Для получения окончательного результата приводим схему к виду, получаемому при параллельном соединении двух сопротивлений. После этого суммарное значение для всей схемы в целом вычисляется согласно уже рассмотренной ранее формуле.

В заключение отметим, что для проведения расчётных операций, относящихся к категории сложных соединений, можно воспользоваться теми же методиками. В их основу заложены всё те же закон Ома и правила Кирхгофа, известные ещё со школьной скамьи. Главное – это грамотно распорядиться всеми описанными выше формулами.

Последовательное и параллельное соединение аккумуляторов

Источник: https://elquanta.ru/teoriya/parallelnoe-soedinenie-rezistorov.html

Последовательное и параллельное соединение резисторов

Как найти общее сопротивление 3 резисторов

Здравствуйте, уважаемые читатели сайта sesaga.ru. Очень часто в практике радиолюбителя при повторении или наладке радиоэлектронных устройств не всегда под рукой оказывается резистор с нужным сопротивлением, хотя резисторов с другими сопротивлениями имеются в достаточном количестве.

В такой ситуации поступают просто: берут несколько резисторов (два или три) с разными сопротивлениями и, соединяя их последовательно или параллельно, подбирают нужное сопротивление.

В этой статье Вы узнаете, как применяя то или иное соединение можно подобрать необходимое сопротивление.

Последовательное соединение резисторов

Последовательным называют соединение, при котором резисторы следуют друг за другом и образуют электрическую цепь из нескольких элементов, в которой конец одного резистора соединен с началом другого и т.д.

В последовательной цепи электрической ток поочередно протекает по всем резисторам и преодолевает сопротивление каждого из них. При этом ток в этой цепи одинаков. И если последовательно соединить два резистора R1 и R2, их общее (полное) сопротивление Rобщ будет равно сумме их сопротивлений. Это условие справедливо для любого числа резисторов, где:

Например.
При соединении двух резисторов с номиналами R1 = 150 Ом и R2 = 330 Ом их общее сопротивление составит Rобщ = 150 + 330 = 480 Ом.

При соединении трех резисторов R1 = 20 кОм, R2 = 68 кОм и R3 = 180 кОм их общее сопротивление составит Rобщ = 20 + 68 + 180 = 268 кОм.

Запомните. Из нескольких соединенных последовательно резисторов их общее сопротивление Rобщ определяет тот, у которого сопротивление больше по отношению к другим резисторам в этой цепи.

Параллельное соединение резисторов

При параллельном соединении резисторов соединяются их одноименные выводы: начальные выводы соединяются в одной точке, а конечные выводы в другой. Такой способ включения облегчает прохождение электрическому току, потому что он разветвляясь, одновременно протекает по всем соединенным таким образом резисторам.

При параллельном соединении резисторов складываются не сопротивления, а их электрические проводимости (величины, обратные сопротивлениям, т.е. 1/R), поэтому общее (полное) сопротивление Rобщ уменьшается и всегда меньше сопротивлений любого резистора в этой цепи. Формула для определения полного сопротивления имеет вид:

Если параллельно включены два резистора с сопротивлениями R1 и R2, тогда основную формулу немного упрощаем и получаем:

При включении трех резисторов расчет общего сопротивления будет таким:

Например.
При соединении двух резисторов с номиналами R1 = 47 кОм и R2 = 68 кОм их общее сопротивление составит Rобщ = 47•68 / (47 + 68) = 27,8 кОм.

При соединении трех резисторов R1 = 10 Ом, R2 = 15 Ом и R3 = 33 Ом их общее сопротивление равно Rобщ = 10•15•33 / (15•33) + (10•33) + (10•15) = 5,07 Ом.

На заметку. При соединении двух резисторов с одинаковыми номиналами их общее сопротивление Rобщ равно половине сопротивления каждого из них.

Из приведенных примеров можно сделать вывод, что если необходим резистор с большим сопротивлением, применяют последовательное соединение. Если же резистор необходим с меньшим сопротивлением, применяют параллельное соединение.

Ну вот, в принципе, и все, что хотел сказать о последовательном и параллельном соединении резисторов. И в дополнение к статье предлагаю еще рассмотреть и смешанное соединение.
Удачи!

