Как проверить конденсатор стрелочным тестером

Как проверить работу конденсатора

Как проверить конденсатор стрелочным тестером

Дорожки и контактные площадки на современных платах становятся все меньше, а сами платы зачастую являются многослойными.

Все это значительно усложняет процесс отсоединения элемента с целью контроля его работоспособности.

Потому актуальным становится вопрос: как проверить конденсатор мультиметром не выпаивая его? Попробуем найти решение.

Сложности проверки

В первую очередь это относится к элементам с малым сопротивлением постоянному току: предохранителям, индуктивностям, обмоткам трансформаторов.

Определение емкости конденсатора без выпаивания возможно только при отсутствии упомянутых компонентов.

Оказывают влияние и полупроводниковые приборы — диоды и транзисторы.

Проверка мультиметром

При помощи мультиметра проверяют два параметра конденсатора: внутреннее сопротивление и емкость.

Внутреннее сопротивление (проверка на пробой и обрыв цепи)

Мультиметр переводят в режим измерения сопротивления путем установки переключателя в сектор «Ω» на верхнюю позицию — у разных моделей это 2 или 20 МОм.

Далее касаются щупами выводов конденсатора. Если тот исправен, происходит следующее:

  • вначале мультиметр показывает низкое сопротивление — конденсатор заряжается подаваемым на щупы напряжением;
  • по мере увеличения заряда в конденсаторе, сопротивление постепенно возрастает и в конце концов достигает очень высокой величины: на дисплее — значение свыше 2 МОм или «1» (символ бесконечности).

Иное поведение прибора свидетельствует о неисправности элемента, когда сопротивление:

  1. оказалось ниже 2 МОм: конденсатор пробит (появилась проводимость в диэлектрике между обкладками);
  2. сразу стало бесконечно большим: обрыв вывода.

Конденсаторы делятся на два типа: полярные и неполярные. Первые чувствительны к полярности измерений и если ее перепутать, подав на «минусовый» вывод положительный потенциал, а на «плюсовой» — отрицательный, выходят из строя. «Минусовый» вывод распознают по отметке в виде «птички» на корпусе конденсатора.

В мультиметре потенциалы распределяются так:

  • порт «COM» — отрицательный: по негласному правилу сюда включают черный щуп;
  • порт «V/ Ω» — положительный: принято включать красный щуп.

При наличии заведомо исправного конденсатора той же марки, состояние исследуемого проверяют методом сравнения:

  • замеряют сопротивление исправного конденсатора;
  • то же самое выполняют для исследуемого элемента;
  • сравнивают скорость изменения показаний на мультиметре.

Для этого метода более подходит аналоговый (стрелочный) тестер: плавно отклоняющаяся стрелка четко отражает изменение сопротивления в режиме реального времени.

Конденсатор проверяется в разряженном состоянии, иначе возможна электротравма или повреждение мультиметра.

Способ разряда зависит от емкости:

  • малая (низкое напряжение): закорачивают выводы отверткой;
  • большая (высокое напряжение): замыкают выводы резистором сопротивлением 10 кОм.

Резистор удерживают инструментом с изолированными ручками.

Емкость

Измерение емкости возможно при наличии в мультиметре специальной функции. У таких приборов на лицевой панели имеется сектор «CX».

Конденсатор подключается двумя способами:

  1. у некоторых моделей имеются разъемы для щупов с пометкой «CX»;
  2. у других в сектор «CX» выведены две контактные площадки с пометками «+» и «-».

При контакте щупов или площадок с выводами конденсатора на дисплее отображается значение емкости. Полученные данные сравнивают с числовым показателем, указанным на корпусе конденсатора, после чего делают вывод о его пригодности.

Переключатель должен быть установлен в секторе «CX» на позиции с ближайшим большим значением по отношению к ожидаемой емкости. Обычно в секторе имеется 5 позиций со данными от 20 нФ до 200 мкФ.

Данный способ контроля не подходит для конденсаторов емкостью менее 0,25 мкФ. Их проверяют специальным устройством — LC-метром.

При отсутствии функции определения емкости, конденсатор проверяют так:

  1. Заряжают его от источника постоянного тока. Напряжение источника — примерно вдвое меньше напряжения конденсатора. Для элемента на 25 В достаточно источника на 9 – 12 В.
  2. Выждав несколько секунд, чего обычно достаточно для полной зарядки, радиодеталь отключают от питания и мультиметром замеряют напряжение на ее выводах.

Измеритель настраивается следующим образом:

  • черный щуп включен в порт «COM»;
  • красный — в порт «V/Ω»;
  • переключатель: в сектор измерения постоянного напряжения («DCV» или «V-») на позицию с ближайшим большим значением относительно ожидаемого напряжения конденсатора.

Как проверить не выпаивая

Для проверки без демонтажа применяются специальные тестеры. От обычных они отличаются пониженным напряжением на щупах, что сводит к минимуму риск повреждения прочих компонентов цепи.

Если такого прибора в наличии нет, можно превратить в него обычный мультиметр, подключив через приставку. Разнообразные схемы таких приставок опубликованы в Интернете и специализированных журналах.

Независимо от того, какой прибор применяется для измерения параметров конденсатора, вопрос о влиянии прочих элементов остается актуальным. Так, если параллельно с исследуемым, к цепи подключено еще несколько конденсаторов, тестер покажет их суммарную емкость.

Как работать с мультиметром

Параллельное включение в схему исправного компонента

Еще один способ проверить конденсатор без выпаивания состоит в подключении параллельно ему заведомо исправного аналога той же емкости. Если устройство заработает, значит проблема действительно была в конденсаторе и его необходимо заменить.

В схемах с высоким напряжением этот способ проверки применять нельзя.

Проверка на искру

При отсутствии измерительного прибора под рукой либо в случае большой емкости конденсатора его можно проверить «на глазок».

Элемент заряжают, затем металлическим инструментом с изолированными ручками замыкают его выводы. На руки следует надеть резиновые перчатки.

Яркая искра в сопровождении характерного звука свидетельствует об исправности конденсатора. Если разряд получился вялым, радиодеталь пора утилизировать.

Для получения исчерпывающей информации о состоянии конденсатора требуется мультиметр с функцией замера емкости (на панели управления имеется сектор «CX»).

Но и не оснащенный такой опцией тестер немало расскажет о данном элементе. Демонтаж конденсатора с платы требуется не всегда, но следует быть готовым к тому, что при измерениях на плате, точность окажется далеко не идеальной.

