Измеряем температуру c помощью термистора
Журнал РАДИОЛОЦМАН, сентябрь 2015
Ken Wada
embedded.com
Температура является одним из наиболее распространенных параметров, регистрируемых встраиваемой системой. Для таких измерений существует широкий выбор датчиков температуры.
Диапазон типов датчиков простирается от экзотических детекторов черного тела до простейших резистивных сенсоров, включая все множество типов, находящихся между этими полюсами.
В этой статье я кратко расскажу о терморезисторах с отрицательным температурным коэффициентом (NTC термисторы) – одних из самых распространенных датчиков температуры, используемых в различных встраиваемых системах.
Термисторы
Термистор представляет собой резистивный элемент, как правило, изготовленный из полимера или полупроводника, сопротивление которого изменяется в зависимости от температуры. Этот тип устройства не следует путать с резистивным датчиком температуры (RTD). Обычно RTD гораздо точнее, стоят дороже и охватывают более широкий диапазон температур.
Существуют два типа термисторов, отличающихся характером зависимости сопротивления от температуры. Если значение сопротивления уменьшается с ростом температуры, мы называем это устройство термистор с отрицательным температурным коэффициентом (NTC).
Если сопротивление с ростом температуры возрастает, это устройство известно как термистор с положительным температурным коэффициентом (PTC). Как правило, PTC-устройства используются как средства защиты, а NTC-устройства применяются в качестве термодатчиков.
Очень часто NTC термисторы применяются для контроля PN-переходов широкополосных лазерных диодов.
Еще одной характеристикой терморезистора является стоимость. В небольших партиях типичный термистор стоит, как правило, от $0.05 до $0.10 за штуку. Низкая цена и простота подключения делают эти устройства весьма привлекательными для встраиваемых приложений.
Типичный диапазон измерения температуры термистора составляет от –50 °C до +125 °C. Большинство приложений, использующих термисторы, работает в диапазоне от –10 °C до 0 °C, или, как его называют, в коммерческом диапазоне температур окружающей среды.
Типовая погрешность сопротивления термистора достаточно велика. Большинство термисторов изготавливается с допустимым отклонением сопротивления ±5%.
Однако их точность вполне приемлема. Как правило, мы можем рассчитывать, что она находится в диапазоне от ±0.5% до ±1.0%.
Выражение, связывающее температуру и сопротивление термистора, известно как уравнение Стейнхарта-Харта. Это нелинейное уравнение показано ниже.
|
На Рисунке 1 показан график зависимости сопротивления от температуры для NTC термистора ERTJZET472 компании Panasonic. Этот график показывает, что на линейной шкале зависимость сопротивления от температуры очень нелинейна.
Рисунок 1. | График зависимости сопротивления от температуры для NTC термистора компании Panasonic. |
Как правило, термисторы оцениваются по параметру, известному как значение R25. Это типовое сопротивление термистора при 25 °C. Значение R25 для данного термистора составляет 4700 Ом.
Мы можем легко подключить термистор к маломощному источнику тока. Затем мы можем считать напряжение с помощью АЦП и сравнить полученный результат с соответствующей строкой просмотровой таблицы, чтобы узнать истинную температуру. Мы также можем попытаться линеаризовать зависимость сопротивления от температуры.
В некоторых системах с ограниченной памятью мы просто не можем позволить себе такую роскошь, как создание таблицы преобразования. Поэтому в таком приложении показания термистора мы попытаемся линеаризовать.
Приближение первого порядка показывает нам, что сопротивление термистора примерно обратно пропорционально температуре. Учитывая это, мы можем создать схему обратной пропорции, чтобы попытаться линеаризовать кривую зависимости сопротивления от температуры. Из Рисунка 2 видно, как это делается.
Рисунок 2. | Схема линеаризации характеристики NTC термистора. |
Если бы мы действительно хотели сэкономить деньги, то могли бы убрать источник опорного напряжения. Для этого потребуется определенная дополнительная фильтрация, чтобы устранить любые шумы источника питания. Важно, что АЦП и термисторная цепь имеют один источник опорного напряжения. Это позволяет нам использовать логометрический метод измерения для термистора относительно показаний АЦП. То есть, измерение будет независимым от напряжения возбуждения интерфейсной цепи термистора.
Показания температуры зависят только от сопротивления смещения (RB) и сопротивления термистора (RTH). Мы можем назвать их отношение коэффициентом деления (D). Выражение для коэффициента деления не отличается от выражения для простого делителя напряжения (Уравнениие 2).
|
На Рисунке 3 показан набор кривых для различных значений сопротивления смещения линеаризующей цепи термистора. Эти графики также демонстрируют достаточную степень линейности в диапазоне от 0 до 70 °C; при этом наилучшая линейность достигается с более низким сопротивлением резистора смещения.
Рисунок 3. | График зависимости коэффициента деления от температуры при различных значениях сопротивления смещения. |
Другим, более хорошим способом взглянуть на это является изображение на графике разности между значениями температуры, взятыми из документации, и линеаризованными значениями. Такой график приведен на Рисунке 4. Этот рисунок также демонстрирует, что лучшая линейность достигается при меньшем значении сопротивления смещения. График показывает, что резистор номиналом 2 кОм даст линейность примерно ±3 °C в диапазоне температур от 0 до 70 °C.