Источник: https://sesaga.ru/posledovatelnoe-i-parallelnoe-soedinenie-rezistorov.html

Последовательное и параллельное соединения проводников – FIZI4KA

ОГЭ 2018 по физике ›

1. Потребители электрической энергии: электрические лампочки, резисторы и пр. — могут по-разному соединяться друг с другом в электрической цепи. Существует два основных типа соединения проводников: последовательное и параллельное. При последовательном соединении проводников конец одного проводника соединяется с началом другого проводника, а его конец — с началом третьего и т.д. (рис. 85).

Примером последовательного соединения проводников может служить соединение электрических лампочек в ёлочной гирлянде.

При последовательном соединении проводников ток проходит через все лампочки, при этом через поперечное сечение каждого проводника в единицу времени проходит одинаковый заряд, т.е. заряд не скапливается ни в какой части проводника. Поэтому при последовательном соединении проводников сила тока в любом участке цепи одинакова: ​\( I_1=I_2=I \)​.

Общее сопротивление последовательно соединённых проводников равно сумме их сопротивлений: ​\( R_1=R_2=R \)​. Это следует из того, что при последовательном соединении проводников их общая длина увеличивается, она больше, чем длина каждого отдельного проводника, соответственно увеличивается и сопротивление проводников.

По закону Ома напряжение на каждом проводнике равно: ​\( U_1=IR_1 \)​, ​\( U_2=IR_2 \)​, а общее напряжение равно ​\( U=I(R_1+R_2) \)​. Поскольку сила тока во всех проводниках одинакова, а общее сопротивление равно сумме сопротивлений проводников, то полное напряжение на последовательно соединённых проводниках равно сумме напряжений на каждом проводнике: ​\( U=U_1+U_2 \)​.

Из приведённых равенств следует, что последовательное соединение проводников используется в том случае, если напряжение, на которое рассчитаны потребители электрической энергии, меньше общего напряжения в цепи.

2. Примером параллельного соединения проводников служит соединение потребителей электрической энергии в квартире. Так, электрические лампочки, чайник, утюг и пр. включаются параллельно.

При параллельном соединении проводников все проводники одним своим концом присоединяются к одной точке цепи (А), а вторым концом к другой точке цепи (В) (рис. 86).

Поэтому вольтметр, подключенный к этим точкам, покажет напряжение как на проводнике 1, так и на проводнике 2. Таким образом, напряжение на концах всех параллельно соединённых проводников одно и то же: ​\( U_1=U_2=U \)​.

При параллельном соединении проводников электрическая цепь разветвляется, в данном случае в точке В. Поэтому часть общего заряда проходит через один проводник, а часть — через другой. Следовательно при параллельном соединении проводников сила тока в неразветвлённой части цепи равна сумме силы тока в отдельных проводниках: ​\( I=I_1+I_2 \)​.

В соответствии с законом Ома ​\( I=\frac{U}{R} \)​, \( I_1=\frac{U_1}{R_1} \), \( I_2=\frac{U_2}{R_2} \). Отсюда следует: ​\( \frac{U}{R}=\frac{U_1}{R_1}+\frac{U_2}{R_2} \)​. Так как ​\( U_1=U_2=U \)​, \( \frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2} \). Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника.

При параллельном соединении проводников их общее сопротивление меньше, чем сопротивление каждого проводника. Действительно, если параллельно соединены два проводника, имеющие одинаковое сопротивление ​\( r \)​, то их общее сопротивление равно: ​\( R=r/2 \)​. Это объясняется тем, что при параллельном соединении проводников как бы увеличивается площадь их поперечного сечения, соответственно уменьшается сопротивление.

Из приведённых формул понятно, почему потребители электрической энергии включаются параллельно: они все рассчитаны на определённое одинаковое напряжение, которое в квартирах равно 220 В. Зная сопротивление каждого потребителя, можно рассчитать силу тока в каждом из них и соответствие суммарной силы тока предельно допустимой силе тока.

  • Примеры заданий
  • Ответы

Часть 1

1. На рисунке изображёна схема участка электрической цепи АВ. В эту цепь параллельно включены два резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Напряжения на резисторах соответственно ​\( U_1 \)​ и ​\( U_2 \)​.

По какой из формул можно определить напряжение U на участке АВ?

