Как подобрать конденсатор для запуска двигателя

Как подключить электродвигатель через конденсатор: все способы включения. Конденсаторы для запуска электродвигателя

Как подобрать конденсатор для запуска двигателя

РазноеКонденсаторы для запуска электродвигателя

Чтобы подключить трехфазный двигатель к однофазной сети используют конденсаторы для запуска электродвигателей. Они могут быть разной модификации, поэтому вопрос о том, как их правильно рассчитать и на что обращать внимание при выборе, совсем не праздный. Перед тем как ответить на вопрос, какой конденсатор необходим, стоит вспомнить, что же это вообще такое?

ОГЛАВЛЕНИЕ

  • Устройство и принцип работы
  • Практическое применение
  • Трехфазная сеть
    • Трехфазные двигатели
    • Однофазные двигатели
  • Другие виды двигателей
  • Электролитические емкости

Устройство и принцип работы

Устройство конденсатора и его изображение на схемах

Конденсатор использует свойство проводников заряжаться, находясь на близком расстоянии друг от друга. Это называется поляризацией. Но чтобы этот заряд можно было снять, используют две пластины, одна напротив другой, с диэлектриком между ними. Если их разъединить, заряд снять не удастся.

Современные технологии позволяют выпускать емкостные приборы всевозможных моделей и назначений. Это и приборы, работающие только в цепях постоянного тока, и для запуска электродвигателей, и выравнивающие модели. Все, что остается конечному потребителю – выбрать подходящий, произвести расчет параметров и поставить в электрическую схему.

Практическое применение

Электродвигатели делятся на две большие категории: постоянного и переменного тока. Каждая категория, в свою очередь, тоже имеет свои деления. Как пример, электромашины переменного тока: однофазные и трехфазные, синхронные и асинхронные, с фазным ротором и короткозамкнутые. Многие из этих моделей можно подключать к сети различным образом, отличающимся от паспортных данных.

Во многих случаях используют фазосдвигающий конденсатор, который позволяет произвести пуск двигателя в однофазной сети 220в. Чтобы рассчитать его значения, необходимо учитывать некоторые параметры, а именно: какой тип электродвигателя используется, его мощность, потребляемый ток. Однофазная сеть в нашей местности преимущественно 220 вольт, поэтому расчет емкостей тоже будет описан именно для этого напряжения.

Существует большой выбор типов этих накопительных приборов. Очень хорошо, если кроме расчета параметров, учитывается также этот момент.

Самый удачный вариант – бумажный, типа МБГЧ. Его цена, в зависимости от емкости, будет несколько варьироваться, однако всегда можно найти элементы б/у. В некоторых случаях допустимо использовать приборы постоянного тока, однако стоит знать о некоторых особенностях их использования.

Трехфазные двигатели

Схема включения трехфазных электродвигателей по звезде

Основные схемы включения трехфазных электродвигателей: звезда и треугольник. Для их работы предпочтительнее будет «треугольник». Формула расчета: Сраб.=k*Iф / U сети. Теперь немного подробнее.

  • Iф – значение тока, которое потребляет электродвигатель в номинальном режиме. Проще всего посмотреть на нем самом. Иногда, если есть возможность, измерить клещами.
  • Uсети – с этим все понятно. Это напряжение питания – 220 вольт.
  • K – специальный коэффициент. Для треугольника он равен 4800, а для звезды – 2800. Он просто подставляется к формуле расчета.

В некоторых случаях, а именно когда пусковые характеристики достигают значительных величин (пуск двигателя под нагрузкой), необходимо использовать дополнительные, пусковые, конденсаторы для запуска электродвигателя. Их параметры считают так: берут рабочий элемент и умножают его значения на 2,53. Также рабочее напряжение этой запчасти должно быть минимум в 1,5 раза выше сетевого.

Источник: https://ep2nnov.ru/raznoe/kondensatory-dlya-zapuska-elektrodvigatelya.html

Конденсатор для пуска трехфазного двигателя

Как подобрать конденсатор для запуска двигателя

Если имеется необходимость подключить асинхронный трехфазный электромотор в бытовую сеть, можно столкнуться с проблемой – сделать это, кажется, совершенно невозможно. Но если знаете основы электротехники, то можно подключить конденсатор для запуска электродвигателя в однофазной сети. Но существуют и бесконденсаторные варианты подключения, их тоже стоит рассмотреть при проектировании установки с электромотором.