Рисунок 4. | Относительные ошибки для различных сопротивлений резисторов смещения. |
В этом примере линейное выражение для зависимости температуры от коэффициента сопротивлений при номинале резистора смещения 2 кОм приведено в Уравнении 3.
|
Здесь:
T – температура в градусах Цельсия,
D – коэффициент деления.
На резистивный делитель и АЦП подается одно и то же опорное напряжение. Таким образом, мы можем легко вывести зависимость коэффициента деления от показаний АЦП. Если предположить, что преобразователь имеет разрядность N бит, то получим соотношение, показанное в Уравнении 4.
|
Здесь:
D – коэффициент деления, ADC – показания АЦП,
N – разрядность АЦП (количество бит).
Подставив Уравнение 4 в Уравнение 3, получим выражение, связывающее показания АЦП с температурой. Оно представлено Уравнением 5.
|
Выводы
Иногда, как разработчикам встраиваемой электроники, нам приходится решать проблему подключения датчика к системе. В этой статье я рассмотрел простую схему датчика температуры на основе термистора и показал, как линеаризовать температурную зависимость сопротивления.
Одним из основных преимуществ использования термисторов является их цена. Как правило, при покупке в небольших количествах эти датчики стоят примерно от $0.05 до $0.10. Точность для этих датчиков вполне приличная. Обычно допуск сопротивления или допуск R25 для этих устройств составляет от ±3% до ±5%. Поэтому схема линеаризации с нелинейностью ±3 °C также может считаться удовлетворительной.
Конечно, мы всегда можем использовать более дорогой датчик, который даст более точный результат. К подобным типам датчиков можно отнести:
- Датчики с PN-переходом. Низкая стоимость, приемлемая точность.
- Микросхемы датчиков температуры. Обычно они представляют собой некоторую разновидность датчиков с PN-переходом.
- Резистивные датчики температуры (RTD). Они, как правило, очень точны и значительно дороже.
- Термопары. Их диапазон измерения обычно намного больше, а цена сравнительно невысока.
- Инфракрасные датчики. Чаще всего их используют для измерения тепловых излучений, уровни которых затем преобразуют в температуру.
Это лишь несколько из тех методов, с помощью которых можно измерять температуру. О некоторых из них, возможно, я смогу рассказать в будущей статье.
А как вы измеряете температуру в своей встраиваемой системе? Вы видите, что я показал очень дешевый способ измерения этого физического параметра. Но помимо него существует еще уйма других методов.
Источник: https://www.rlocman.ru/review/article.html?di=161127
Как проверить позистор мультиметром: пошаговая инструкция
» Электрические измерения
Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.
Различные виды позисторов и их графическое изображение в принципиальных схемах
Определяем характеристики по маркировке
Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.
Для примера возьмем радиокомпонент С831, его фотография показана ниже. Посмотрим, что можно определить по надписям на корпусе детали.
Позистор С831
Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит).
Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение.
Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).
Расшифровка основных характеристик
Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).
Рисунок 3. Таблица с основными характеристиками серии B598*1
Краткое описание:
- значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
- Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
- Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
- Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.
Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831
Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.
- Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
- Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.
Расшифровка спецификации конкретной модели
Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).
Спецификация модельного ряда серии B598*1
Краткая расшифровка:
- Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
- Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
- Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
- Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
- Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (Ir x Vmax).
- Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
- Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).
Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным
Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.
- Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.
Теперь, зная спецификацию, можно переходить к проверке на работоспособность.
Определение исправности по внешнему виду
В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса. Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.
Если внешний осмотр не дал результата, приступаем к тестированию.
Пошаговая инструкция проверки позистора мультиметром
Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:
- Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
- Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
- Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
- Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.
Обсудить на форуме
Источник: https://www.asutpp.ru/kak-proverit-pozistor-multimetrom.html
Измерение температуры с помощью термистора NTC
Узнайте о термисторах и о том, как запрограммировать Arduino для измерения их данных.
Вы когда-нибудь задумывались над тем, как некоторые устройства, такие как термостаты, нагревательные площадки 3D принтеров, автомобильные двигатели и печи измеряют температуру? В этой статье вы можете это узнать!
Знать температуру может быть очень полезно. Знание температуры может помочь регулировать температуру в помещении до комфортного значения, гарантировать, что нагревательная площадка 3D принтера была достаточно горячей, чтобы такие материалы, как ABS, прилипали к ее поверхности, а также предотвратить перегрев двигателя или не допустить сжигания приготавливаемой еды.
В данной статье мы рассматриваем только один тип датчика, способного измерять температуру. Этот датчик называется термистором.
Термистор обладает сопротивлением, которое намного сильнее зависит от температуры, чем сопротивление других типов резисторов.
Мы буде использовать Arduino для измерения и обработки показаний термистора, после чего мы преобразуем эти показания в удобный для чтения формат единиц измерения температуры.
Ниже приведена фотография термистора, который мы собираемся использовать:
Терморезистор
Комплектующие
- Arduino (Mega или Uno или любая другая модель);
- несколько перемычек;
- паяльник и припой (возможно, понадобится, если ваш термистор не будет влезать в разъемы на плате Arduino).
Теория
При типовом использовании резистора вы не хотите, чтобы его сопротивление менялось при изменении температуры. Это не реально в реальной жизни, можно лишь обеспечить небольшое изменение сопротивления при большом изменении температуры. Если бы это было не так, то резисторы странно влияли бы на работу схем, например, светодиод мог бы светиться намного ярче или тусклее по мере изменения температуры окружающей среды.