Проверка конденсаторов цифровым мультиметром

При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов.

В сети много рекомендаций о том, как проверить конденсатор омметром. Когда-то я и сам применял такую методику. О ней я ещё расскажу.

Но на данный момент могу утверждать точно, что достоверно определить исправность конденсатора можно лишь с помощью прибора, который способен измерить его электрическую ёмкость.

Перед тем, как начать проверку конденсатора необходимо определить его тип. Все они делятся на две группы:

Неполярные. К ним относятся конденсаторы, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух. Как правило, их ёмкость невелика и лежит в пределах от нескольких пикофарад до единиц микрофарад.

Полярные. К полярным конденсаторам относятся все электролитические конденсаторы, как с жидким электролитом, так и твёрдым. Их ёмкость уже лежит в диапазоне от 0,1 до 100000 микрофарад.

Среди неисправностей конденсаторов можно выделить три основных:

Электрический пробой. Как правило, пробой вызван превышением допустимого рабочего напряжения на обкладках конденсатора.

Обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости. Обычно обрыв образуется вследствие механического воздействия, тряски или вибрации. Его причиной может быть некачественная конструкция элемента, а также нарушение допустимых режимов эксплуатации.

Повышенная утечка. Изменение сопротивления диэлектрика между обкладками. При такой неисправности ёмкость конденсатора становится заметно ниже, он не способен сохранять заряд.

Список неисправностей у электролитических конденсаторов заметно шире. В основном это касается алюминиевых электролитических конденсаторов, которые очень активно используются для фильтрации пульсирующего напряжения во всевозможных выпрямителях.

Источник: https://crast.ru/instrumenty/kak-proverit-rabotu-kondensatora

Проверка конденсатора мультиметром

Как проверить конденсатор стрелочным тестером

Для проверки работоспособности радиоэлементов существует несколько приемов и приборов. В частности, для измерения емкости и проверки состояния конденсаторов лучше всего подходит LC-метр. Однако в ситуациях, когда его нет под рукой, может выручить обычный мультиметр.

:

Как работает конденсатор и зачем он нужен

Конденсатор – это пассивный электронный радиоэлемент. Его принцип действия схож с батарейкой – он аккумулирует в себе электрическую энергию, но при этом обладает очень быстрым циклом разрядки и зарядки. Более специализированное определение гласит, что конденсатор – это электронный компонент, применяемый для аккумуляции энергии или электрического заряда, состоящий из двух обкладок (проводников), разделенных между собой изолирующим материалом (диэлектриком).

простая схема конденсатора

Так каков принцип действия этого устройства? На одной пластинке (отрицательной) собирется избыток электронов, на другой — недостаток. А разница между их потенциалами будет называться напряжением. (Для строгого понимания нужно прочесть, например: И.Е. Тамм Основы теории электричества)

В зависимости от того, какой материал используется для обкладки, конденсаторы разделяют на:

  • твердотельные или сухие;
  • электролитические – жидкостные;
  • оксидно-металлические и оксидно-полупроводниковые.

По изолирующему материалу их делят на следующие виды:

  • бумажные;
  • плёночные;
  • комбинированные бумажно-плёночные;
  • тонкослойные;

Чаще всего необходимость проверки с использованием мультиметра возникает при работе с электролитическими конденсаторами.

Керамический и электролитический конденсатор

Ёмкость конденсатора находится в обратной зависимости от расстояния между проводниками, и в прямой – от их площади. Чем они больше и ближе друг к другу – тем больше ёмкость. Для её измерения используется микрофарад (mF). Обкладки изготавливаются из алюминиевой фольги, скрученной в рулон.

В качестве изолятора выступает слой окисла, нанесенный на одну из сторон. Для обеспечения наибольшей ёмкости устройства, между слоями фольги прокладывается очень тонкая, пропитанная электролитом, бумага.

Бумажный или пленочный конденсатор, сделанный по данной технологии, хорош тем, что обкладки разделяет слой окисла в несколько молекул, благодаря чему и удается создавать объемные элементы с большой ёмкостью.

Устройство конденсатора (такой рулон помещается в алюминиевый корпус, который в свою очередь кладется в пластиковый изолирующий короб)

На сегодня конденсаторы используются практически в каждой электронной схеме. Их выход из строя чаще всего связан с истечением срока годности.

Некоторым электролитическим растворам присуще «усыхание», в процессе которого уменьшается их ёмкость. Это сказывается на работе цепи и форме сигнала, проходящего по ней. Примечательно, что это характерно даже для неподключенных в схему элементов. Средний срок службы – 2 года.

С этой периодичностью и рекомендуется проводить проверку всех установленных элементов.

Обозначение конденсаторов на схеме.
Обычный, электролитический, переменный и подстроечный.

Подготовка перед проверкой

В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.

Мультиметр с аналоговой шкалой и цифровой мультиметр

Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.

Для подготовки к проверке:

  • Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
  • Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
  • Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными. Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.

Ход проверки

Для начала следует провести внешний осмотр радиоэлемента, не выпаивая его из платы. О неисправности или выходе из строя могут говорить вздутие корпуса, изменение его окраски, признаки температурного воздействия (потемнение платы, дорожки отходят от поверхности и т.п.). Если электролитический раствор протекает наружу, снизу в месте крепления к плате должны остаться характерные подтеки.

Для проверки фиксации на плате можно осторожно взять элемент и несильно покачать из стороны в сторону. Если одна из ножек оборвана, это сразу будет понятно по свободному ходу.Взорвавшиеся на плате конденсаторы и сработавший «защитный надрез»

Кстати, надо заметить, современное элементы снабжены специальными щелями для безопасного выхода схемы из строя.

Иначе взрыв мог бы сильно испортить всю плату.

Перед тем как проверить элемент мультиметром, следует определить его тип: полярный или неполярный. Электролитические относятся к первой категории – их припаивают к контактам на схеме с соблюдением полярности: плюс – к плюсу, минус – к минусу. Соответственно, и клеммы мультиметра следует подключать согласно данному правилу. Неполярный конденсатор устанавливается без учета этих особенностей. Он, как и бумажный или керамический конденсатор, можно присоединяться к прибору в любом направлении.