Простые способы подключения электродвигателя

Проще всего будет подключить мотор при помощи частотного преобразователя. Существуют модели этих устройств, которые делают преобразование однофазного напряжения в трехфазное. Преимущество такого способа очевидно – нет потерь мощности в электродвигателе. Но вот стоимость такого частотного преобразователя довольно высокая – самый дешевый экземпляр обойдется в 5-7 тыс. рублей.

Есть еще один способ, который используется реже, – применение трехфазной обмотки асинхронника для преобразования напряжения. В этом случае вся конструкция окажется намного больше и массивнее. Поэтому проще окажется рассчитать, какие конденсаторы нужны для запуска электродвигателя и установить их, подключив по схеме. Главное – не потерять мощность, так как работа механизма будет происходить намного хуже.

Особенности схемы с конденсаторами

Обмотки всех трехфазных электромоторов могут соединяться по двум схемам:

  1. «Звезда» – при этом концы всех обмоток подключаются в одной точке. А начала обмоток соединяются с питающей сетью.
  2. «Треугольник» – начало обмотки соединяется с концом соседней. В итоге получается, что точки соединения двух обмоток подключаются к сети питания.

Выбор схемы зависит от того, каким напряжением питается мотор. Обычно при подключении к сети переменного тока 380 В обмотки соединяются в «звезду», а при работе под напряжением 220 В – в «треугольник».

На рисунке выше:

а) схема соединения «звезда»;

б) схема соединения «треугольник».

Так как в однофазной сети явно не хватает одного питающего провода, нужно его сделать искусственно. Для этого применяются конденсаторы, которые сдвигают фазу на 120 градусов. Это рабочие конденсаторы, их оказывается недостаточно при пуске электромоторов мощностью свыше 1500 Вт. Чтобы осуществить запуск мощных двигателей, потребуется дополнительно включать еще одну емкость, которая облегчит работу во время старта.

Емкость рабочего конденсатора

Для того чтобы узнать, какие конденсаторы нужны для запуска электродвигателя при работе в сети 220 В, нужно использовать такие формулы:

  1. При подключении по схеме «звезда» С (раб) = (2800 * I1) / U (сети).
  2. При подключении в «треугольник» С (раб) = (4800 * I1) / U (сети).

Ток I1 можно измерить самостоятельно, используя клещи. Но можно использовать и такую формулу: I1 = P / (1,73 · U (сети) · cosφ · η).

Значение мощности Р, напряжения питания, коэффициента мощности cosφ, КПД η можно найти на бирке, которая приклепана на корпусе электродвигателя.

Упрощенный вариант расчета рабочего конденсатора

Если все эти формулы кажутся вам немного сложными, можно воспользоваться их упрощенной версией: С (раб) = 66 * Р (двиг).

А если упростить по максимуму расчет, то для каждых 100 Вт мощности электромотора требуется емкость около 7 мкФ. Другими словами, если у вас мотор 0,75 кВт, то вам потребуется рабочий конденсатор емкостью не менее 52,5 мкФ. После подбора обязательно произведите замер тока при работе мотора – его величина не должна превышать допустимые значения.

Пусковой конденсатор

В том случае, если на мотор воздействуют большие нагрузки либо его мощность свыше 1500 Вт, одним только сдвигом фазы не обойтись. Потребуется знать, какие необходимы еще конденсаторы для запуска электродвигателя 2,2 кВт и выше. Пусковой подключается в параллель с рабочим, но вот только он исключается из цепи при достижении оборотов холостого хода.

Обязательно пусковые конденсаторы должны отключаться – в противном случае происходит перекос фаз и перегрев электродвигателя. Пусковой конденсатор должен быть по емкости больше рабочего в 2,5-3 раза. Если вы посчитали, что для нормальной работы мотора требуется емкость 80 мкФ, то для запуска нужно подключать еще один блок конденсаторов на 240 мкФ. В продаже вряд ли можно встретить конденсаторы с такой емкостью, поэтому нужно производить соединение:

  1. При параллельном емкости складываются, напряжение рабочее остается таким, как указано на элементе.
  2. При последовательном соединении складываются напряжения, а общая емкость будет равна С (общ) = (С1*С2*..*СХ)/(С1+С2+..+СХ).

Желательно устанавливать пусковые конденсаторы на электромоторы, мощность которых — свыше 1 кВт. Лучше немного снизить показатель мощности, чтобы увеличить степень надежности.

Какой тип конденсаторов использовать

Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов. Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП. Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.