Но что, если вы действительно хотите, чтобы яркость светодиода была функцией температуры? Здесь появляется термистор. Как вы могли догадаться, у термистора сопротивление сильно изменяется при небольшом изменении температуры. Чтобы проиллюстрировать это, ниже приведена кривая изменения сопротивления термистора:
График зависимости сопротивления термистора от температуры
На рисунке показаны лишь единицы измерения без фактических значений, так как диапазон сопротивлений зависит от типа конкретного термистора. Как вы можете заметить, по мере увеличения температуры сопротивление терморезистора уменьшается. Это является отличительным свойством резистора с отрицательным температурным коэффициентом (Negative Temperature Coefficient), или, кратко, NTC термистора.
Источник: https://radioprog.ru/post/185
NTC термистор характеристики
А Вы знаете, что такое NTC термистор и какие у него характеристики?
NTC термистор
ntc термистор характеристики
Что такое термисторы NTC?
Термистор, встроенный в зонд из нержавеющей стали, представляет собой «отрицательный температурный коэффициент». Термисторы NTC — это резисторы с отрицательным температурным коэффициентом, что означает, что сопротивление уменьшается с повышением температуры.
Они в основном используются как резистивные температурные датчики и токоограничивающие устройства. Коэффициент температурной чувствительности примерно в пять раз больше, чем у кремниевых температурных датчиков (силисторы) и примерно в десять раз больше, чем у датчиков температуры сопротивления (RTD).
Датчики NTC обычно используются в диапазоне от -55 ° C до 200 ° C.
NTC термистор
Нелинейность связи между сопротивлением и температурой, проявляемая резисторами NTC, представляла собой большую проблему при использовании аналоговых схем для точного измерения температуры, но быстрое развитие цифровых схем позволило решить эту задачу, позволяющую вычислять точные значения путем интерполяции таблиц поиска или путем решения уравнений которые приближаются к типичной кривой NTC.
Определение термистора NTC
Термистор NTC представляет собой термочувствительный резистор, сопротивление которого демонстрирует большое, точное и прогнозируемое снижение по мере того, как температура ядра резистора увеличивается в диапазоне рабочих температур.
Характеристики термисторов NTC
В отличие от RTD (температурные детекторы сопротивления), изготовленные из металлов, термисторы NTC обычно изготавливаются из керамики или полимеров. Различные используемые материалы приводят к различным температурным откликам, а также к другим характеристикам.
Реакция температуры
Хотя большинство термисторов NTC обычно подходят для использования в температурном диапазоне от -55 ° C до 200 ° C, где они дают наиболее точные показания, существуют специальные семейства термисторов NTC, которые могут использоваться при температурах, приближающихся к абсолютному нулю (-273,15 ° C), а также те, которые специально предназначены для использования выше 150 ° C.
Температурная чувствительность датчика NTC выражается как «процентное изменение на градус C». В зависимости от используемых материалов и особенностей производственного процесса типичные значения чувствительности к температуре колеблются от -3% до -6% на ° С.
Характеристическая кривая NTC термистора
Характеристическая кривая NTC
Как видно из рисунка, термисторы NTC имеют гораздо более крутой наклон сопротивления-температуры по сравнению с RTD платинового сплава, что приводит к лучшей температурной чувствительности. Тем не менее, RTD остаются наиболее точными датчиками, точность которых составляет ± 0,5% от измеренной температуры, и они полезны в температурном диапазоне от -200 ° C до 800 ° C, что намного шире, чем у датчиков температуры NTC.
Сравнение с другими датчиками температуры
По сравнению с RTD, NTC имеют меньший размер, более быстрый отклик, большую устойчивость к ударам и вибрации и имеют более низкую себестоимость. Они немного менее точны, чем RTD. По сравнению с термопарами точность, полученная от обоих, аналогична; однако термопары выдерживают очень высокие температуры (порядка 600 ° C) и используются вместо термисторов NTC, где их иногда называют пирометрами.
Тем не менее, термисторы NTC обеспечивают большую чувствительность, стабильность и точность, чем термопары при более низких температурах, и используются с меньшими затратами электроэнергии и, следовательно, имеют более низкие общие затраты. Стоимость дополнительно снижается из-за отсутствия необходимости в схемах формирования сигнала (усилители, переводчики уровня и т. д.
), Которые часто необходимы при работе с RTD и всегда необходимы для термопар.
Эффект самонагрева
Эффект самонагрева — это явление, которое происходит, когда ток протекает через термистор NTC. Поскольку термистор в основном является резистором, он рассеивает энергию в виде тепла, когда через него протекает ток. Это тепло генерируется в сердечнике термистора и влияет на точность измерений.
Степень, в которой это происходит, зависит от количества протекающего тока, окружающей среды (будь то жидкость или газ, есть ли какой-либо поток над датчиком NTC и т. д.), Температурный коэффициент термистора, общее количество термистора области и т. д.
Тот факт, что сопротивление датчика NTC и, следовательно, ток протекания через него, зависит от окружающей среды и часто используется в резервуарах для хранения жидкости.
Теплоемкость
Теплоемкость представляет собой количество тепла, необходимое для повышения температуры термистора на 1 ° C и обычно выражается в мДж / ° C. Знание точной теплоемкости имеет большое значение при использовании датчика термистора NTC в качестве ограничителя пускового тока, поскольку он определяет скорость отклика датчика температуры NTC.
