Как проверить тиристор т122 20

Как проверить тиристор и симистор мультиметром

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Устройство тиристора

При подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа — тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.

По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.

Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором. Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением. К основным параметрам электронного ключа относятся:

  1. Iоткр.max — максимально допустимый ток тиристора.
  2. Uу — напряжение открывания.
  3. Uобр.max — наибольшее обратное напряжение элемента.
  4. Iуд — ток удержания в открытом состоянии ключа.

Как проверить тиристор мультиметром

Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки. Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.

https://www.youtube.com/watch?v=rVWD4icQ7zE

Схема проверки тиристора с дополнительным источником питания и батарейкой

Если убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.

Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.

Прозвонка тиристора мультиметром

Переключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ — катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом. Электронный ключ с наибольшим сопротивлением перехода УЭ — катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется. Сопротивление катод — анод должно быть большим, на дисплее отображается 1.

Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод — катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.

При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.

Схема проверки тиристора с дополнительным источником питания

В качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается. Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом. Для других напряжений питания:

R = (0,9 — 1)Uпит/Iу.откр, где Iу.откр — ток удержания управляющим электродом (в справочнике)

Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.

Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.

Источник: https://electricavdome.ru/kak-proverit-tiristor-i-simistor-multimetrom.html

Тиристорный регулятор напряжения простая схема, принцип работы

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения.

А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход.

Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

ЭТО ИНТЕРЕСНО:  Как подключить двигатель на 380 вольт

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение.

Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор.

При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

Источник: http://hardelectronics.ru/tiristornyj-regulyator-napryazheniya.html

Как проверить тиристор мультиметром + видео

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм.Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.

Рис 4. Измеряем сопротивление перехода  Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление.

Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности.

Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

Источник: https://www.asutpp.ru/kak-proverit-tiristor-multimetrom.html

Ку 202 характеристика простейшие схемы включения

› Инструмент

11.01.2020

Технические характеристики кремниевова тиристора КУ202Н, говорят нам что он триодный, не запираемый, изготовлен по планарно-диффузионной технологии. Используется как переключающий элемент в схемах автоматики. Также применяется в управляемых выпрямителях.

Распиновка

Цоколевка КУ202Н выполнена в металлостеклянном корпусе. Он имеет один вывод под резьбу — анод и два вывода под пайку — катод и управляющий электрод. Анодный вывод сделан под гайку М6. Маркировка тиристора нанесена на корпус. Вес — не более 14 грамм.

Характеристики

Все его параметры можно разделить на два типа предельные и электрические. Давайте разберем их подробнее. Обратите внимание, что на указанных ниже предельных значениях устройство работать долгое время не может, это пиковые показатели которое он выдержит за очень маленький период.

ЭТО ИНТЕРЕСНО:  Сколько по времени заряжать аккумулятор 60 ампер

Электрические параметры ку202н характеризуют работу тиристора в рабочих условиях. Ниже приведены их значения:

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, H20T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Схема подключения

Существует стандартная схема включения ку202н которой нужно придерживаться. Согласно ей между катодом и управляющим электродом подключается шунтирующий резистор сопротивлением 51 Ом. Отклонение от номинального значения не должно превышать 5 %.

Чтобы тиристор не вышел из строя не допускается подача управляющего тока, если напряжение на аноде отрицательное. Это может привести к выходу из строя устройства без возможности восстановления.

Особенности монтажа

К катоду и управляющему электроду нельзя прилагать усилие, большее 0,98 Н. Во время крепления прибора к теплоотводу усилие затяжки не должно быть выше 2,45 Нм.

Нельзя паять катод на расстоянии ближе 7 мм. от стеклянного корпуса. Для управляющего электрода допустимое расстояние для пайки 3,5 мм. Температура паяльника не должна быть выше +260 0 С. Время пайки не более 3 с.

Проверка на исправность

Проверить тиристор ку202н на исправность можно мультиметром, начать ее следует с проверки n-p перехода между анодом и управляющим электродом. Он должен прозваниваться так же, как обычный диод, то есть при прямом подключении (положительное напряжение на управляющий электрод, а отрицательное на катод) сопротивление перехода должно быть небольшим, а при обратном подключении большим.

Для более детальной проверки требуется выполнить такие действия:

  • Переключаем мультиметр в положение для измерения сопротивления до 2 кОм. На щупы прибора должно подаваться напряжение от источника питания.
  • Теперь нужно подключить щупы мультиметра к аноду и катоду тиристора. При этом прибор должен показывать большое сопротивление, близкое к бесконечности.
  • При помощи перемычки соединяем анод и управляющий электрод. Сопротивление между анодом и катодом, показываемое мультиметром, должно упасть.
  • Разъединяем анод и управляющий электрод. Сопротивление должно вырасти.

Можно также проверить тиристор при помощи лампочки и блока питания постоянного тока. Лампочка должна быть рассчитана на то напряжение, которое выдает блок питания. Подключаем положительный полюс блока питания на анод, а отрицательный на катод проверяемого тиристора.

При помощи батарейки, или щупов мультиметра включенного в режиме омметра, подаем отпирающее напряжение на управляющий электрод. Для этого подключаем положительное напряжение к аноду, а отрицательное к управляющему электроду. Если тиристор исправен, лампочка должна зажечься.

Если убрать напряжение между анодом и управляющим электродом лампочка должна продолжать гореть.