На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов – они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.

Использование электролитических конденсаторов

Можно применять даже электролитические конденсаторы, но у них есть особенность – они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно – они имеют свойство взрываться.

Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.

Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400. 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.

Рабочее напряжение

Обязательно нужно учитывать один важный параметр конденсаторов – рабочее напряжение. Если использовать конденсаторы для запуска электродвигателя с очень большим запасом напряжения, это приведет к увеличению габаритов конструкции.

Но если применить элементы, рассчитанные на работу с меньшим напряжением (например, 160 В), то это приведет к быстрому выходу из строя.

Для того чтобы конденсаторы функционировали нормально, нужно, чтобы их рабочее напряжение было примерно в 1,15 раза больше, чем в сети.

Причем нужно учитывать одну особенность – если применяете бумажные конденсаторы, то при работе в цепях переменного тока их напряжение нужно уменьшать в 2 раза. Другими словами, если на корпусе указано, что элемент рассчитан на напряжение 300 В, то эта характеристика актуальна для постоянного тока. Такой элемент можно использовать в цепи переменного тока с напряжением не более 150 В. Поэтому лучше набирать батареи из бумажных конденсаторов, суммарное напряжение которых — около 600 В.

Подключение электромотора: практический пример

Допустим, у вас имеется электрический двигатель асинхронного типа, рассчитанный на подключение к сети переменного тока с тремя фазами. Мощность — 0,4 кВт, тип мотора — АОЛ 22-4. Основные характеристики для подключения:

  1. Мощность — 0,4 кВт.
  2. Напряжение питания — 220 В.
  3. Ток при работе от трехфазной сети составляет 1,9 А.
  4. Соединение обмоток двигателя производится по схеме «звезда».

Теперь осталось провести расчет конденсаторов для запуска электродвигателя. Мощность мотора сравнительно небольшая, поэтому, чтобы его использовать в бытовой сети, нужно подобрать только рабочий конденсатор, в пусковом надобности нет. По формуле вычисляете емкость конденсатора: С (раб) = 66*Р (двиг) = 66*0,4 = 26,4 мкФ.

Можно использовать и более сложные формулы, значение емкости будет отличаться от этого незначительно. Но если нет подходящего по емкости конденсатора, нужно произвести соединение нескольких элементов. При параллельном соединении емкости складываются.

Читать еще:  Калькулятор уклона канализационных труб

Обратите внимание

Теперь вы в курсе, какие конденсаторы для запуска электродвигателя лучше всего использовать. Но мощность упадет примерно на 20-30 %. Если приводится в движение простой механизм, то это не почувствуется. Частота вращения ротора останется примерно такой же, какая указана в паспорте.

Учтите, что если мотор рассчитан на работу от сети 220 и 380 В, то в бытовую сеть он включается только при условии, что обмотки соединены в треугольник.

Внимательно изучите бирку, если на ней имеется только обозначение схемы «звезда», то для работы в однофазной сети придется вносить изменения в конструкцию электромотора.

Источник: https://instrument16.ru/instrument/kondensator-dlya-puska-trehfaznogo-dvigatelya.html

Трёхфазный двигатель — в однофазную сеть — Ремонт220

Как подобрать конденсатор для запуска двигателя

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения ~ 380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены “треугольником” (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть ~ 220 в.

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже –  вместо клеммных колодок, в коробке может располагаться два разделённых  пучка проводов (по три в каждом).

Эти пучки проводов представляют собой “начала” и “концы” обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме “треугольник” – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему “треугольник” добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку “ПУСК”, применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее – напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при “разгоне” двигателя.

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

Рассчитать ёмкость рабочего конденсатора можно формулой:

  • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “треугольник”.
  • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “звезда”.

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном – номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового – она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические – типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

ЭТО ИНТЕРЕСНО:  Как работает соленоид

правильный подбор конденсаторов для электродвигателя

Источник: https://remont220.ru/stati/280-tryohfaznyy-dvigatel-v-odnofaznuyu-set/

Как подобрать конденсаторы на трехфазный двигатель (формула, видео)

Подключение силового оборудования в однофазную сеть (220В) чаще всего производят емкостным методом. При этом нужно знать, как подобрать конденсаторы на трехфазный двигатель, от которого осуществляется привод. Из них собирается пусковая цепь, создающая необходимый момент и перекос фаз. В этой статье мы постараемся вкратце рассмотреть вопросы расчета и подбора емкости, а также возможные схемы подключения асинхронного электромотора.