Закоротим выводы и попробуем прозвонить элемент тестером. Если прибор показывает минимальное сопротивление, конденсатор исправен и начал заряжаться постоянным током. Во время этого процесса показатель сопротивления будет расти до предельного значения или бесконечности. Поведение показателей имеет значение – стрелка аналогового тестера должна перемещаться медленно без скачков. О том, что работоспособность нарушена, говорят следующие факторы:

  • При подключении клемм, тестер сразу показывает бесконечность. Это говорит об обрыве в конденсаторе.
  • Мультиметр показывает на ноль и издает звуковой сигнал – значит произошло короткое замыкание или пробой.

В обоих случаях исправность элементов уже не восстановить и их следует выбросить.

Для того чтобы проверить, работает ли неполярный конденсатор, необходимо выбрать на мультиметре предел для измерения в мегаомах и прикоснуться контактами прибора к выводам – исправный элемент не показывает сопротивлния выше 2 мОм. Стоит помнить, что проверка элемента мультиметром на короткое замыкание, не поддерживается большинством современных приборов, если номинальный заряд радиоэлемента ниже 0,25 мкФ.

Проверка на ёмкость

Проверив сопротивление, мы лишь частично выполняем условия. Простая работоспособность элемента еще не говорит о том, что он работает правильно – в некоторых случаях очень важна точность в работе, к примеру, если проверяется конденсатор микроволновки или колебательного контура. Чтобы убедиться в том, что конденсатор накапливает и удерживает заряд, нужно проверить емкость.

Для этого нужно повернуть тумблер мультиметра на режим CX. Здесь стоит сказать, что проведение этой процедуры возможно лишь с помощью качественного цифрового прибора, но даже в таком случае точность измерений остается приблизительной. При использовании стрелочного инструмента стрелка после подключения начинает быстро отклоняться.

В свою очередь это лишь косвенное доказательство исправности элемента, лишь подтверждающее то, что он набирает заряд. О том, как правильно подключать тестер к конденсатору в режиме ёмкости должно быть указано в инструкции пользователя. Не забывайте, что электролитический конденсатор необходимо присоединять, соблюдая полярность.

ЭТО ИНТЕРЕСНО:  Как проверить обмотку автомобильного генератора

Как правило, анодный (положительный) контакт несколько длиннее катодного (отрицательного).

Ниже размещено интересное радиолюбительское видео, где в середине проводится измерение емкости.

Предел измерения следует выбирать исходя из значения емкости, указанного на корпусе конденсатора. Так, к примеру, если номинальная емкость составляет 9,5 мкФ, необходимо измерять её, переведя тумблер на значение 20 µ. Если итоговые показатели измерений сильно отличаются от номинальных, значит радиодеталь неисправна.

Проверка вольтметром

Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.

  1. Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
  2. Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
  3. Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса). После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.

Проверка на короткое замыкание

Обратите внимание, что данный способ относительно небезопасен и не рекомендуется его использование людьми без необходимого опыта и знаний.

  1. Для начала следует отсоединить конденсатор от схемы и ненадолго (до 4 сек) подключить к источнику питания.
  2. Отсоединив от источника питания, замкните выводы конденсатора с помощью электропроводящего инструмента (отвертка, пинцет, нож). Будьте осторожны: используйте для этого только заизолированный предмет или наденьте на руки резиновые перчатки.
  3. При замыкании выводов произойдет короткое замыкание, сопровождающееся вылетом искры, по виду которой и можно судить о состоянии элемента: если проскочила сильная и яркая искра, конденсатор в норме, тусклая и слабая искра говорит о неисправности.

А вот это видео мы настоятельно рекомендуем посмотреть, т.к. оно очень подробное и охватывает все аспекты нашей темы:

Проверка конденсатора на плате (не выпаивая)

На самом деле, механизм аналогичен, поэтому просто рекомендуем посмотреть это видео, оно должно закрыть все оставшиеся вопросы.

Проверка автомобильного конденсатора

В системах зажигания большинства современных автомобилей используется электронный коммутатор (по привычке называемый так же, как предшествующий ему механический прибор), распределяющий зажигание на свечи, которые, в свою очередь, подают искры на цилиндры двигателя. Считается, что поломка этого устройства требует его немедленной полной замены, однако, если причина неисправности в конденсаторе, используемом в конструкции, можно попробовать поменять только его. Для проверки на трамблере используется амперметр.

  1. Подключив амперметр к выводам конденсатора, включите зажигание и разомкните их.
  2. Обратите внимание на показатели амперметра – если стрелка сместилась с 2-4 А до нуля, наш элемент вышел из строя и надо его заменить.

Самостоятельно проверить автомобильный конденсатор можно и без специального оборудования. Для этого нужно подключить к контактам переносную лампочку небольшой мощности. Если радиоэлемент в порядке, то она не загорится после включения зажигания.

Источник: http://tokidet.ru/elektrooborudovanie/izmeritelnoe/proveryaem-kondensator-multimetrom.html

Как проверить конденсатор в микроволновке: показания мультиметра

Как проверить конденсатор стрелочным тестером

Конденсаторы в микроволновой печи служат для выравнивания скачков напряжения, возникающих в сети во время работы. Это имеет очень важное значение для правильного функционирования микроволновки.

Конденсатор состоит из двух изолированных проводников, которые помещаются в металлический корпус. Во время включения они взаимодействуют в цепи. Благодаря этому, происходит накопление электроэнергии.

В момент когда для работы печи может не хватить напряжения, которое агрегат получает из электросети, накопленная за время работы энергия высвобождается. Тем самым предотвращается резкое повышение напряжения.

Детали различаются на основании максимальной емкости накапливаемой энергии.

Тип используемого в устройстве конденсатора зависит от самой микроволновой печи, её мощности и конструкции.

Проверка конденсатора

Если у вас возникла потребность проверить исправность данного элемента в микроволновой печи, подойти к этому делу нужно ответственно. Это позволит не повредить другую электронику, находящуюся в СВЧ.

Обычно проверкой занимаются при выявлении неисправности или же при наличии других сбоев в корректной работе микроволновки.

Ниже представлена инструкция о том, как выполнить проверку правильно и при помощи какого прибора ее лучше делать.

Как найти конденсатор в микроволновке

  • При работе с конденсатором есть вероятность взаимодействия с высоким напряжением и это может быть очень опасно. Для того чтобы уберечь себя от возможного негативного воздействия тока, необходимо прежде всего выключить микроволновую печь из сети.
  • Открутив заднюю крышку на приборе, необходимо снять закрывающую панель.В зависимости от конструкции печи, найти конденсатор будет нетрудно, достаточно примерно знать, как он выглядит. Обычно деталь находится около трансформатора.
  • Независимо от того сколько времени устройство находилось без питания, необходимо обязательно разрядить деталь.