Существует способ проверить тиристор ку202н, не выпаивая его из схемы. Для этого нужно:

  • Отключите плату, на которой находится тиристор, от питания.
  • Отключаем от схемы управляющий электрод.
  • Один тестер, настроенный на измерение постоянного напряжения, подключаем к аноду и катоду тиристора.
  • Второй мультиметр включаем между анодом и управляющим электродом.
  • Первый тестер должен показывать небольшое напряжение (десятки милливольт).

Хотя он уже снят с производства, его еще можно купить в некоторых местах. Кроме того он присутствует во многих старых электронных приборах, из которых его при желании можно выпаять. Его DataSheet можно скачать здесь.

Источник: https://instrument16.ru/instrument/ku-202-harakteristika-prostejshie-shemy-vklyucheniya.html

Зарубежные аналоги отечественных тиристоров и симисторов

Электронные компоненты со склада по низким ценам, подробнее >>>

Новости электроники

Сравнив статистику посещения сайта за два месяца (ноябрь и декабрь 2014 года), в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины ? в 12. Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs.mediatek.com превысила одну десятую от общего количества зарегистрированных на MediaTek Labs пользователей.

Амбициозная цель компании MediaTek — сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик — порог входа очень низкий.

Компания Компэл, приглашает вас принять участие в семинаре и тренинге ?ФеST-TIваль инноваций: MAXIMум решений!?, который пройдет 14 и 15 октября в Новосибирске.

На этой странице представлены возможные аналоги отечественных и импортных тиристоров и симисторов

Вернуться к списку аналогов

Зарубежные наименования тиристоров и симисторов Отечественные тиристоры и симисторы
10FCRL T10-10
10PCR TAG10-800TAG10-90 T112-10
101RC20 T15-160
101RA110 101RC25 101RC30 101RC40 101RC50 101RC60 101RC70101RC80 T161-160
100AC100 100AC40100AC60 TC160-100
2N683-2N685 T122-25
25KH01-125KH08 TC122-25
30TN60 T16-250
244TB1-244TB5 T143-630
2N686-2N688 2N28882N2889 T222-25
10PCRL 2T112-10
2N1843A-2N1845A T112-16
TUG840 T10-40
TUG940 T131-40
TUH1040 T132-40
2SF734 T141-40
SKT24-08C SKT24-10C SKT24-12C SKT24-14C SKT24-16C BTW48-400 BTW48-500BTW48-600 T232-50
2SF782 T141-80
2SF126 T142-80
2SF783 T151-80
2SF128 T152-80
2SF784 2SF130 2SF785 C45A C45B C45C C45G C46A C46B C46C C46GC46H T252-80
60TR20 60TR40 60TR60 60TR80 60TR100 60TR120 80TR10 80TR2080TR40 T143-500
662T27 662T29 662T31 662T33 662T35 C601N C601TC601P T253-1250
C148S30 C148N30 C148T30 C148P30 C149A10 C149A20 C149B10 C149B20C149C10 TБ151-63
T171F400EEC ТБ171-200
2N6142 TC2-10
150A16 TC160
PT260 TC2-63
37TB1 ТЧ50
T171F600EEC T171F800EEC T171F1000EEC T171F1200EECТ607011374ВТ ТБ133-200
TKAL210 TKAL220 TKAL240 TKAL260 TKAL280TKAL2100 TC171-250
BCR150B20 BCR150B24 150A20150A24 TC161-160
T8420M T8410B T8410DT8410M TC142-80
TKAL110 TKAL120 TKAL180 TKAL1100 TKAL1120 100AC40 100AC60 100AC100150A4 TC161-100
T120KB T220KB T320KB T420KB T520KB T530KB T620KB T820KB T1020KBT1220KB TC122-20
2N2548-2N2550 NLC178A NLC178BNLC178C T171-200
81RM10 81RM20 81RM30 81RM40 81RM50 81RL50 82RL50 81RL60 82RL6081RL80 ТЧ125
2N6397-2N6399 T2-12
2SF932-2SF939 T16-400
C380A T133-400
2N1844-2N1850 T10-16
TAG665-500 TAG666-500 TAG675-600 2N3668 2N36692N3670 T10-12
2N1842B-2N1848B T122-20
2N6168-2N6170 T10-20
2N691A 2N692A T10-25
2N683-2N685 T122-25
BTW31-1200R BTW40-200R BTW40-400RBTW40-800R T242-32
BTW92-1000RM T15-32
2SF122 T10-80
244TB1 T143-630
C390E T153-800
C390M T253-800
BTW92-1000RU T142-32
2N2574 T123-200

Источник: http://www.chipinfo.ru/dsheets/analogs/tyristor-simistor.html

Проверка тиристоров всех видов мультиметром

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

ЭТО ИНТЕРЕСНО:  Какой объем электролита в аккумуляторе

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Источник: https://evosnab.ru/instrument/test/proverka-tiristorov

Как проверить тиристор

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-).

Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами  и  соседкой тетей Валей килограммов под двести и  вы перемещаетесь с этажа на этаж.

  Как  же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора.  Управляя маленьким напряжением кнопочки мы управляем большим напряжением разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят  как-то вот так:

А вот и  схемотехническое обозначение тиристора

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами  тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uy – отпирающее постоянное напряжение управления– наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max –  обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос ср – среднее значение тока, которое может протекать через тиристор  в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

А вот и его цоколевка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy – отпирающее постоянное напряжение управления  больше чем 0,2 Вольта.  Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения.  Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]