Что такое трехфазный двигатель?

Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.

Статор

Это неподвижная часть мотора, имеющая кольцевидную форму – полый цилиндр. Сразу следует уточнить, что он не является цельным, грубо говоря изготовленным через точение круглой стальной болванки. Статор набирается из кольцевых пластин (магнитопровода), что позволяет избежать образования так называемых поверхностных токов Фуко, которые могут сильно разогревать металл.

На внутреннем диаметре имеются продольные пазы, в которые укладывается обмотка из проволоки. Большинство стандартных двигателей являются трехфазными, то есть имеют три обмотки статора (по одной на каждую фазу). Геометрически каждая обмотка/фаза является смещенной относительно других на 120°.

Такой расчет позволяет при подаче на фазные клеммы напряжения 380В возбудить в обмотках вращающееся магнитное поле.

Ротор

Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.

С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор».

При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 210%.

Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.

Как подключить 3ех фазный двигатель в однофазную сеть?

Запуск двигателя с тремя рабочими обмотками возможет потому, что он по умолчанию имеет сдвинутые на 120° фазы.

Если подать напряжение всего на одну фазу, то не произойдет ровным счетом ничего по аналогии с однофазным двигателем на 220В, где в таком случае возникают эквивалентные разнонаправленные магнитные поля.

Формально для этого нужно включить в работу хотя бы еще одну фазу, чтобы создать сдвиг и набрать необходимый момент. Подключение в сеть с напряжением 220В чаще всего производят через дополнительный контур – цепь из рабочих и пусковых конденсаторов.

Общая пусковая схема при подключении звездой (слева) и треугольником (справа) будет иметь следующий вид:

Как можно видеть, и в первом, и во втором случае две из трех обмоток подключаются напрямую к однофазной сети на 220В. Третья фаза закольцовывается на одну из двух предыдущих посредством промежуточной цепи конденсаторов: Сраб – основной/рабочий и Сп–для запуска. Второй подключен параллельно через ключ SA. Последний имеет нормально разомкнутые контакты, а крайнее положение кнопки не фиксируется – для того, чтобы через пусковой конденсатор пошел ток, ее нужно удерживать нажатой.

Почему используются параллельные емкости?

Любой человек, в свое время не зевавший на уроках физики, должен помнить, что максимальное потребление энергии 3ех фазным двигателем наблюдается именно в момент его запуска, когда происходит рост частоты вращения от 0 до номинала.

Чем больше мощность, тем это пиковое потребление электричества выше. Из чего следует логический вывод – емкости, которая будет поддерживать работу на 220В скорее всего не хватит для старта.

Поэтому, для вывода мотора на режим ее по расчету нужно увеличить примерно вдвое относительно рабочей.

После запуска, когда будут достигнуты оптимальные обороты (не менее 70% от номинальных), пусковые конденсаторы отключают, отпуская кнопку SA. Сделать это нужно обязательно, иначе большая суммарная емкость вызовет серьезный перекос фаз и перегрев обмоток.

Если же мощность мотора невелика или он не работает под серьезной нагрузкой, то скорее всего можно будет обойтись пуском через рабочий контур.

Как рассчитать емкость и подобрать конденсатор

Очевидно то, что вопрос выбора емкостей для запуска и работы трехфазного двигателя в однофазной сети, зависит от его мощности, номинального (фазного) тока и напряжения. Расчет обычно ведется через следующие формулы:

В данном уравнении присутствуют две величины:

  • U – напряжение в однофазной сети (220В),
  • IН– номинальный или фазный ток, А.

Обе схемы подключений дают разные значения линейных и фазных характеристик, что видно на следующих иллюстрациях:

Вычислить необходимый ток между обмотками можно с помощью клещей либо используя формулы. Если же и тот, и другой вариант видятся сложными, то можно провести расчет и подобрать конденсатор через эмпирическую зависимость: 7 мкФ на 100 Вт мощности.

Что касается пусковых конденсаторов, то их подбор ведется с расчетом, что емкость должна быть выше, нежели у рабочих, чтобы покрыть пиковое потребление при запуске. Разные источники указывают на разные значения пропорционального коэффициента: от 1,5 до 3. На практике же чаще всего используют рекомендацию по двукратному увеличению.