Важно. Конденсатор обладает способностью накапливать электричество.

Чтобы не получить удар током даже после выключения печи, необходимо высвободить накопленную энергию.

Только после указанной выше операции можно начинать с ним работать.

Использование мультиметра для проверки

Для диагностики понадобится специальный прибор — мультиметр. В его функции входит тестирование различных электрических приборов или отдельных деталей.

Для проверки при помощи мультиметра прибор настраивается в режим омметра. Подготовленный к работе мультиметр подключают к конденсатору.

ВАЖНО: для корректного измерения необходимо установить на приборе максимально возможный предел.

Предел зависит от типа устройства, поэтому у каждого он свой.

После первого чтения показаний необходимо переставить щупы местами и проследить за динамикой изменения результата, отображённого на приборе.

Однако проверка данным методом происходит на низком показателе. Обычно на таком напряжении у высоковольтных конденсаторов, если они имеют утечку или пробиты коротким замыканием, поломка не определяется.

Для того чтобы избежать подобных неточностей, можно использовать мегаомметр с внешним источником высокого напряжения, равным рабочему показателю конденсатора.

Среди основных моделей мегаомметра, подходящих для подобной проверки, можно выделить такие, как:

  • PU182.1 (500 В);
  • PU186 (2500 В);
  • KEW-3125 (5000 В).

Признаки исправного и неисправного конденсатора

Изначально признаками неполадок могут являться различные перебои в напряжении во время работы микроволновки, а также короткое замыкание.

При проверке мультиметром на основании показаний на дисплее во время контакта щупов можно определить, насколько хорошо работает конденсатор и есть ли в нём неполадки.

  • Если во время проверки на дисплее отображается цифра один и показатели не изменяются — значит, в нём произошёл обрыв и его можно смело выбросить. Такие детали считаются неисправными.
  • Если на дисплее отображается постоянное небольшое сопротивление, значит, произошла утечка, протёкший конденсатор тоже необходимо заменить.
  • Если прибор покажет нулевое сопротивление и данные не будут расти, то конденсатор пробитый, то есть в нём произошло короткое замыкание.
  • Наконец, если при контакте щупов показатель сопротивления является минимальным, но затем плавно повышается, вплоть до того момента пока на мультиметре не будет отображаться единица, это значит, что конденсатор исправен. Его спокойно можно применять в работе.

Таким образом, зная все вышеперечисленные нюансы при использовании мультиметра, можно без труда определить исправна деталь или подлежит замене.

Своевременная проверка таких ответственных деталей микроволновой печи поможет дольше сохранить её исправной.

Соблюдая все правила, порядок действий, а также обладая небольшими знаниями в электротехнике, определить проблему и устранить её не составит труда.

Подпишитесь на наши Социальные сети

Источник: https://setafi.com/bytovaya-tehnika/mikrovolnovaya-pech/kak-proverit-kondensator-v-mikrovolnovke/

За что любят стрелочные мультиметры

В век цифровых технологий стрелочный мультиметр все еще пользуется спросом. У старшего поколения радиолюбителей до сих пор сохранились «цешки», надежные советские приборы. Верой и правдой служат они своим хозяевам в течение нескольких десятилетий. А новое поколение смотрят на них как на антиквариат и не представляют, как пользоваться стрелочным мультиметром без инструкции. Однако, они обладают рядом свойств, которые позволяют им быть востребованными и в нынешнее время.

Назначение

Стрелочный тестер – это аналоговый прибор, состоящий из стрелочного микроамперметра, набора резисторов и шунтов. Другое его название – авометр (ампер+вольт). Изначально мультиметры выполняли только три функции, измеряли напряжение, ток и сопротивление. Затем набор функций был расширен.

При измерении напряжения к микроамперметру последовательно подсоединяют резисторы большого номинала, для определения тока параллельно к нему подсоединяется шунт, резистор с малым сопротивлением.

При измерениях переменного тока и напряжения дополнительно подключаются диоды для выпрямления входного сигнала. Дополнительные резисторы и шунты имеют высокую точность номинала, так как от этого зависит погрешность стрелочного мультиметра.

Классический советский стрелочный тестер – это модель Ц4352. У него широкий диапазон измерения напряжения (до 1200В), тока (до 15А) и сопротивления (до 5МОм).

Причем этот мультиметр может измерять характеристики как постоянного, так и переменного тока. Сегодня выпускают его модификации, которые пользуются спросом.

Особенности конструкции

Главный элемент стрелочного мультиметра – это магнитоэлектрический измерительный механизм в микроамперметре. От его чувствительности зависят основные характеристики мультиметра.

Конструктивно он представляет собой два постоянных магнита с полюсными наконечниками. Между наконечниками с одинаковыми полюсами имеется цилиндрический зазор, в котором расположен стальной сердечник.

Фактически он плавает в магнитном поле, не касаясь ни одного магнита. В этом зазоре помещается алюминиевый каркас охватывающий сердечник по длине.

Очень тонкой проволокой наматывается обмотка на каркас. Она крепится к оси, которая соединяется растяжками или спиральными пружинками со стрелкой. Измеряемый стрелочным тестером ток подводится к катушке через них.

При прохождении тока по обмотке все витки ее будут испытывать действие электромагнитной силы. Общее воздействие всех сил создаст вращающий момент, который повернет катушку и вместе с ней стрелку. У постоянного магнита его индукция поля тоже постоянна, а число витков обмотки, ее размер и воздушный зазор для конкретного механизма известны.

Поэтому вращающий момент (сила отклонения) стрелки будет зависеть только от силы тока протекающего через катушку. Угол отклонения стрелки мультиметра будет зависеть от жесткости спиральных пружинок.

Вращающий момент должен уравновеситься встречным моментом спиральных пружинок, при этом стрелка замрет. Угол отклонения будет зависеть от силы тока. Поэтому стрелочные тестеры с магнитоэлектрическим механизмом имеют линейную шкалу.

Стабильные показания

Для того чтобы стрелка не болталась, а быстро успокоилась, предусмотрены воздушные и магнитно-индукционный демпферы. Алюминиевый каркас является таким демпфером, создавая вихревые токи при повороте катушки и, согласно правилу Ленца, возникшая сила торможения успокаивает ее таким образом. Для компенсации влияния гравитации предусмотрены противовесы с изменяемым центром масс.

Для устранения влияния температуры устанавливаются резисторы с маленьким температурным коэффициентом изменения сопротивления.