1) ​\( U=U_1+U_2 \)​
2) ​\( U=U_1-U_2 \)​
3) ​\( U=U_1=U_2 \)​
4) ​\( U=\frac{U_1U_2}{U_1+U_2} \)​

2. На рисунке изображёна схема электрической цепи, содержащая два параллельно включённых резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( I=I_1=I_2 \)​
2) \( I=I_1+I_2 \)
3) \( U=U_1+U_2 \)
4) \( R=R_1+R_2 \)

3. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением R} и R2. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( U=U_1+U_2 \)​
2) \( I=I_1+I_2 \)
3) \( U=U_1=U_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)

4. На рисунке изображена схема электрической цепи. В эту цепь последовательно включены два резистора сопротивлением ​\( R_1 \)​ и ​\( R_2 \)​. Какое из приведённых ниже соотношений справедливо для такого соединения резисторов?

1) ​\( U=U_1=U_2 \)​
2) \( I=I_1+I_2 \)
3) \( I=I_1=I_2 \)
4) \( R=\frac{R_1R_2}{R_1+R_2} \)

5. На рисунке изображена схема электрической цепи. В эту цепь параллельно включены два одинаковых резистора сопротивлением ​\( R_1 \)​. По какой из формул можно определить общее сопротивление цепи ​\( R \)​?

1) ​\( R=R_1{}2 \)​
2) ​\( R=2R_1 \)​
3) ​\( R=\frac{R_1}{2} \)​
4) ​\( R=\sqrt{R_1} \)​

6. Общее сопротивление участка цепи, изображённого на рисунке, равно 9 Ом. Сопротивления резисторов ​\( R_1 \)​ и ​\( R_2 \)​ равны. Чему равно сопротивление каждого резистора?

1) 81 Ом 2) 18 Ом 3) 9 Ом

4) 4,5 Ом

7. Чему равно сопротивление участка цепи, содержащего три последовательно соединенных резистора сопротивлением по 9 Ом каждый?

1) 1/3 Ом 2) 3 Ом 3) 9 Ом

4) 27 Ом

8. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если ​\( R_1 \)​ = 1 Ом, ​\( R_2 \)​ = 10 Ом, ​\( R_3 \)​ = 10 Ом, ​\( R_4 \)​ = 5 Ом?

1) 9 Ом 2) 11 Ом 3) 16 Ом

4) 26 Ом

9. Чему равно общее сопротивление участка цепи, изображённого на рисунке, если \( R_1 \) = 1 Ом, \( R_2 \) = 3 Ом, \( R_3 \) = 10 Ом, \( R_4 \) = 10 Ом?

1) 9 Ом 2) 10 Ом 3) 14 Ом

4) 24 Ом

10. Если ползунок реостата (см. схему) переместить влево, то сила тока

1) в резисторе ​\( R_1 \)​ уменьшится, а в резисторе ​\( R_2 \)​ увеличится 2) увеличится в обоих резисторах

3) в резисторе ​\( R_1 \)​ увеличится, а в резисторе ​\( R_2 \)​ уменьшится

4) уменьшится в обоих резисторах

11. На рисунке изображена электрическая цепь, состоящая из источника тока, резистора и реостата. Как изменяются при передвижении ползунка реостата вправо его сопротивление, сила тока в цепи и напряжение на резисторе 1?

Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА A) сопротивление реостата 2 Б) сила тока в цепи

B) напряжение на резисторе 1

ХАРАКТЕР ИЗМЕНЕНИЯ 1) увеличивается 2) уменьшается

3) не изменяется

12. Установите соответствие между физическими величинами и правильной электрической схемой для измерения этих величин при последовательном соединении двух резисторов ​\( R_1 \)​ и \( R_2 \). Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) сила тока в резисторе \( R_1 \)​ и \( R_2 \)
Б) напряжение на резисторе \( R_2 \)
B) общее напряжение на резисторах \( R_1 \)​ и \( R_2 \)

ЭТО ИНТЕРЕСНО:  Для чего нужен электролитический конденсатор

Часть 2

13. Три резистора соединены, как показано на рисунке. Сопротивления резисторов ​\( R_1 \)​ = 10 Ом, \( R_2 \) = 5 Ом, \( R_3 \) = 5 Ом. Каково напряжение на резисторе 1, если амперметр показывает силу тока 2 А?