Далее можно подобрать конденсаторы и приступить к компоновке. Для организации запуска двигателя используются бумажные (МБГП, КБП, МБГО), электролитические или металлизированные полипропиленовые (СВВ) модели. Первые, как правило, массовые и дешевые, но имеют сравнительно большие габариты при малой емкости, что вынуждает набирать целые батареи.

Электролитические модели требуют использования в схеме управления диодных элементов и сопротивления, повреждение или выход из строя которых приведет к разрушению конденсатора. СВВ модели более современные, а посему в них нет практически тех недостатков, которые присутствуют в аналогах.

По форме емкостные блоки могут выпускаться либо квадратными, либо круглыми (бочонками).

Также следует подобрать рабочее напряжение конденсатора, которое по расчету должно быть примерно в 1,15 раза выше чем в однофазной сети на 220В. Меньшие значения негативно сказываются на долговечности блоков, а большие – на габаритах сборки.

Источник: https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/kak-podobrat-kondensatory-na-trehfaznyj-dvigatel.html

Проверка и замена пускового конденсатора

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Источник: https://masterxoloda.ru/1/proverka-i-zamena-puskovogo-i-rabochego-kondensatorov

Подбор конденсатора для трехфазного двигателя

Наши сети электропитания созданы трехфазными. Потому что генераторы, работающие на электростанциях, имеют трехфазные обмотки и вырабатывают три синусоидальных напряжения, сдвинутых по фазе относительно друг друга на 120°.

Но мы чаще всего пользуемся всего одной фазой — проводим себе один фазный провод из трех и все к нему подключаем. Только в технике нашей часто встречаются электродвигатели, и они по природе своей трехфазны. Ну а фаза от фазы чем отличается? Только сдвигом во времени. Сдвига такого очень просто добиться, включив в цепь питания реактивные элементы: емкости или индуктивности.

Но ведь обмотка на статоре сама и является индуктивностью. Поэтому остается добавить к двигателю снаружи только емкость, конденсатор, а обмотки подключить так, чтобы одна из них в другой сдвигала фазу в одну сторону, а конденсатор в третьей делал то же самое, только в другую. И получатся те же самые три фазы, только «вынутые» из одной фазы питающих проводов.

Последнее обстоятельство означает, что мы нагружаем трехфазным двигателем только одну из фаз приходящего питания. Разумеется, это вносит дисбаланс в потребление энергии. Поэтому все-таки лучше, когда трехфазный двигатель питается трехфазным напряжением, а построить цепь его питания от одной приходящей фазы хорошо, только если мощность двигателя не особо велика.

Включение трехфазного электродвигателя в однофазную сеть питания

 Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).

Подключение обмоток электродвигателя. Слева — звезда, справа — треугольник

При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.

Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме

Использование конденсаторов для подключения трехфазного двигателя в однофазную сеть. Cр — рабочий конденсатор, Сп — пусковой конденсатор

При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.

Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.

Как подобрать конденсатор

Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений.

Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано.

Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.

Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов

Конденсаторы для двигателей. Слева — рабочий, справа — пусковой

Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то.

Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока.

При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.

Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.

Однако надо все-таки подключить конденсаторы.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

ЭТО ИНТЕРЕСНО:  Какие газы используются для защиты зоны сварки

Схема подключения и конденсаторы. Пусковой сверху, рабочий внизу

Теперь выполним подключение, внимательно разобравшись с проводами

Подключение конденсаторов и кнопки выключателя к мотору

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель.

Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно.

Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Как рассчитать емкость рабочего конденсатора

Для двух соединений обмоток берутся несколько разные соотношения.

В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.

Cр=Кс*I/U;

 I=P/(√3*U*η*cosϕ);

или

Cр=Кс*P/(√3*U²*η*cosϕ).

Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.

Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах

Таблица

Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.

Источник: https://domelectrik.ru/oborudovanie/dvigatel/raschet-kondensatora

Расчет емкости конденсатора для трехфазного двигателя

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Онлайн калькулятор расчета емкости конденсатора

Источник: https://evmaster.net/raschet-kondensatora

Конденсатор для электродвигателя: как выбрать и пользоваться, расчет емкости для пускового и рабочего, подключение и эксплуатация

Многие владельцы довольно часто оказываются в ситуации, когда требуется подключить в гараже или на даче такое устройство, как трехфазный асинхронный двигатель к различному оборудованию, в качестве которого может выступать наждачный или сверлильный станок.

При этом возникает проблема, поскольку источник рассчитан на однофазное напряжение. Что же здесь делать? На самом деле эту проблему решить довольно легко путем подключения агрегата по схемам, используемым для конденсаторных.