Так как от направления тока зависит направление отклонения стрелки, то при измерениях нужно учитывать полярность измеряемого сигнала. При прямом использовании магнитоэлектрического прибора переменный ток он измерять не сможет, так как суммарный вращающий момент будет равно нулю.

Чтобы все-таки измерить стрелочным мультиметром переменный ток, его сначала выпрямляют с помощью диодов.

Достоинства и недостатки

Аналоговый стрелочный прибор в режиме измерения постоянных величин имеет линейную шкалу – это плюс. А вот при замере сопротивления приходится пользоваться нелинейной шкалой – это минус мультиметра.

Так как стрелка прибора имеет определенную массу, то она инерционна. И это свойство позволяет мультиметру быть прекрасным интегратором. Для восприятия информации это очень удобно.

Мелкие частые колебания она сглаживает, что позволяет сразу оценить предоставляемую информацию. Цифровой мультиметр, при таком же входящем сигнале, выдает мелькание цифр, и восприятие показаний прибора затруднено.

Главные достоинства стрелочного мультиметра:

  • наглядность;
  • качественное восприятие;
  • возможность в целом оценить измеряемый сигнал.

Инерционность стрелки позволяет мультиметру быть устойчивым к помехам. Кроме этого, им удобно следить за изменением тока на заряжающемся конденсаторе. При работе не требуется постоянно смотреть мультиметр, боковым зрением прекрасно фиксируются движения стрелки.

В то же время из-за ограниченности чувствительности магнитоэлектрического механизма прибора нет возможности использовать резисторы с очень большим номиналом.

Это вносит дополнительную погрешность при замерах напряжения. А при измерении тока тестер не может его фиксировать при очень малых номиналах шунта, когда практически весь ток будет проходить через него.

По сравнению с цифровыми тестерами стрелочные более подвержены механическим воздействиям из-за чувствительной измерительной головки, зависят от состояния источников питания, но более экономичны.

Дополнительные возможности

Стрелочным тестером можно измерять емкость конденсаторов, некоторые модели могут мерить температуру, определять исправность полупроводниковых элементов.

https://www.youtube.com/watch?v=EGhdDoYi39Q

Встречаются мультимтеры со встроенным генератором испытательных сигналов на несколько (до десяти) частот.

У нормального производителя в комплект поставки входят:

  • прибор;
  • батарея на 1.5 В или 4,5 В;
  • пара измерительных щупов;
  • инструкция по эксплуатации.

При покупке нужно обратить внимание на соответствие стрелочного мультиметра стандарту безопасности 89/336/EEC.

Диапазон проверки напряжения 500-1000 В, тока до 10 А. Стрелочным тестером удобно заниматься прозвонкой проводов, проверять заземление. Некоторые имеют звуковую или световую сигнализацию при достижении сопротивления в 20-30 Ом и ниже, это очень удобно.

Средним стрелочным мультиметором можно провести практически все измерения, необходимые в быту обычному человеку. Их функциональные возможности рассчитаны именно на это.

Измерение напряжения и силы тока

Рассмотрим для примера стрелочный мультиметр m1015b, соответствующий всем стандартам безопасности. На лицевой стороне устройства расположен переключатель функций, настройка нуля, стрелка со шкалами, гнезда для подсоединения измерительных щупов.

Для измерения постоянного напряжения переключатель функций устанавливается в положение DCV. Измерительные щупы подключаются параллельно нагрузке, на которой будет измеряться напряжение.

Показания снимаются по черной шкале V.mA прибора. Если неизвестен диапазон сигнала, нужно выбрать самый большой, потом уже переходить на оптимальный для данного сигнала.

При замере переменного напряжения переключатель переводится в положение АCV. Все остальное делается так же, как и при замере постоянного напряжения.

Чтобы измерить ток, поворотный переключатель устанавливается в положение DCmA, в зависимости от диапазона значений силы тока. Начинают измерения с максимальной шкалы. Показания снимаются по черной шкале.

Измерение сопротивления и децибел

При измерении сопротивления исследуемое устройство или деталь необходимо отключить от электричества. Переключатель режимов переводят в положение Ω.

Специальной кнопкой регулятора нуля стрелка мультиметра совмещается с нулевым делением шкалы измерения сопротивления. Перед этим щупы необходимо закоротить.

Если выставить стрелку в ноль не удается надо заменить батарею. Для этого снимается задняя крышка и производится замена.

После этого щупы подсоединяются к измеряемому сопротивлению. Показания омметра снимаются по зеленой шкале. Коэффициент умножения зависит от выбранного диапазона.

Для измерения дБ переключатель режимов устанавливается в требуемое положение стрелочного мультиметра ACV.

ЭТО ИНТЕРЕСНО:  Что такое типовая мощность автотрансформатора

Для диапазона 10 В переменного тока снимают показания на красной шкале dB, для диапазона 50 В нужно ввести поправку +14 в диапазоне -2022 dB, для 250 В поправка +28 для диапазона 850 dB.

Если сигнал имеет постоянную составляющую, необходимо измерения проводить через конденсатор емкостью менее 0,1 мкФ.

При соблюдении правил применения тестер никакого ухода не требует. Может работать при плюсовой температуре до 40 градусов и влажности 75%.

Когда упоминают мультиметр, обычно, имеют в виду компактный мобильный прибор с автономным питанием. Но существуют еще и стационарные стрелочные тестеры.

Набор функций у них может быть такой же, как у переносных или немного шире, а точность измерений, количество диапазонов обязательно выше.

Какой прибор выбрать, цифровой, стрелочный, стационарный или мобильный, зависит от нужд потребителя, но стрелочные мультиметры еще долго будут востребованы.

Источник: https://evosnab.ru/instrument/avo/strelochnyj-multimetr

Как проверить конденсатор мультиметром — инструкция 2020

В статье мы расскажем, как проверить работоспособность конденсатора, измерить его емкость и сопротивление между двумя выводами. Ответим на самые частые вопросы и предостережем от проблем с неправильным эксплуатированием конденсаторов.

Что сделать перед проверкой:

  1. С самого начала, тестирующий элемент нужно выпаять из платы, в том случае, если он там находится.
  2. После этого, конденсатор разряжают – нужно его выходящие контакты замкнуть токопроводящим материалом (подойдёт простой металлический пинцет) или подключить к его выводам сопротивление 5-10 кОм для плавной разрядки, если он имеет большую ёмкость (высоковольтный).
  3. Не рекомендуется при этом прикасаться руками к выходным контактам элемента в целях личной безопасности. Всё это делается для того, чтобы не вышел из строя сам измерительный прибор, потому как на обкладках измеряемой детали может быть достаточно высокое напряжение.