Ответы

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/posledovatelnoe-i-parallelnoe-soedinenija-provodnikov.html

Формула сопротивления при параллельном и последовательном соединении

Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением.

В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным.

Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.

Последовательное соединение проводников

В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.

Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.

Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:

  • Сила тока на всех участках цепи будет одинаковой.
  • Общее напряжение цепи составляет сумму напряжений на каждом участке.
  • Общее сопротивление включает в себя сопротивления каждого отдельного проводника.

Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.

Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.

Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.

Параллельное соединение проводников

В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.

Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.

После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.

Источник: https://crast.ru/instrumenty/formula-soprotivlenija-pri-parallelnom-i

Параллельное соединение резисторов (формула)

Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Сопротивление издвух резисторов:   R =  R1 × R2
 R1 + R2

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельных резисторов

 1    =    1  +  1  +  1  +
R R1 R2 R3

Как видно, вычислить сопротивление двух параллельных резисторов значительно удобнее.

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Например: десять резисторов номиналом 1 КОм и мощностью 1 Вт каждый, соединённые параллельно будут иметь общее сопротивление 100 Ом и мощность 10 Вт.
При последовательном соединении мощность резисторов также складывается. Т.е. в том же примере, но при последовательном соединении, общее сопротивление будет равно 10 КОм и мощность 10 Вт.

Источник: http://katod-anod.ru/articles/4

Параллельное соединение резисторов. Калькулятор для расчета

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи  можно определить как:

I = I1 + I2

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора, входящего в параллельное соединение.

Источник: http://www.joyta.ru/7362-parallelnoe-soedinenie-rezistorov/

Задачи на параллельное и последовательное соединение проводников с подробными решениями

Что бы ни происходило в мире, учиться надо всегда. Кстати, для тех, кто не знает, как организовать учебу на удаленке, мы подготовили отдельную статью. А сегодня займемся решением задач на последовательное и параллельное соеднинение проводников. Решение задач – отличный способ, чтобы успокоить нервы и не поддаваться панике.

Присоединяйтесь к нам в телеграме: там вас ждут актуальные новости и приятные скидки.

Последовательное и параллельное соединение проводников: решение задач

Как решать задачи с параллельным и последовательным соединением проводников? Для начала повторите теорию, вспомните общую памятку по решению физических задач и на всякий случай держите под рукой формулы.

Задача №1 на последовательное соединение проводников

Условие

Проводники сопротивлением 20 Ом и 30 Ом соединены последовательно. Напряжение на концах первого проводника равно 12 В. Определите напряжение, сопротивление и силу тока в цепи на втором проводнике, а также полное напряжение.

Решение

По закону Ома:

Для последовательного соединения проводников:

Ответ: 50 Ом; 18 В; 0,6 А; 30 В.

Задача №2 на параллельное соединение проводников

Условие

Два проводника соединены параллельно. Сила тока в первом проводнике равна 0,5 А, во втором — 1 А. Сопротивление первого проводника составляет 18 Ом. Определите сопротивление второго проводника и силу тока на всем участке цепи.

Решение

Для параллельного соединения:

По закону Ома:

При решении задач не забывайте проверять размерности величин и при необходимости переводить их в систему СИ.

Ответ: 1,5 А; 9 Ом.

Задача №3 на последовательное и параллельное соединение проводников

Условие 

Электрогрелка состоит из трех одинаковых секций. Во сколько раз быстрее грелка будет нагревать некоторое количество воды от 10 до 100 градусов Цельсия при параллельном включении всех секций, нежели при последовательном их включении? 

Решение

Пусть сопротивление каждой секции равно R. Тогда при параллельном включении их в сеть напряжение на каждой секции равно напряжению в сети (U), и на трех секциях будет выделяться тепло:

При последовательном соединении суммарное сопротивление цепи равно 3R, а выделяющееся количество теплоты:

Как видим, выделяющееся тепло для первой схемы в 9 раз больше, так что и скорость нагрева воды будет в 9 раз выше.

Ответ: в 9 раз.