Выбор и расчет кривой
Тщательный процесс отбора должен учитывать константу рассеяния термистора, постоянную времени термической обработки, значение сопротивления, кривую сопротивления-сопротивления и допуски, чтобы учесть в наиболее важных факторах.
Поскольку зависимость между сопротивлением и температурой (кривая R-T) сильно нелинейна, в практических схемах системы должны использоваться определенные приближения.
Приближение первого порядка
Одним приближением и простейшим в использовании является приближение первого порядка, в котором говорится, что:
формула приближения первого порядка: dR = k * dT
Где k — отрицательный температурный коэффициент, ΔT — разность температур, ΔR — изменение сопротивления, возникающее в результате изменения температуры. Это приближение первого порядка справедливо только для очень узкого температурного диапазона и может быть использовано только для таких температур, где k почти постоянна во всем диапазоне температур.
Бета-формула
Другое уравнение дает удовлетворительные результаты с точностью ± 1 ° C в диапазоне от 0 ° C до + 100 ° C. Он зависит от единственной константы материала β, которая может быть получена путем измерений. Уравнение можно записать в виде:
Бета-уравнение: R (T) = R (T0) * exp (бета * (1 / T-1 / T0))
Где R (T) — сопротивление при температуре T в Кельвине, R (T0) является точкой отсчета при температуре T0. Бета-формула требует двухточечной калибровки и обычно не более чем ± 5 ° C по всему полезному диапазону термистора NTC.
Уравнение Штейнхарта-Харта
Наилучшим приближением, известным на сегодняшний день, является формула Штейнхарта-Харта, опубликованная в 1968 году:
Уравнение Штейнхарта для точного приближения: 1 / T = A + B * (ln (R)) + C * (ln (R)) 3
Где ln R — естественный логарифм сопротивления при температуре T в Кельвине, а A, B и C — коэффициенты, полученные из экспериментальных измерений. Эти коэффициенты обычно публикуются поставщиками термисторов в составе таблицы данных.
Формула Штейнхарта-Харта, как правило, составляет около ± 0,15 ° С в диапазоне от -50 ° С до + 150 ° С, что является большим для большинства применений.
Если требуется высокая точность, диапазон температур должен быть уменьшен, а точность лучше, чем ± 0,01 ° C в диапазоне от 0 ° C до + 100 ° C.
Выбор правильного приближения
Выбор формулы, используемой для получения температуры из измерения сопротивления, должен основываться на доступной вычислительной мощности, а также на фактических требованиях допуска. В некоторых приложениях приближение первого порядка более чем достаточно, в то время как в других случаях даже уравнение Штейнхарта-Харта удовлетворяет требованиям, а термистор должен быть откалиброван по пунктам, делая большое количество измерений и создавая таблицу поиска.
Конструкция и свойства термисторов NTC
Материалами, обычно используемыми при изготовлении NTC-резисторов, являются платина, никель, кобальт, железо и оксиды кремния, используемые в виде чистых элементов или керамики и полимеров. Термисторы NTC можно разделить на три группы, в зависимости от используемого производственного процесса.
Терморезисторы
Форма бисера или шарика. Эти термисторы NTC изготовлены из свинцовых проводов из платинового сплава, непосредственно спеченных в керамический корпус.
Они обычно обеспечивают быстрое время отклика, лучшую стабильность и позволяют работать при более высоких температурах, чем дисковые и чип-датчики NTC, однако они более хрупкие.
Обычно они запечатывают их в стекле, чтобы защитить их от механических повреждений во время сборки и улучшить их стабильность измерений. Типичные размеры колеблются от 0,075 до 5 мм в диаметре.
Терморезисторы
Диск и чип-термисторы
Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков.
Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов.
Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.
Терморезисторы NTC с инкапсулированным покрытием
Стекловолокно с термистором NTC
Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.
Терморезисторы NTC с инкапсулированным покрытием
Типичные области применения
Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.
Типичные области применения
Характеристика сопротивления-температуры
Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию.
К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями.
Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.
Текущая временная характеристика
Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.
Характеристика напряжения
Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.
NTS термисторный символ
Следующий символ используется для термистора с отрицательным температурным коэффициентом в соответствии со стандартом IEC.
NTS термисторный символ
Источник: http://voltstab.ru/note/ntc-termistor-harakteristiki/
Ардуино: терморезистор NTC 100K
Терморезистор (или термистор) — это такой резистор, который меняет свое электрическое сопротивление в зависимости от температуры.
Существует два вида термисторов: PTC — с положительным температурным коэффициентом, и NTC — с отрицательным. Положительный коэффициент означает, что с повышением температуры сопротивление термистора растёт. NTC-термистор ведет себя противоположным способом.
Также термисторы отличаются номинальным сопротивлением, которое соответствует комнатной температуре — 25 C°. Например, популярными являются термисторы с номиналом 100 кОм и 10 кОм. Такие термисторы часто используют в 3D-принтерах.
В этом уроке мы будет использовать термистор NTC 100K в стеклянном корпусе. Вот такой:
Подключение термистора к Ардуино
Чтобы измерить сопротивление термистора, подключим его в качестве нижнего плеча делителя напряжения. Среднюю же точку делителя подключим к аналоговому входу Ардуино — A0. Подобный способ использовался в уроке про фоторезистор.