Порядок проверки

Касание контактов щупами

Мультиметр может выявить такие причины неисправности, как пробой, влекущее за собой разрушение диэлектрика, разделяющего пластины, и ток идёт напрямую, при этом, сам конденсатор, по сути, становится простым проводником. Либо делает это частично, теряя свою ёмкость, становясь дополнительно активным сопротивлением в электрической цепи.

Сам конденсатор в силу своего принципа работы пропускает только переменный ток, а постоянный ни в коем случае, поэтому его сопротивление, замеряемое между выводами, достаточно большое и ограничивается очень малым током утечки через диэлектрик, разделяющий его рабочие пластины, накапливающие в себе заряд.

В неполярных конденсаторах, роль диэлектрика которых играет слюда, керамика, бумага, стекло, воздух ток утечки бесконечно мал, а сопротивление очень большое и при его измерении между выводами цифровым мультиметром прибор покажет бесконечность в виде 1 на цифровом табло. Поэтому, в случае пробоя, его сопротивление, замеряемое на выводах, составляет довольно малую величину — до нескольких десятков Ом.

Проверка на пробой

  1. Цифровой мультиметр переводим в режим измерения сопротивления, устанавливая его в самый высокий из возможных пределов.
  2. После, подключаем измерительные щупы прибора к оголённым выводам тестируемого элемента.
  3. Если он рабочий, то на дисплее мультиметра будет только знак бесконечности – 1. Это показатель того, что внутреннее сопротивление (сопротивление утечки) свыше 2 Мом.

    Поэтому пробоя нет и, возможно, проверяемый элемент исправен. В противном случае пробой очевиден. Вследствие чего требуется замена его аналогичным или с более большей ёмкостью, с номинальным напряжением не ниже оригинала.

  4. При проверке нельзя прикасаться руками за оголенные выводы конденсатора или измерительных щупов прибора, потому как будет измерено сопротивление вашего тела, а не измеряемого элемента.

    Оно будет гораздо меньше, следовательно, результат будет ошибочным.

Измерение сопротивления конденсатора мултьтиметром

Полярные электролитические конденсаторы имеют некоторые особенности при замере их внутреннего сопротивления:

  1. Оно обычно не менее 100 кОм. При качественном изготовлении, сопротивление утечки у них может быть не менее 1 мОм. Как и упоминалось выше, перед проверкой измеряемый элемент должен быть полностью разряжен. Как это делается, описано выше.
  2. При замере сопротивления предел измерения на мультиметре устанавливается более 100 кОм. После, соблюдая полярность подключения щупов, производим замер. В силу своей сравнительно большой ёмкости, при проверке будет происходить зарядка конденсатора в течение малого количества времени. Процесс зарядки будет протекать с одновременным возрастанием сопротивления, выведенным на дисплей прибора, после окончания, которого замеряемая величина прекратит свой рост и будет иметь фиксированное и окончательное значение.
  3. Если показатель не более 100 кОм, то с большей долей вероятности это показатель того, что конденсатор рабочий.

При проверке стрелочным мультиметром всё делается аналогичным способом:

  1. Подготавливается конденсатор (фиксируется и разряжается).
  2. Выставляется измеряемый параметр (сопротивление не менее максимального предела).
  3. Делается замер, в некоторых случаях соблюдая полярность.
  4. Фиксируется результат и сравнивается с рабочими значениями.

Особенность измерения этим способом сопротивления в том, что когда он заряжается сам параметр также пропорционально растёт и соответственно стрелочный прибор, указывающий само значение сопротивления, двигается от нулевой отметки до окончательной фиксированной.

Можно было визуально по времени перемещения стрелки оценивать ёмкость измеряемого элемента. Тем самым, чем дольше стрелка шла до конечного значения, тем больше ёмкость конденсатора и наоборот.

Значение внутреннего сопротивления конденсатора является не основным показателем его работоспособности, поэтому серьёзным аргументом может служить только замеренная мультиметром ёмкость.

Возможные причины выхода из строя

Несоблюдение основных параметров эксплуатации, таких как:

  1. Номинальное напряжение. При увеличении номинального напряжения, на нём возникает пробой в силу электротехнических характеристик диэлектрика, изолирующего пластины конденсатора.
  2. Расчётная ёмкость. Несоответствие ёмкости (ниже расчётной) влечёт за собой завышение номинального напряжения на рассматриваемом элементе, поэтому при его замене, если нет аналога, ставится элемент с большей ёмкостью.
  3. Полярность в некоторых случаях. Полярность является обязательным параметром электролитических и танталовых конденсаторов в силу особенности конструкции.

Рабочая температура зависит от соблюдения вышеописанных параметров напрямую. Исключением является старение, возникающее у электролитического типа, и расположения элемента на печатной плате, вследствие которого его рабочая температура может быть выше критической вследствие размещённых рядом других единиц электрической цепи, имеющих более высокий температурный режим.

Это причина выхода из строя оксиднополупроводникового элемента, так как он уже сам по себе представляет собой взрывчатку: там есть тантал, который является горючим и окислитель двуокись марганца.

Каждый компонент — это порошок и всё это смешано воедино. Не гремучая ли смесь? Именно поэтому повышение температуры из-за пробоя или несоблюдения полярности может привести к взрыву, способного вывести из строя не только соседние элементы, но и плату полностью.

Подробнее про мультиметр

Это компактный прибор, позволяющий делать замеры основных параметров как электрической цепи, так и отдельных его элементов для тестирования и выявления неисправностей.

Существуют 2 типа:

Аналоговый

Состоит из следующих элементов:

  1. Стрелочного магнитоэлектрического индикатора.
  2. Добавочных резисторов для снятия показаний напряжения,
  3. Шунтов для измерения тока.

Цифровой

Более сложный и точный прибор (наиболее распространены мультиметры с точностью 1%), состоящий из набора микросхем и цифрового индикатора, который бывает в основном жидкокристаллическим.

Некоторые из замеряемых мультиметром характеристик:

  1. Напряжение (переменного и постоянного тока).
  2. Сила тока (переменного и постоянного).
  3. Сопротивление (со звуковым сигналом, если оно менее 50 Ом).
  4. Ёмкость.
  5. Проверка полупроводников на целостность и полярность.
  6. Температура.