Задача №4 на смешанное соединение проводников

Условие

Участок цепи состоит из двух последовательно соединенных сопротивлений, каждое из которых равно 1 Ом. К этим двум резисторам параллельно подключают еще одно сопротивление, значение которого составляет 2 Ом. Всю эту цепь подключают к источнику тока, который создает на концах данного соединения напряжение 2,4 В. Определите силу тока во всей электрической цепи.

ЭТО ИНТЕРЕСНО:  Сколько киловатт выдержит автомат на 25 ампер

Решение

Согласно схеме, искомая сила тока – это сила тока, протекающая через амперметр. 

Резисторы R1 и R2 соединены последовательно, резистор R3 – параллельно к ним. 

Резисторы 1 и 2 можно заменить эквивалентным сопротивлением R со штрихом и перерисовать схему в упрощенном виде:

Сопротивления R3 и R со штрихом соединены параллельно, можно найти общее сопротивление электрической цепи по формуле для параллельного соединения:

Теперь цепь можно перерисовать в еще более упрощенном виде и рассчитать силу тока по закону Ома:

Ответ: 2.4 А.

Задача №5 на закон Кирхгофа

Правила Кирхгофа применяются для расчета сложных электрических цепей.

Условие

Три сопротивления R1 = 5 Ом, R2 = 1 Ом, R3 = 3 Ом и два источника тока соединены так, как показано на рисунке. Внутренними сопротивлениями  источников тока можно пренебречь. ЭДС первого источника тока равна 1,4 В, и сила тока, текущего через сопротивление R3, равна I3= 1 А.  Определите ЭДС второго источника тока.

Решение

Выберем направление обхода контуров по часовой стрелке и запишем закон Кирхгофа для точки A (расположим ее между двумя источниками и сопротивлением R2)  и двух контуров:

Подставим числа, получим

Решая систему уравнений, получаем ответ: Е2=3.6 В.

Ответ: 3.6 В.

Вопросы на параллельное и последовательное соединение проводников

Вопрос 1. Схематически изобразите последовательное соединение проводников

Ответ. На рисунке ниже изображен участок цепи с последовательно соединенными проводниками:

Вопрос 2. Схематически изобразите параллельное соединение проводников

Ответ. На рисунке ниже изображено параллельное соединение проводников:

Вопрос 3. Приведите основные формулы и соотношения для последовательного соединения проводников.

Ответ. При последовательном соединении:

  1. Сила тока во всех проводниках одинакова.
  2. Общее напряжение равно сумме напряжений на каждом проводнике.
  3. Полное сопротивление цепи равно сумме сопротивлений отдельных проводников.

Вопрос 4. Приведите основные формулы и соотношения для параллельного соединения проводников.

Ответ. Для параллельного соединения проводников:

  1. Напряжение на всех проводниках одинаково.
  2. Сила тока в неразветвленной цепи равна сумме токов в параллельно соединенных проводниках.
  3. Величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Вопрос 5. Какие электрические цепи нельзя рассчитать с помощью формул для последовательного и параллельного соединения проводников?

Ответ. С помощью приведенных выше формул можно рассчитать лишь относительно простые электрические цепи. Для расчета сложных цепей, включающих в себя несколько источников тока и состоящих из многих резисторов, применяются правила Кирхгофа.

Нужна помощь в решении задач или любых других учебных заданий? Обращайтесь в профессиональный сервис для учащихся: мы найдем верное решение.

Автор

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник: https://zaochnik.ru/blog/zadachi-na-parallelnoe-i-posledovatelnoe-soedinenie-provodnikov-s-podrobnymi-reshenijami/

Общее сопротивление Rобщ

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Смешанное соединение резисторов

Смешанным соединением называют участок цепи, где часть резисторов соединяются между собой последовательно, а часть параллельно. В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Соединение резисторов — Основы электроники

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике.
Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов.
Соединение резисторов может производиться последовательно, параллельно и смешанно (то есть и последовательно и параллельно), что показано на рисунке 1.

Рисунок 1. Соединение резисторов.