Чтобы реализовать этот замысел, потребуются рабочее и пусковое устройство, часто именуемые как фазосдвигающие.

Выбор ёмкости

Для обеспечения правильной работы электродвигателя нужно рассчитать определённые параметры.

Для рабочего конденсатора

Чтобы подобрать эффективную емкость устройства, необходимо выполнить расчеты по формуле:

  • I1 – номинальный показатель тока статора, для измерения которого применяют специальные клещи;
  • Uсети – напряжение сети с одной фазой, (В).

После выполнения расчетов получится емкость рабочего конденсатора в мкФ.

Возможно для кого-то будет затруднительно рассчитать этот параметр по приведенной выше формуле. Однако в этом случае можно воспользоваться и другой схемой расчета емкости, где не нужно проводить столь сложных операций. Этот метод позволяет достаточно просто определить необходимый параметр на основании только мощности асинхронного двигателя.

Здесь достаточно помнить о том, что 100 Ватт мощности трехфазного агрегата должно соответствовать около 7 мкФ емкости рабочего конденсатора.

При расчётах нужно следить за током, который поступает на фазную обмотку статора в выбранном режиме. Недопустимым считается, если ток имеет большее значение, нежели номинальный показатель.

Для пускового конденсатора

Бывают ситуации, когда электродвигатель приходится включать в условиях большой нагрузки на валу. Тогда одного рабочего конденсатора будет недостаточно, поэтому к нему придется добавить пусковой конденсатор. Особенностью его работы является то, что он будет работать лишь в период пуска аппарата не более 3 секунд, чего используется ключ SA. Когда же ротор выйдет на уровень номинальной частоты вращения, прибор отключается.

Если по недосмотру владелец оставил включенными пусковые устройства, это приведет к образованию существенного перекоса по токам в фазах. В таких ситуациях высока вероятность перегрева двигателя.

При определении емкости следует исходить из того, что величина этого параметра должна в 2,5-3 раза превосходить емкость рабочего конденсатора.

Действуя подобным образом, можно добиться того, что пусковой момент двигателя достигает номинального показателя, в результате чего во время его запуска не возникает осложнений.

Для создания требуемой емкости конденсаторы могут подключаться по параллельной и последовательной схеме. Следует иметь в виду эксплуатация трехфазных агрегатов мощностью не более 1 кВт допускается в том случае, если их подключение осуществляется к однофазной сети при наличии исправного устройства. Причем здесь можно обойтись и без пускового конденсатора.

Тип

После расчетов нужно определить, какой тип конденсатора может использоваться для выбранной схемы

Наилучший вариант, когда применяется аналогичный тип для обоих конденсаторов. Обычно работу трехфазного двигателя обеспечивают бумажные пусковые конденсаторы, облаченные в стальной герметичный корпус типа МПГО, МБГП, КБП или МБГО.

Большая часть этих устройств выполнена в виде прямоугольника. Если взглянуть на корпус, то там приведены их характеристики:

  • Емкость (мкФ);
  • Рабочее напряжение (В).

Применение электролитических устройств

Используя бумажные пусковые конденсаторы, нужно помнить о следующем негативном моменте: они имеют довольно большие размеры, обеспечивая при этом небольшую емкость.

По этой причине для эффективной работы трехфазного двигателя небольшой мощности приходится использовать достаточно большое количество конденсаторов. При желании бумажные можно заменить и электролитическими.

В этом случае их необходимо подключать несколько иным способом, где обязательно должны присутствовать дополнительные элементы, представленные диодами и резисторами.

Однако специалисты не советуют использовать электролитические пусковые конденсаторы. Это связано с наличием у них серьезного недостатка, который проявляется в следующем: если диод не справится со своей задачей, на устройство начнет продаваться переменный ток, а это уже чревато его нагревом и последующим взрывом.

Другая причина состоит в том, что сегодня на рынке можно встретить улучшенные с металлизированным покрытием полипропиленовые пусковые модели переменного тока типа СВВ.

Чаще всего они рассчитаны на работу с напряжением 400-450 В. Как раз им и следует отдать предпочтение, учитывая, что они неоднократно показывали себя с хорошей стороны.

Напряжение

Рассматривая различные типы пусковых выпрямителей трехфазного двигателя, подключаемого к однофазной сети, следует принимать во внимание и такой параметр, как рабочее напряжение.