Подробно об аналоговых входах Ардуино мы говорили на уроке: Аналого-цифровые преобразования — АЦП
Принципиальная схема
Внешний вид макета
Какое сопротивление должен иметь резистор в верхнем плече делителя? Как правило, используют резистор с сопротивлением, совпадающим по порядку с номиналом термистора. В нашем уроке мы используем резистор на R1 = 102 кОм, его легко получить последовательным соединением двух резисторов на 51 кОм.
Программа для вычисления сопротивления термистора
Первая программа, которую мы напишем, будет вычислять сопротивление термистора в Омах.
#define SERIAL_R 102000 // сопротивление последовательного резистора, 102 кОм const byte tempPin = A0; void setup() { Serial.begin( 9600 ); pinMode( tempPin, INPUT );} void loop() { int t = analogRead( tempPin ); float tr = 1023.0 / t — 1; tr = SERIAL_R / tr; Serial.println(tr); delay(100);}
Результат работы программы:
Можно заметить, что измеренное сопротивление термистора меньше 100 кОм, значит температура окружающей среды ниже 25 C°. Следующий шаг — вычисление температуры в градусах Цельсия.
Программа для вычисления температуры на термисторе
Чтобы вычислить значение температуры используют формулу Стейнхарта — Харта:
Уравнение имеет параметры A,B и C, которые нужно брать из спецификации к датчику. Так как нам не требуется большой точности, можно воспользоваться модифицированным уравнением (B-уравнение):
В этом уравнении неизвестным остается только параметр B, который для NTC термистора равен 3950. Остальные параметры нам уже известны:
- T0 — комнатная температура в Кельвинах, для которой указывается номинал термистора; T0 = 25 + 273.15;
- T — искомая температура, в Кельвинах;
- R — измеренное сопротивление термистора в Омах;
- R0 — номинальное сопротивление термистора в Омах.
Модифицируем программу для Ардуино, добавив расчет температуры:
#define B 3950 // B-коэффициент#define SERIAL_R 102000 // сопротивление последовательного резистора, 102 кОм#define THERMISTOR_R 100000 // номинальное сопротивления термистора, 100 кОм#define NOMINAL_T 25 // номинальная температура (при которой TR = 100 кОм) const byte tempPin = A0; void setup() { Serial.begin( 9600 ); pinMode( tempPin, INPUT );} void loop() { int t = analogRead( tempPin ); float tr = 1023.0 / t — 1; tr = SERIAL_R / tr; Serial.print(«R=»); Serial.print(tr); Serial.print(«, t=»); float steinhart; steinhart = tr / THERMISTOR_R; // (R/Ro) steinhart = log(steinhart); // ln(R/Ro) steinhart /= B; // 1/B * ln(R/Ro) steinhart += 1.0 / (NOMINAL_T + 273.15); // + (1/To) steinhart = 1.0 / steinhart; // Invert steinhart -= 273.15; Serial.println(steinhart); delay(100);}
Результат:
Уже лучше! Программа показывает нам температуру в градусах Цельсия. Как и ожидалось, она немного ниже 25 C°.
Задания
- Термометр с дисплеем. Подключим к схеме символьный ЖК дисплей, и напишем программу, которая каждые 100 миллисекунд будет выводить на него температуру.
- Сигнализация перегрева. Добавим в схему зуммер и напишем программу, которая будет непрерывно вычислять температуру. В программе также должно быть условие: если температура превышает 70 C°, то включаем зуммер.
Изменено: 21 Май, 2017 18:12
Источник: https://robotclass.ru/tutorials/arduino-thermistor-100k/
Термисторы применяются для измерения температуры. Температурные датчики
В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы — электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.
Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике — познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.
На принципиальных схемах терморезистор обозначается вот так.
В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или t°.
Основная характеристика терморезистора — это его ТКС . ТКС — это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.
У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.
На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.
Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.
Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор — контролирует температуру ключевых транзисторов.
Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.
Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.
Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.
Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его «потроха». Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.
Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.
Прямой и косвенный нагрев
По способу нагрева терморезисторы делят на две группы:
- Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.
NTC-термисторы и позисторы
По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:
- PTC-термисторы (они же позисторы).
Давайте разберёмся, какая между ними разница.
Своё название NTC-термисторы получили от сокращения NTC — Negative Temperature Coefficient, или «Отрицательный Коэффициент Сопротивления». Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.
Обозначение термистора на схеме
Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.
На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР»а, только там он был серо-зелёного цвета.
На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.
Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.
Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.
Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).
При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его.
После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить «плавный запуск» электроприбора и уберечь от пробоя диоды выпрямителя.
Понятно, что пока импульсный блок питания включен, NTC-термистор находится в «подогретом» состоянии.
Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.
Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.
Позисторы. PTC-термисторы
Термисторы, сопротивление которых при нагреве растёт
Источник: https://soferblog.ru/socialnye-seti/termistory-primenyayutsya-dlya-izmereniya-temperatury-temperaturnye.html
Wh60 0 30 позистор расшифровать обозначения
В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.
Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.
На принципиальных схемах терморезистор обозначается вот так.
В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или t° .
Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.
У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.
На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.
Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.
Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.
Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.
Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.
Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.
Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его «потроха». Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.
Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.
NTC-термисторы
Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или «Отрицательный Коэффициент Сопротивления». Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.
Обозначение термистора на схеме
Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.
На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.
На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.
Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.
Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.
Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 – VD4).
При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его.
После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить «плавный запуск» электроприбора и уберечь от пробоя диоды выпрямителя.