Источник: https://slarkenergy.ru/oborudovanie/datchiki/kak-proveryat-kondensatory.html

Как проверить конденсатор мультиметром не выпаивая

Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.

Электролитические неполярные конденсаторы

В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.

Неисправность конденсаторов

В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.

Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.

Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).

Проверка конденсаторов цифровым мультометром

Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.

Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.

Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.

Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.

Как проверить пусковой неполярный керамический конденсатор мультиметром

Электролитический неполярный конденсатор используется в схеме запуска однофазного и трехфазного электродвигателей в однофазной сети. Этот конденсатор можно проверить мультиметром таким же способом, как и электролитический полярный накопитель заряда. Для него полярность мультиметра, при проверке работоспособности не имеет значения. Проверяются они на тех же пределах измерения резисторов, что и полярные ёмкости.

Проверка конденсаторов мультиметром V 890D в режиме измерения емкости

Керамические емкости имеют диэлектрик с большим сопротивлением (керамика, стекло), поэтому при проверке емкости сопротивление должна быть более 2 Мом. Если сопротивление меньше, это говорит о неисправности ёмкости. Таким образом проверяются накопители заряда от 0,25 мкф и выше. Ёмкости ниже 0,25 мкф проверить обычным мультиметром невозможно. Для этих целей имеются измерители LC.

Хотя функцию измерения емкостей до 200 мкф можно встретить в некоторых типах мультиметров.  Проверить конденсатор мультиметром не выпаивая из схемы, тоже возможно. При этом необходимо соблюдать полярность при прозвонке и не касаться щупов руками. Погрешность проверки ёмкостей установленных на плате будет выше, так как на заряд накопителя влияют элементы схемы.

Проверить работоспособность емкости приблизительно можно и на искру, т. е. зарядить рабочим напряжением ёмкость, и далее закоротить металлической отверткой с изолированной ручкой ее вывода. По силе разряда можно приблизительно судить о работоспособности ёмкости. При проверке накопителя на искру предназначенных для работы в сети 220 В и выше, нужно предпринимать меры безопасности и разряжать емкости через резистор 10 Ком.

Проверка конденсаторов стрелочным тестером Ц 4353

Стрелочный тестер более удобен при проверке работоспособности накопителей. Стрелка тестера во время измерения емкости плавно перемещается по циферблату, что дает более правильную картину проверки, чем мелькающие цифры цифрового мультиметра. Неисправность накопителей заряда также можно определить визуально по вспучиванию торца корпуса, тёмным пятнам и прожженным отверстиям на элементе.

Источник: https://electricavdome.ru/kak-proverit-kondensator-multimetrom-ne-vypaivaya.html

Универсальный стрелочный прибор для проверки деталей

Аналоговые (со стрелочной измерительной головкой) тестеры типа 4353, 43101 и аналогичные были в своё время широко распространены и, возможно, есть в «закромах» многих радиолюбителей.

Современные цифровые приборы, конечно, имеют гораздо меньшие габариты и большую функциональность и универсальность, тем не менее, из такого «старого» тестера можно при желании сделать вполне удобный измерительный прибор.

Тем более, что стрелочный индикатор во многих случаях оказывается гораздо удобнее и нагляднее для отображения информации, если, конечно, при измерениях не требуется запредельная точность.

Так например, с использованием стрелочной головки от подобного тестера мной был сделан небольшой настольный измерительный прибор, который позволяет с достаточной для радиолюбителя точностью измерить ёмкость конденсаторов ( 5 пФ — 10 мкФ), индуктивности катушек ( от единиц мкГн до 1 Гн ), ёмкости электролитов ( 1 мкФ — 10 000 мкФ)  и их ESR, иметь «под рукой» фиксированные образцовые частоты ( 10, 100. 1000 Гц, 10, 100, 1000 кГц ). И, кроме того, имеет встроенный модуль для оперативной проверки работоспособности различных транзисторов малой и большой мощности и определения цоколёвки неизвестных транзисторов. Причём проверить параметры большинства элементов можно, не выпаивая их из схемы.

Прибор собирался в корпусе меньших размеров, чем «родной» от тестера и делался по «модульному» принципу — по желанию можно добавлять или исключать отдельные измерительные узлы и при этом не производить никаких существенных изменений в остальной схеме.

Можно сохранить также и  изначальные фунции измерения напряжений и токов, если это потребуется. Причём совсем не обязательно ориентироваться на применённую здесь стрелочную головку от взятого мной тестера — подойдёт любая другая с током полного отклонения 50 200 мкА, это не принципиально.

Ниже будут даны схемы и описания отдельных функциональных узлов-«модулей», структурная схема их соединений в приборе в целом.

Каждый «модуль» предназначен для измерения-проверки различных радиодеталей широкого применения и может использоваться не только в составе такого прибора, но и, конечно, отдельно, в виде небольшой независимой конструкции.

Сами схемы измерительных узлов, входящие в состав, не новы и не раз были опубликованы в своё время в различных источниках и проверены на практике многими радиолюбителями, показав стабильную и надёжную работу, Никаких редких и дорогих элементов констукция не содержит, схемы чрезвычайно «лаконичные» и просты в понимании, не требуют особых приборов для настроек, при этом обеспечивают достаточную точность измерений при внимательной и грамотной сборке и применении заведомо исправных деталей.

Генератор образцовых частот

Даже простейший генератор сигналов в радиолюбительской практике полезен сам по себе и часто входит в других приборов, например, измеряющих ёмкости и индуктивности. Здесь удобно применить в качестве генератора широко известная схема на цифровых элементах, простую и легко повторяемую:

Задающий генератор на МС типа К561ЛА7 (или К561ЛЕ5, К176ЛА7, ЛЕ5 и подобные) выдаёт на своём выходе частоту, которая стабилизирована кварцевым резонатором в цепи обратной связи — в данном случае 1 МГц. Далее сигнал проходит через несколько каскадов-делителей частоты на 10 например, на МС К176ИЕ4, СD4026 или любых других счётчиков-делителей на 10) и с выхода каждого каскада снимается сигнал с частотой, в десять раз меньше предудыщей.

С помощью любого подходящег переключателя коммутируем один из выходов счётчиков-делителей и получаем, таким образом, набор фиксированных частот. Конденсатором С1 можно подстроить частоту в небольших пределах, если это необходимо, никаких других настроек данная схема не требует и питается от источника напряжением 9-12 вольт (при указанных выше типах микросхем). 