Ошибкой будет использование выпрямителя, показатель напряжения которого превышает на порядок требуемый. Помимо высоких затрат на его приобретение придется выделить для него больше места из-за его больших габаритов.

В то же время не стоит рассматривать модели, в которых напряжение имеет меньший показатель, нежели напряжение сети. Устройства с такими характеристиками не смогут эффективно выполнять свои функции и довольно скоро выйдут из строя.

Чтобы свести к не ошибиться при выборе рабочего напряжения , следует придерживаться следующей схемы расчета: итоговый параметр должен соответствовать произведению фактического напряжения сети и коэффициента 1,15, при этом расчетное значение должно составлять не менее 300 В.

В том случае, если выбираются бумажные выпрямители для работы в сети переменного напряжения, то их рабочее напряжение нужно разделить на 1,5-2. Поэтому рабочее напряжение для бумажного конденсатора, для которого производитель указал напряжение в 180 В, в условиях работы в сети переменного тока составит 90-120 В.

Дабы понять, как на практике реализуется идея подключение трехфазного электродвигателя к однофазной сети, выполним эксперимент с использованием агрегата АОЛ 22-4 мощностью 400 (Вт) . задача, которая должна быть решена – запуск двигателя от однофазной сети с напряжением 220 В.

Используемый электродвигатель имеет следующие характеристики:

  • показатель мощности вчера– 400 кВт;
  • напряжение сети 220В переменного напряжения;
  • Ток, все характеристики которого были определены при помощи электроизмерительных клещей в трехфазном режиме работы– 1,9А;
  • Схема подключения обмоток «звезда».

Помня о том, что используемый электродвигатель имеет небольшую мощность, при подключении его к однофазной сети можно купить лишь рабочий конденсатор.

Расчет емкости рабочего выпрямителя:

Пользуясь приведенными формулами, возьмем за среднее значение емкости рабочего выпрямителя показатель 25 мкФ. Здесь была выбрана несколько большая емкость, равная 10 мкФ. Так мы попытаемся выяснить, как влияет такое изменение на пуск аппарата.

Теперь нам необходимо купить выпрямители, в качестве последних будут использоваться конденсаторы типа МБГО. Далее на основе подготовленных выпрямителей выполняется сборка требуемой емкости.

В процессе работы следует помнить, что каждый такой выпрямитель имеет емкость 10 мкФ.

Если взять два конденсатора и соединить их друг с другом по параллельной схеме, то итоговая емкость составит 20 мкФ. При этом показатель рабочего напряжения будет равен 160В.

Для достижения требуемого уровня в 320 В необходимо взять эти два выпрямитель и подключить их еще к такой же паре, конденсаторов, соединенных параллельно, но уже применив последовательную схему. В итоге суммарная емкость составит 10 мкФ.

Когда батарея рабочих конденсаторов будет готова, подключаем ее к двигателю. Далее останется только запустить его в однофазной сети.

В процессе проведенного эксперимента с подключением двигателя к однофазной сети работа потребовала меньше времени и сил. Используя подобный агрегат с выбранной батареей выпрямителей, следует учесть, что его полезная мощность будет находиться на уровне до 70-80 % от номинальной мощности, при этом частота вращения ротора будет соответствовать номинальному показателю.

Важно: если используемый двигатель рассчитан на сеть напряжением 380/220 В, то при подключении к сети следует использовать схему «треугольник».

Обращайте внимание на содержание бирки: бывает так, что там приведено изображение звезды с напряжением 380 В. В этом случае правильную работу двигателя в сети можно обеспечить, выполнив следующие условия. Сперва придется «распотрошить» общую звезду, после чего соединить с клеммником 6 концов. Искать общую точку следует в лобовой части двигателя.

подключение однофазного двигателя в однофазную сеть

Решение об использовании пускового конденсатора следует принимать исходя из конкретных условий, чаще всего оказывается достаточно рабочего. Однако если используемый двигатель подвергается повышенной нагрузке, то эксплуатацию рекомендуется остановить. В этом случае необходимо правильно определить необходимую емкость устройства, чтобы обеспечить эффективную работу агрегата.

Источник: https://elektro.guru/elektrooborudovanie/elektrodvigatel/kondensator-dlya-elektrodvigatelya.html

Как выбрать конденсатор для электродвигателя

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой.

Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения.

Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Источник: https://www.szemo.ru/press-tsentr/article/kak-vybrat-kondensator-dlya-elektrodvigatelya-/

Как подобрать конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения.