Понятно, что пока импульсный блок питания включен, NTC-термистор находится в «подогретом» состоянии.
Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.
Источник: https://crast.ru/instrumenty/wh60-0-30-pozistor-rasshifrovat-oboznachenija
Как проверить термосопротивление мультиметром
Проблемы с контролем температуры на вашем устройстве могут указывать на проблемы с термостатом, сопротивление которого можно проверить с помощью мультиметра.
Я подключил и настроил этот мультиметр в соответствии с инструкциями и повернул ручку на самый низкий предел измерения в Омах. Рабочий термостат показывает сопротивление ноль или близкое к нулю. Данный термостат имеет показания прибора 1.4, значит он рабочий. Если нет никаких показаний на приборе, то термостат неисправен и нуждается в замене.
Резистор ® — пассивный элемент электрических схем, ограничивающий напряжение или ток на определённом участке цепи за счёт своего сопротивления. Резисторы являются самыми распространёнными деталями в электрике и электронике. Многие начинающие радиолюбители задаются вопросом о том, как проверить резистор мультиметром. Для определения величины сопротивления используются цифровые и стрелочные мультиметры, или тестеры.
Определение при помощи мультиметра
Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.
Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.
Проверка сопротивления на плате
Элементы, имеющие омическое сопротивление до 200 Ом, должны прозваниваться в этом диапазоне измерений. Если же показания прибора указывают бесконечность, необходимо увеличить переключателем измеряемый диапазон с 200 Ом до 2000 Ом (2кОм) и выше в зависимости от испытываемого номинала. Перед тем как проверить мультиметром резистор не выпаивая его, нужно:
- отключить источник питания;
- отпаять один вывод R, так как из-за смешанного соединения элементов в схеме могут иметься различия между номиналом элемента и показаниями его фактической величины в общей схеме при измерении;
- произвести замер.
Прозвонить на плате можно только низкоомные сопротивления, составляющие номинал от одного ома до десятков омов. Начиная от 100 Ом и выше возникает сложность их измерения, так как в схеме могут применяться радиоэлементы, имеющие более низкое сопротивление, чем сам резистор.
Кроме постоянных резисторов, существуют следующие виды элементов:
Источник: https://vi-pole.ru/kak-proverit-termosoprotivlenie-multimetrom.html
Энциклопедия электроники
Терморезистор (термометр сопротивления, thermistor) – элемент, сопротивление которого меняется в зависимости от температуры.
Важное замечание: существуют еще так называемые термометры сопротивления – датчики температуры, выполнены из металла (медь или платина), изменяющие свое сопротивление при изменении температуры. В отличие от терморезисторов у них линейная характеристика. В данном материалы они не рассматриваются.
Условно графическое обозначение (УГО)
Внешний вид терморезисторов определяется согласно ГОСТ 2.728-74 «ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы». Размеры прямоугольника такие же как и у постоянного резистора.
Классификация
По характеру изменения сопротивления при изменении температуры терморезисторы делятся на две группы:
- Термистор (Thermistor NTC), терморезистор с отрицательным ТКС – сопротивление уменьшается при нагреве;
- Позистор (Thermistor PTC), терморезистор с положительным ТКС – сопротивление увеличивается при нагреве.
По способу подогрева терморезисторы делятся на две группы:
- прямого подогрева – сопротивление которого изменяется при прохождении непосредственно через ЧЭ;
- косвенного подогрева – сопротивление изменяется при прохождении тока через специальный подогреватель, расположенный в непосредственной близости от ЧЭ.
Принципиальное отличие терморезистора косвенного подогрева от прямого – гальваническая изоляция цепи нагрева от измерительной цепи.
Конструкция и принцип действия
Принцип действия терморезисторов основан на изменении сопротивления в зависимости от температуры.
Для создания темрорезисторов применяются полупроводниковые материалы с высокой зависимостью сопротивления от температуры.
Термисторы в основном выполняют из смеси окислов переходных металлов, способных изменять в соединениях свою валентность. Для термисторов применяются оксиды металлов:
- оксид кобальта (Co3O4)
- оксид никеля (NiO);
- оксид магния (MgO);
- диоксид титана (TiO2),
- оксид марганца (Mn3O4);
- оксид меди (CuO);
- оксид ванадия (V2O5);
- оксид железа (Fe2O3).
Например, советские терморезисторы ММТ-1, ММТ-4 созданы на основе окислов CuO – Mn3O4.
Для позисторов применяются оксиды бария и стронция. Например, советсвие позисторы СТ6 созданы на основе титаната бария (BaTiO3).
Электрические свойства терморезисторов определяются множеством параметров: соотношение исходных материалов, структура материала, расположение и валентность катионов в кристаллической решетке и других. Производство терморезисторов происходит в следующей последовательности:
- смесь окислов металлов смешивают и прессуют для придания формы (диска, цилиндра и т.д.);
- заготовки подвергают обжигу в печи (время нахождения в печи – несколько часов при температуре около 1400 °C);
- прикрепляют контактные выводы к заготовкам;
- термочувствительный элемент терморезисторов покрывают лаком или помещают в герметичную оболочку.
У терморезисторов зависимость выходного сопротивления от температуры нелинейная. Реальный график зависимости сопротивления от температуры показан на рисунке.
Для применения терморезисторов производители приводят таблицу значений «отношение сопротивлений – температура». Под отношением сопротивлений принимается отношение текущего сопротивления к номинальному (при температуре 25 °С), так как номенклатура номинальных сопротивлений большая и не стандартизирована.