Соединение резисторов

Радиоэлектроника для начинающих

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/connection-of-resistors.html

Решение задач по теме:

Под со­еди­не­ни­ем про­вод­ни­ков под­ра­зу­ме­ва­ет­ся со­еди­не­ние ре­зи­сто­ров – при­бо­ров, сде­лан­ных на ос­но­ве со­про­тив­ле­ния про­вод­ни­ков. На преды­ду­щих уро­ках были рас­смот­ре­ны па­рал­лель­ное и по­сле­до­ва­тель­ное со­еди­не­ния. На дан­ном уроке будут рас­смот­ре­ны за­да­чи на сме­шан­ное со­еди­не­ние про­вод­ни­ков, то есть когда в цепи при­сут­ству­ет и по­сле­до­ва­тель­ное, и па­рал­лель­ное со­еди­не­ние.

Для ре­ше­ния задач сна­ча­ла рас­смот­рим фор­му­лы для связи раз­лич­ных ве­ли­чин при па­рал­лель­ном и по­сле­до­ва­тель­ном со­еди­не­ни­ях:

Если про­вод­ни­ки со­еди­не­ны по­сле­до­ва­тель­но, то сила тока в них оди­на­ко­ва и равна силе тока в цепи. При этом общее на­пря­же­ние в цепи будет со­сто­ять из суммы на­пря­же­ний на каж­дом про­вод­ни­ке. А если го­во­рить о со­про­тив­ле­нии этого участ­ка цепи, в ко­то­ром про­вод­ни­ки со­еди­не­ны по­сле­до­ва­тель­но, то оно равно сумме со­про­тив­ле­ний про­вод­ни­ков.

В по­сле­до­ва­тель­ном со­еди­не­нии все по-дру­го­му. Сила тока в каж­дой ветке этой цепи будет раз­лич­ной, при этом общая сила тока в цепи будет вы­чис­лять­ся как сумма сил токов в про­вод­ни­ках. На­пря­же­ние на про­вод­ни­ках, со­еди­нен­ных по­сле­до­ва­тель­но, будет оди­на­ко­вым. Общее со­про­тив­ле­ние этого участ­ка цепи, так на­зы­ва­е­мое «эк­ви­ва­лент­ное со­про­тив­ле­ние» R, будет вы­чис­лять­ся по сле­ду­ю­щей фор­му­ле: .

Также стоит от­ме­тить, что па­рал­лель­ное со­еди­не­ние обыч­но при­ме­ня­ет­ся при вклю­че­нии бы­то­вых при­бо­ров, а по­сле­до­ва­тель­ное – для того, чтобы со­здать длин­ную нераз­ветв­лен­ную цепь.

Задача №1

Рас­смот­рим сле­ду­ю­щую за­да­чу. Уча­сток цепи со­сто­ит из двух по­сле­до­ва­тель­но со­еди­нен­ных со­про­тив­ле­ний, каж­дое из ко­то­рых равно 1 Ом. К этим двум ре­зи­сто­рам па­рал­лель­но под­клю­ча­ют еще одно со­про­тив­ле­ние, зна­че­ние ко­то­ро­го со­став­ля­ет 2 Ом. Всю эту цепь под­клю­ча­ют к ис­точ­ни­ку тока, ко­то­рый со­зда­ет на кон­цах дан­но­го со­еди­не­ния на­пря­же­ние 2,4 В. Необ­хо­ди­мо опре­де­лить силу тока во всей элек­три­че­ской цепи (рис. 1).

Рис. 1. Усло­вия и ри­су­нок за­да­чи № 1

Как видим, ре­зи­сто­ры R1 и R2 со­еди­не­ны по­сле­до­ва­тель­но, ре­зи­стор R3 – па­рал­лель­но к ним. Ис­точ­ник дает на­пря­же­ние 2,4 В, со­от­вет­ствен­но, на участ­ке АВ на­пря­же­ние будет также 2,4 В. Сила тока, ко­то­рую тре­бу­ет­ся найти, – это сила тока, про­те­ка­ю­щая через ам­пер­метр А.

Такое со­еди­не­ние про­вод­ни­ков на­зы­ва­ет­ся нераз­ветв­лен­ным. В про­мыш­лен­но­сти обыч­но из­го­тав­ли­ва­ет­ся набор ре­зи­сто­ров с четко опре­де­лен­ны­ми со­про­тив­ле­ни­я­ми, но для экс­пе­ри­мен­тов могут по­на­до­бить­ся любые раз­лич­ные со­про­тив­ле­ния. Тогда с по­мо­щью таких схем можно со­зда­вать нуж­ное со­про­тив­ле­ние для экс­пе­ри­мен­та или при­бо­ра.