Модуль измерения L, C

Первая схема представляет собой узел измерения емкостей  конденсаторов от 10 пФ до 10 мкФ и индуктивностей от 10 мкГ до 10 Гн (рис.2).

Сигнал на вход подается с выхода генератора сигналов ( в нашем случае — с движка переключателя SA1 на рис.1).

Через транзистор VT1, работающий в режиме ключа, прямоугольный импульсный сигнал можно снять с выхода «F» и использовать для проверки или настройки других внешних устройств, при этом  уровень сигнала можно регулировать резистором R4 в широких пределах.

Этот же импульсный сигнал подаётся на измеряемые элементы — конденсаторы или индуктивности, подключаеые к соответствующим клеммам «C» или «L», выставив переключатель SA2 в соответствующее положение.

К выходу Uизм. подключаем непосредственно нашу измерительную головку (может понадобиться добавочное сопротивление, об этом будет сказано подробнее далее — «Модуль индикации»).

Резистором R5 устанавливаем пределы измерений индуктивностей, а R6 — ёмкостей (например, подключаем к клеммам «Сх» и «Общ.» образцовый конденсатор 0,1 мкФ на диапазоне с частотой 1 кГц (см. схему рис.

1) и подстроечником R6 устанавливаем стрелку прибора на конечное деление шкалы). Питание этого модуля может быть 6-12 вольт.

Примечание: при настройке этого модуля была совсем исключена из схемы ёмкость С1 (1000 пФ), так как при её наличии не удавалось настроить диапазон измерений 1-100 пФ.

При настройке также возможен подбор сопротивлений R2, R3 в зависимости от напряжения питания и конкретного типа применённого транзистора (может быть любой маломощный p-n-p структуры).

В качестве выпрямительных использовались «старинные» германиевые диоды типа Д9, обеспечивающие более линейную характероистику отображения показаний стрелочной головки. Возможно применение кремниевых, но в данном случае я этот вариант не пробовал, так как диодов Д9 давно лежала без дела небольшая кучка.

Модуль измерения электролитических конденсаторов (+ C и ESR)

Для проверки электролитических конденсаторов был собран узел по схеме (рис.3):

Как и в предыдущей схеме, на вход (резистор R1) подается сигнал с движка переключателя  частот генератора-делителя (схема рис.1), при этом схему можно включать параллельно с предыдущим модулем. Резистор R1 подбирается в зависимости от типа транзистора Т1 и чувствительности используемой измерительной головки.

В отличие от других модулей, здесь требуется пониженное стабильное питание 1,2 — 1,8 В (схема такого стабилизатора будет приведена ниже, на рис.6). При измерениях полярность подключения конденсаторов к клеммам «+Сх» и «Общ» не имеет значения, а измерения можно проводить без выпайки конденсаторов из схемы.

Перед началом измерений прибор калибруется, то есть стрелка устанавливается на нулевую отметку шкалы резистором R4.

Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.

Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).

Переменное напряжение 100 кГц, наведённое во вторичной обмотке,  выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.

В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом. 

Примечание: при измерении ESR конденсаторов ЛЮБЫМ прибором важно учитывать влияние сопротивления измерительных щупов и проводов от клемм «ESR» и »Общ». Они должны быть как можно короче и большого сечения.

Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например рядом с генератором рис.1), возможен срыв генерации узла на МС.

Поэтому этот узел (измерения «ESR»), лучше собрать на отдельной небольшой плате и поместить в экран (из жести, например), соединённый с общим проводом. Питание микросхемы измерителя ESR  может быть как и у предыдущих схем.

Величины типовых (максимально допустимых) значений ESR различных конденсаторов  даны ниже в таблице (позаимствованно из открытых источников).

Функциональная схема соединений модулей прибора

Соединение между собой всех перечисленных выше «модулей» в одном общем приборе не представляет особой сложности и это видно из рис.4: 

Модуль индикации, помимо самой стрелочной головки, включает в себя шунтирующий конденсатор (10 47 мкФ) для устранения «дрожания» стрелки при измерениях в диапазонах с низкой частотой задающего генератора. Добавочное сопротивление подбирается в зависимости от чувствительности измерительной головки.   

В случае объединения всех перечисленных выше модулей в одном приборе следует иметь ввиду, что клемма «Общ.» на схеме рис.2 (модуль измерения «C» и «L») не является общим проводом схемы (!) и требует отдельного гнезда.

Дополнения

Составной транзистор Т1 (КТ829, схема рис.3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.

Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.

При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.

В зависимости от применённых светодиодов нужно подобрать сопротивление R5 по оптимальной яркости их свечения (или же поставить дополнительный гасящий резистор в цепь питания 9 В, а вообще эта схема работает с питающим напряжением, начиная от 2 В).

Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают (частота миганий может быть изменена номиналами конденсаторов С1 и С2). При подключении к клеммам исправного транзистора, один из светодиодов погаснет (в зависимости от типа его проводимости p-n-p / n-p-n).

Если транзистор неисправен, то оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).

При проверке полевых транзисторов клеммы «Э», «Б», «К» соответствуют выводам «И», «З», «С». Полевые транзисторы, или очень мощные биполярные всё-таки лучше проверять, выпаяв их из плат.

Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.

Примечания к схеме

Схемы, приведённые в данной статье, рисовались несколько лет назад и оригинальные файлы формата .spl безвозвратно утеряны. Из-за чего проблематично было оперативно внести необходимые изменения в схему, в частности рис.1. Поэтому приведу ниже подкорректированное и правильное соответствие частот генератора и диапазонов измерений:

  • 1 МГц     — 100 пФ                  — 100 мкГн
  • 100 кГц   — 1000 пФ                — 1 мГн
  • 10 кГц     —  0,01 мкФ               — 10 мГн
  • 1 кГц       — 0,1 (+100) мкФ      — 100 мГн
  • 100 Гц     — 1 (+1000) мкФ       — 1 Гн
  • 10 Гц       — 10 (+10000) мкФ   — 10 Гн

(в скобках указаны значения ёмкости для электролитических конденсаторов)

Материал в редакцию сайта Радиосхемы прислал автор — Андрей Барышев.

   Форум по измерительной технике

   Обсудить статью Универсальный стрелочный прибор для проверки деталей

Источник: https://radioskot.ru/publ/universalnyj_strelochnyj_pribor_dlja_proverki_detalej/1-1-0-1309

Как проверить конденсатор переменного тока

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Как проверить емкость – видео ролики в

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Источник: https://instrument16.ru/interesnoe/kak-proverit-kondensator-peremennogo-toka.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]