ЭТО ИНТЕРЕСНО:  Как выбрать силу тока для зарядки аккумулятора

Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя.

Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.

Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью.

В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении.

В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп).

В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором.

При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Шаговый двигатель. Принцип работы

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице.

При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов.

Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Регулятор оборотов коллекторного двигателя

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Источник: https://electric-220.ru/news/kak_podobrat_i_podkljuchit_kondensator_dlja_trekhfaznogo_dvigatelja/2018-04-12-1490

Конденсаторы для запуска электродвигателя — как подобрать и рассчитать

Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.

Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.

Электролит используют в том случае, если нужно восстановить слой оксидной пленки. Для правильной работы аппарата нужно чтоб система была подключена к сети с переменным током в 220 В и имела четко выраженную полярность.

То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто.

Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.

Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток – его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.

Всего существует 3 основных вида конденсаторов:

  • Электролитические;
  • Неполярные;
  • Полярные.

Описание разновидностей конденсаторов и расчет удельной емкости

  • Схема подключения пусковых конденсаторов

    Для электродвигателей с низкой частотой идеальным вариантом будет электролитический конденсатор, он обладает максимальной возможной емкостью, может достигать значения в 100000 мкФ. При этом напряжение может колебаться от стандартных 220 В до 600 В.

    Электродвигатели, в этом случае, могут использоваться в тандеме с фильтром источника энергии. Но при этом при подключении необходимо строго соблюдать полярность. Оксидная пленка, являющаяся очень тонкой, выступает в роли электродов.

    Зачастую электрики их называют оксидными.

  • Полярные лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко.
  • Неполярные являются хорошим вариантом, но их стоимость и габариты значительно выше электролитических.

Подбирая лучший вариант нужно учитывать несколько факторов. Если подключение происходит через однофазную сеть с напряжением в 220 В, то для пуска нужно использовать фазосдвигающий механизм. Притом их должно быть два, не только для самого конденсатора, но и для двигателя. Формулы, по которым вычисляется удельная емкость конденсатора, зависит от типа подключения к системе, их всего два: треугольник и звезда.

I1 – номинальный ток фазы двигателя, А (Амперы, чаще всего указывается на упаковке двигателя);

Uсети – напряжение в сети (самые стандартные варианты 220 и 380 В). Есть и большее напряжение, но для них нужны совершенно другие типы соединения и более мощные двигатели.

где Сп – Пусковая емкость, Ср – рабочая емкость, Со – отключаемая емкость.

Чтоб не напрягаться с расчетами умные люди вывели средние, оптимальные значения, зная оптимальную мощность электродвигателей, которая обозначается – М. Важным правилом является то, что пусковая емкость должна быть больше рабочей.

При мощности От 0,4 до 0,8 кВт: рабочая емкость – 40 мкФ, пусковая мощность – 80 мкФ, От 0,8 до 1,1 кВт: 80 мкФ и 160, мкФ, соответственно. От 1,1 до 1,5 кВт: Ср – 100 мкФ, Сп – 200 мкФ. От 1,5- 2,2 кВт: Ср – 150 мкФ, Сп 250 мкФ; При 2,2 кВт рабочая мощность должна быть не меньше 230 мкФ, а пусковая – 300 мкФ.

При подключении двигателя, рассчитанного на работу при 380 В, в сеть переменного тока с напряжением 220 В, происходит потеря половины номинальной мощности, хотя это никак не влияет, но скорость вращения ротора. При расчете мощности это является важным фактором, уменьшить эти потери можно при схеме подключения «треугольник», КПД двигателя в этом случае будет равно 70%.

Полярные конденсаторы лучше не использовать в системе подключенных к сети переменного тока, в этом случае разрушается слой диэлектрика и происходит нагрев аппарата и, как следствие, замыканию накоротко

Схема подключения «Треугольник»

Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

Схема подключения “Треугольник” и “Звезда”

Схема подключения «Звезда»

А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.

Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.

В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.

Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.

Блиц-советы

  1. При подключении к сети в 660 В некоторые используют метод комбинированного запуска

    Самой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.

  2. Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра, либо же читать инструкцию, зачастую производители указывают данную информацию там.
  3. Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет – звезда.
  4. При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду. Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.
  5. Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю, а к фазе. Это также является маячком при неправильном подключении.

Источник: https://housetronic.ru/electro/kondensatory-dlya-elektrodvigatelya.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Где используется электродвигатель

Закрыть