Для термисторов производители так же приводят коэффициенты для уравнения Стейнхарта — Харта (Steinhart-Hart):
, где: — сопротивление при текущей температуре T;
— текущая температура, К;
— коэффициенты.
В формуле используется четыре коэффициента A, B, C, D. Обычно в расчетах коэффициент C равен нулю и производители указывают только три коэффициента.
Практически можно пользоваться упрощенной формулой:
Вольт амперная характеристика (ВАХ) термистора и позистора показана на рисунке. Вид ВАХ зависит от многих параметров, таких как: материал резистора, конструкции, габаритов, температуры и т.д. Нелинейность ВАХ объясняется нагревом терморезистора за счет проходящего через него тока.
Основные параметры терморезисторов
Номинальное сопротивление – сопротивление терморезистора при температуре 25 °C (редко при 20 °C). В отличие от постоянных резисторов номинальное значения не берется из стандартизованного ряда.
Точность (tolerance) – допустимое отклонение он номинального сопротивления при температуре 25 °C.Допустимое отклонение современных терморезисторов составляет ±1%±20 % (типовые значения ±10 % и ±20 %).
Максимальная мощность рассеяния – максимальная мощность, которую может непрерывно рассеивать терморезистор без изменения эксплуатационных характеристик. Единица измерения — Вт.
Коэффициент рассеяния (Dissipation factor) – мощность, рассеиваемая на терморезисторе, при которой температура элемента повышается на 1 °C по отношению к температуре окружающей среды. Единица измерения — мВт/К.
Постоянная времени τ (Thermal time constant) – время, за которое собственная температура терморезистора изменится на 63,2% от разницы между начальной и конечной температурой при скачкообразном измерении температуры (например, при переносе терморезистора в помещение с другой температурой). Единица измерения с.
Коэффициенты A, B, C, D – коэффициенты зависимости сопротивления от температуры (более подробно про зависимость указано ранее).
Маркировка терморезисторов
Стандартов на маркировку терморезисторов не существует. Каждый производитель самостоятельно определяет каким образом маркировать терморезисторы.
Серии терморезисторов
Отечественной промышленностью выпускались следующие серии терморезисторов прямого подогрева.
- СТ1 – термисторы медно-марганцевые (ранее — ММТ);
- СТ2 – термисторы кобальто-марганцевые (ранее — КМТ);
- СТ3 – термисторы медно-кобальто-марганцевые;
- СТ4 – термисторы никель-кобальто-марганцевые;
- СТ5 – позисторы на основе титана бария, легированного германием;
- СТ6 – позисторы на основе титаната бария (BaTiO3);
- СТ8 – термисторы на основе полутораокиси ванадия и ряда поликрсталлических твердых растворов в системах V2O3-Me2O3 (Me=Ti; Al, Cr);
- СТ9 – термисторы на основе двуокиси ванадия VO2;
- СТ10 – Позисторы на основе системы (Ba, Sr)TiO3;
- СТ11 – Позисторы на основе системы (Ba, Sr)(Ti, Sn)O3 легированной цернем.
Типоразмеры терморезисторов
Терморезисторы выпускаются различного исполнения:
- цилиндрические и дисковые с выводами для установки в отверстия платы;
- поверхностного монтажа на плату(типоразмера SMD, MILF);
- резьбового крепления;
- дисковые.
Применение терморезисторов
Назначение терморезисторов в схемах можно условно поделить на два типа: измерение температуры и использование в качестве нелинейного элемента.
Благодаря малым размерам и низкой стоимости терморезисторы применяются повсеместно в сложных устройствах для контроля температуры: мобильные телефоны, компьютерная техника и т.д.
Широкое применение позисторы нашли в промышленности для защиты асинхронных электродвигателей от перегрева обмоток. В аварийных режимах работы (недостаточное охлаждение, заклинивание ротора и прочие) обмотка может сильно нагреваться, в результате чего происходит разрушение изоляционного слоя обмотки с последующим замыканием обмотки.
Для защиты от перегорания в каждую обмотку укладывают позистор. Позисторы соединяют последовательно между собой.
Для измерения температуры и отключения электродвигателя применяют специализированные приборы термисторные реле. Принцип действия этих реле основан на постоянном измерении сопротивления позисторов. При превышении заданного порога контакты реле переключаются и отключают электродвигатель. На рисунке показано подключение электродвигателя: силовые выводы U, V, W; вывод термосопротивления: T1, T2.
Большое распространение термисторы нашли во входной цепи импульсных блоков питания. При включении блока питания в сеть начинается заряд конденсаторов. В этот момент может протекать значительный ток на входе. Для ограничения тока во входную цепь устанавливают термистор TR1. При прохождении тока термистор постепенно нагревается, его сопротивление падает и соответственно снижается потеря напряжения на нем.
Для мощных устройств (например, 2 кВт) параллельно термистору устанавливают контакт реле. После запуска на катушку реле поступает питание и его контакты шунтируют термистор для снижения потерь при работе устройства.
Позисторы применяются в телевизорах с электронно-лучевой трубкой (ЭЛТ). Со временем кинескоп начинает намагничиваться, из-за этого на экране кинескопа появляются цветные пятна. Для размагничивания кинескопа сзади него проложена петля размагничивания. Петля включается в цепь питания телевизора после позистора. По мере нагрева позистора его сопротивление увеличивается и ток по петле уменьшается до приемлемых значений.