Далее тре­бу­ет­ся опре­де­лить эк­ви­ва­лент­ное со­про­тив­ле­ние нераз­ветв­лен­ной части. Сна­ча­ла по­смот­рим, чему равно со­про­тив­ле­ние R’ участ­ка цепи АВ, ко­то­рый со­дер­жит толь­ко ре­зи­сто­ры R1 и R2. Они со­еди­не­ны по­сле­до­ва­тель­но, тогда R′=R1+R2=2 [Ом]. Те­перь можно пе­ре­ри­со­вать элек­три­че­скую цепь, за­ме­нив со­про­тив­ле­ния R1 и R2 эк­ви­ва­лент­ным им со­про­тив­ле­ни­ем R’ (рис. 2).

Рис. 2. Пер­вая за­ме­на эк­ви­ва­лент­ным со­про­тив­ле­ни­ем

Те­перь можно ска­зать, что уча­сток АВ вклю­ча­ет в себя не три, а два со­про­тив­ле­ния: R3 и R’. Эти два со­про­тив­ле­ния со­еди­не­ны па­рал­лель­но, со­от­вет­ствен­но, можно найти общее со­про­тив­ле­ние элек­три­че­ской цепи по фор­му­ле . Вы­ра­зив R и под­ста­вив зна­че­ния , по­лу­ча­ем:

Стоит от­ме­тить, что со­про­тив­ле­ния были со­еди­не­ны, но общее со­про­тив­ле­ние по­лу­чи­лось все равно рав­ным 1 Ом. Те­перь элек­три­че­скую цепь можно за­ме­нить сле­ду­ю­щей (рис. 3):

Рис. 3. Вто­рая за­ме­на эк­ви­ва­лент­ным со­про­тив­ле­ни­ем

На рис. 3 со­про­тив­ле­ние R=1 Ом на­зы­ва­ет­ся эк­ви­ва­лент­ным со­про­тив­ле­ни­ем, по­сколь­ку три со­про­тив­ле­ния были за­ме­не­ны на одно. Чтобы рас­счи­тать силу тока в цепи, надо ис­поль­зо­вать закон Ома для участ­ка цепи: . На­пря­же­ние на со­про­тив­ле­нии R – это на­пря­же­ние на участ­ке АВ (Рис. 1), ко­то­рое, в свою оче­редь, равно 2,4.Тогда . Это и будет зна­че­ние силы тока в элек­три­че­ской цепи, ко­то­рое по­ка­жет ам­пер­метр.

Задача №2

Те­перь рас­смот­рим за­да­чу, в ко­то­рой также будет три со­про­тив­ле­ния, но со­еди­не­ны они будут по-дру­го­му (рис. 4):

Рис. 4. Усло­вие за­да­чи № 2

Два со­про­тив­ле­ния R1 и R2 со­еди­не­ны па­рал­лель­но (R1=R2=2 Ом), к ним еще по­сле­до­ва­тель­но при­со­еди­не­но со­про­тив­ле­ние R3=1 Ом. Ам­пер­метр по­ка­зы­ва­ет силу тока в цепи, рав­ную I=0,5 А. Тре­бу­ет­ся опре­де­лить на­пря­же­ние на кон­цах участ­ка этой цепи, то есть на участ­ке АВ.

Для на­ча­ла опре­де­лим со­про­тив­ле­ние участ­ка цепи, со­дер­жа­ще­го со­про­тив­ле­ния R1 и R2. Эти два со­про­тив­ле­ния со­еди­не­ны па­рал­лель­но, зна­чит, их эк­ви­ва­лент­ное со­про­тив­ле­ние R’ можно найти из фор­му­лы . Под­став­ляя зна­че­ния, по­лу­ча­ем:

Те­перь можно ска­зать, что цепь вклю­ча­ет в себя толь­ко два со­про­тив­ле­ния: R’и R3, ко­то­рые со­еди­не­ны по­сле­до­ва­тель­но.