Для поддержания позистора в нагретом состоянии применяют сдвоенные позисторы в одном корпусе. Позистор, включенный последовательно с петлей снижает ток после размагничивания, позистор включенный параллельно петле поддерживает нагрев, когда телевизор работает. Стоит отметить особенность данной схемы: размагничивание происходит только в момент включения телевизора кнопкой на телевизоре.
Если все время выключатель телевизор с пульта, то размагничивание происходить не будет.
Позисторы применяются в цепи запуска бытовых компрессоров холодильников. В момент пуска необходимо подать питание на рабочую и пусковую обмотку. После запуска компрессора питание с пусковой обмотки нужно снять.
Для этого пусковую обмотку подключают через позистор к рабочей. После подачи питания ток проходит к рабочей и пусковой обмотке, по мере работы компрессора позистор нагревается и его сопротивление повышается, снижая ток через пусковую обмотку.
Для таких схем применяются дисковые позисторы, которые имеют большой максимальный ток.
Источник: http://l7805cv.ru/resistor-termoresistor.html
Терморезисторы. Виды и устройство. Работа и параметры
Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.
Устройство и работа
Они имеют простую конструкцию, выпускаются разных размеров и формы.
В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.
При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.
Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).
Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.
Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.
Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.
Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.
Основные параметры
- ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
- Номинальное сопротивление – это величина сопротивления при 0 градусах.
- Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
- Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов
Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.
Металлические терморезисторы
Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.
Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.
Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.
Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.
Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.
Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.
Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды.
Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью.
При небольших размерах они обладают сопротивлением в несколько кОм.
Полупроводниковые
Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.
Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.
Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.
Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.
Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.
Применение терморезисторов
В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.
При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.
На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:
Применение термисторов
- Измерение температуры.
- Бытовая техника: морозильники, фены, холодильники и т.д.
- Автомобильная электроника: измерение охлаждения антифриза, масла, контроль выхлопных газов, системы торможения, температура в салоне.
- Кондиционеры: распределение тепла, контроль температуры в помещении.
- Отопительные котлы, теплые полы, печи.
- Блокировка дверей в устройствах нагревания.
- Электронная промышленность: стабилизация температуры лазерных фотоэлементов и диодов, а также медных обмоток катушек.
- В мобильных телефонах для компенсации нагрева.
- Ограничение тока запуска двигателей, ламп освещения, импульсных блоков питания.
- Контроль наполнения жидкостей.
Применение позисторов
- Защита от короткого замыкания в двигателях.
- Защита от оплавления при токовой перегрузке.
- Для задержки времени включения импульсных блоков питания.
- Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
- В пускателях компрессоров холодильников.
- Тепловая блокировка трансформаторов и двигателей.
- Приборы измерения.
- Автоматика управления техникой.
- Устройства памяти информации.
- В качестве нагревателей карбюраторов.
- В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/termorezistory/
Как проверить термистор в холодильнике RV
Когда холодильник RV начинает генерировать избыточный мороз и превращает молоко в фруктовое мороженое, пора проверить термистор.
Термистор — это резистивный датчик температуры, и проверка его точности является первым шагом к определению, находится ли проблема здесь или в другом месте.
Отказ термистора является распространенной проблемой в холодильниках RV и обычно вызывает слишком низкую температуру. К счастью, запасные термисторы относительно недороги, а руководства по ремонту доступны онлайн.
Шаг 1
Проверьте диапазон сопротивления для вашей модели холодильника. Наилучшим значением для справки является диапазон сопротивления при замерзании. (Когда термистор становится холоднее, сопротивление возрастает, и наоборот.)
Шаг 2
Прочитайте инструкции о том, где найти термистор и как добраться до его конца подключения.
Шаг 3
Найдите термистор. Сенсорная часть термистора обычно закрепляется на одном из ребер охлаждения в задней части холодильника, но конец соединения находится в другом месте. Во многих холодильниках, которые могут находиться за доской для бровей, панель с индикаторами и переключателями находится где-то ближе к верхней части холодильника.
Отключить термистор. Каждая модель холодильника отличается. Пример процедуры включает в себя открытие двери главного холодильника или морозильной камеры, откручивание платы для бровей, вытягивание платы вперед и отсоединение термисторного кабеля.
Чаевые
- Чтобы расширить соединение между омметром и термистором, присоедините два провода в качестве удлинителя.
Предупреждения
- Неправильная установка омметра приведет к неточным показаниям, что может привести к убеждению, что термистор вышел из строя, когда его нет.
- Невысоким людям может понадобиться стул для доступа к доске для бровей.
Предметы, которые вам понадобятся
- Спецификация термистора
- Руководство по ремонту холодильника
- Фонарик
- Отвертка
- 2 маленьких кусочка проволоки
- Омметр или мультиметр
Источник: https://autoabra.com/avtomehanika/kak-proverit-termistor-v-holodilnike-rv/
Как проверить резистор мультиметром не выпаивая
Резистор ® — пассивный элемент электрических схем, ограничивающий напряжение или ток на определённом участке цепи за счёт своего сопротивления. Резисторы являются самыми распространёнными деталями в электрике и электронике. Многие начинающие радиолюбители задаются вопросом о том, как проверить резистор мультиметром. Для определения величины сопротивления используются цифровые и стрелочные мультиметры, или тестеры.