Рис. 5. За­ме­на па­рал­лель­но­го со­еди­не­ния эк­ви­ва­лент­ным со­про­тив­ле­ни­ем

В за­да­че тре­бу­ет­ся опре­де­лить на­пря­же­ние. Для этого ис­поль­зу­ет­ся при­бор, ко­то­рый на­зы­ва­ет­ся вольт­метр. В цепь он вклю­ча­ет­ся па­рал­лель­но. И рас­смот­рим уча­сток цепи, в ко­то­ром все три со­про­тив­ле­ния уже за­ме­не­ны эк­ви­ва­лент­ным.

Рис. 6. Вклю­че­ние вольт­мет­ра в цепь

Вольт­метр вклю­чен в месте, со­от­вет­ству­ю­щем участ­ку АВ на рис. 4. Со­от­вет­ствен­но, он из­ме­ря­ет на­пря­же­ние на это участ­ке цепи. Чтобы найти зна­че­ния этого на­пря­же­ния, тре­бу­ет­ся сна­ча­ла найти эк­ви­ва­лент­ное со­про­тив­ле­ние. Со­про­тив­ле­ния R’ и R3 со­еди­не­ны по­сле­до­ва­тель­но (рис. 5), зна­чит, эк­ви­ва­лент­ное со­про­тив­ле­ние опре­де­ля­ет­ся по фор­му­ле:

Те­перь из за­ко­на Ома для участ­ка цепи можно найти на­пря­же­ние:

Зна­чит, вольт­метр дол­жен будет по­ка­зать зна­че­ния на­пря­же­ния в 1 В.

Расчет более сложных цепей

На уроке были рас­смот­ре­ны со­еди­не­ния толь­ко трех со­про­тив­ле­ний, когда они были по­сле­до­ва­тель­ные, к ним па­рал­лель­но под­клю­ча­ет­ся тре­тий, или когда два со­еди­не­ны па­рал­лель­но, а к ним по­сле­до­ва­тель­но под­клю­ча­ют тре­тье со­про­тив­ле­ние. Но ре­аль­ные схемы зна­чи­тель­но слож­нее. Они со­дер­жат огром­ное ко­ли­че­ство раз­лич­ных эле­мен­тов, со­про­тив­ле­ний, по­это­му име­ют­ся до­ста­точ­но слож­ные ме­то­ды рас­че­тов элек­три­че­ских цепей.

Впер­вые рас­че­та­ми таких слож­ных элек­три­че­ских цепей оза­да­чи­лись уче­ные при­бли­зи­тель­но в XIX веке, и по­яви­лись новые пра­ви­ла, ко­то­рые ис­поль­зу­ют­ся и по сей день. Немец­кий уче­ный Кирх­гоф раз­ра­бо­тал воз­мож­ность рас­че­та элек­три­че­ских слож­ных цепей, по­это­му пра­ви­ла, ко­то­рые ис­поль­зу­ют для слож­ных цепей, на­зы­ва­ют­ся «пра­ви­ла­ми Кирх­го­фа».

На сле­ду­ю­щих уро­ках будет рас­смот­ре­но по­ня­тие мощ­но­сти и ра­бо­ты силы тока.

Вопросы к конспектам

В каком слу­чае эк­ви­ва­лент­ное со­про­тив­ле­ние будет боль­ше: если три про­вод­ни­ка с со­про­тив­ле­ни­я­ми 1 Ом каж­дый со­еди­нить па­рал­лель­но или по­сле­до­ва­тель­но?

Два со­про­тив­ле­ния R1=1 Ом и R2= 2 Ом со­еди­не­ны по­сле­до­ва­тель­но, к ним па­рал­лель­но при­со­еди­не­но со­про­тив­ле­ние 3 Ом. Чему равно эк­ви­ва­лент­ное со­про­тив­ле­ние?

Сколь­ко раз­лич­ных цепей можно со­ста­вить из трех ре­зи­сто­ров с со­про­тив­ле­ни­я­ми 1 Ом каж­дый так, чтоб их эк­ви­ва­лент­ные со­про­тив­ле­ния была раз­лич­ны­ми?

Источник: https://100ballov.kz/mod/page/view.php?id=1134

Понравилась статья? Поделиться с друзьями:
Электро Дело
Какой цоколь у люминесцентных ламп

Закрыть