Как работает измерительный трансформатор тока

Назначение и принцип действия измерительных трансформаторов

Как работает измерительный трансформатор тока

Назначение и принцип действия измерительных трансформаторов

На предприятиях в энергетических установках требуется постоянный контроль режимов функциональности оборудования. Контроль выполняют с помощью учета электроэнергии и наблюдением за показаниями приборов нагрузки и рабочего и сетевого напряжения.

Приборы для измерения тока нагрузки, рабочего напряжения в высоковольтных установках подключаются через трансформаторы тока и напряжения. Кроме измерения трансформаторы нужны для присоединения защитных устройств и реле. 

Для чего нужны измерительные трансформаторы тока и напряжения 

Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения. 

Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:

  • снижают габариты и вес приборов измерения;
  • повышают уровень безопасного обслуживания оборудования;
  • предупреждают последствия от ошибочных действий электротехнического персонала;
  • расширяют пределы измерения переменного тока.

Назначение трансформаторов напряжения

Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.

Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А. 

Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ

Рассмотрим какие бывают трансформаторы напряжения.

Классификация трансформаторов напряжения

Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:

  • однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;
  • незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;
  • каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;
  • емкостный ТН с делителем;
  • двухобмоточный ТН с одной обмоткой вторичного напряжения;
  • трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.

Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО

Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью

Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.  

Устройство трансформаторов напряжения

Конструкцию ТН рассмотрим на примере лабораторных трансформаторов НЛЛ, используемыми для проверки работы большинства трансформаторов измерения и приборов. 

Трансформаторы напряжения на 3, 6 или 10 кВ имеет магнитопровод с конструкцией из электротехнической стали в основном стержневого типа. На магнитопроводе расположена внутренняя вторичная обмотка. Первичка представляет собой две секции, которые соединены между собой. 

Изоляции представляет собой заливку компаудом, что создает монолитный блок с высокой степенью электрической прочности от попадания влаги и внешних повреждений.

Выводы первичной обмотки размещаются вверху корпуса трансформатора.

С торца трансформатора на клеммнике размещены выводы вторичной обмотки и контакты заземления.

Измерительные трансформаторы напряжения, условия безопасной эксплуатации

Для обеспечения рабочих условий эксплуатации клеммы вторичной обмотки присоединяют к измерительными приборам или защитному оборудованию. Одну из клемм и основание оборудования заземляют.

Цепи при вторичной работе не замыкают, иначе может произойти термическое разрушение.

Если существует не использованная вторичная обмотка ее оставляют открытой, заземлив одну из клемм. Разомкнутая треугольная цепь должна включать резистор соответствующего напряжения и номинальной мощности вторички. Заземление цепи производится по техническим рекомендациям.

Нейтральный вывод первичной обмотки однофазного трансформатора заземляется только в нейтральную систему замыкания.

Будьте уверены, что правильный выбор и эксплуатация измерительных трансформаторов приведут вас к объективным показателям нагрузки и качества электрической сети. 

Рис. №6. Схема подключения трансформатора напряжения где: 1 – первичная обмотка, 2 – магнитопровод, 3 – обмотка вторичного напряжения

Рис. №7. Размещение трансформатор напряжения в ячейке КРУН, подключение к питающей сети через предохранители

Назначение и принцип действия трансформаторов тока

Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением. 

Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.  

Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую. 

С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.

О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит»  Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.

Классификация трансформаторов тока

Типы измерительных трансформаторов тока подразделяют на следующие классы:

  • по функциональности: на измерительные и защитные;
  • по току: постоянного и переменного тока;
  • по коэффициенту трансформации: одно и многодиапазонные;
  • по способу монтажа: внутреннего и наружного размещения, встроенные, накладные;
  • по напряжению: низкого и среднего;
  • по типу изготовления и диэлектрическому материалу: газо- и маслонаполненные, сухие.

Рис. №4. Внешний вид трансформатора тока ТОЛ-СЭЩ-20 

Рис. №5. Опорный трансформатор тока ТОЛ-СЭЩ-10, внешний вид

Измерительные подключают напрямую к считывающему, записывающему и вычисляющему измерительному оборудованию. Также их подключают к защите от сверхтоков. Разделяются на однопроводниковые ТТ и трансформаторы с первичной обмоткой. Однопроводниковый трансформатор – это устройство с проемом для первичной цепи, он устанавливается на первичный проводник. 

Мощность трансформаторов тока зависит от коэффициента трансформации и поперечного сечения сердечника. 

При низком токе первичной обмотки применяется трансформатор тока с высокой пропускной способностью. Для того чтобы получить трансформатор тока с первичной обмоткой через однопроводниковый трансформатор несколько раз пропускают первичный проводник.

Маркировка клемм первичной обмотки: Р1 (К) и Р2 (L), вторичной S1 (k) S2 (i). Полярность соответствует направлению прохождению тока.

Трансформатор постоянного тока

Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока. 

Устройство трансформаторов тока

Большинство измерительных трансформаторов тока выполнены в виде литой и опорной конструкции. Изоляция, например, как у трансформаторов тока ТОЛ-СЭЩ-10-IV выполнена из циклоалифатической смолы, защищающей обмотки от влаги и всех внешних повреждений. Катушки первичного напряжения выполнены из 2, 3 или 4 магнитопроводов со вторичными обмотками. 

Эксплуатационные условия для трансформаторов тока

Важно. Трансформаторы тока запрещено включать в линию без измерительного прибора. 

Для безопасной эксплуатации

  1. Чтобы увеличить степень надежности ТТ и обеспечить безопасную эксплуатацию кожух трансформатора и одну из клемм «вторички» необходимо заземлить. 

  2. Вторичная обмотка не эксплуатируется при разомкнутой цепи, а та обмотка, которая не используется закорачивается и заземляется.

  3. Трансформаторы тока с ответвителем емкостного делителя присоединяются к индикатору. Неиспользованное ответвление заземляют.

Обслуживание измерительных трансформаторов 

Перед началом работы с поверхности трансформаторов удаляется смазка, пыль и прочие загрязнения. Протирка производится с использованием уайт-спирита. Ветошь не должна оставлять ворс. 

Трансформатор исследуется на наличие сколов, трещин и наличие следов коррозии. 

После визуального осмотра трансформатор подвергают испытанию или проверяют прибором/мегомметром (2500 В) на достаточность сопротивления изоляции.  Вторичная обмотка проверяется мегомметром со шкалой деления на 1000 В.

Ток холостого хода проверяется со стороны вторичной обмотки под напряжением равным 1,2 от номинального. Отличие полученного результата не должно быть отличным от паспортного больше чем на ±10%.

Основное требование к трансформаторам – номинальная мощность не должна быть больше указанных в паспорте изделия.

Качество электроэнергии в сети должно быть соответствующим требованиям ГОСТ 32144. 

Установка трансформатора должна производиться на место с обеспеченным доступом к клеммным контактам.

При обслуживании трансформатора измерения проверяют надежность контактного соединения.

Разомкнутые треугольные обмотки однофазных индукционных ТН обеспечивают безаварийность кабельных систем распределения энергии.

Для повышения надежности разомкнутых треугольных обмоток трансформатора напряжения в цепь добавляют стабилизаторы напряжения, ограничители, стабилитроны. Эти устройства поддерживают работоспособность систем распределения электроэнергии после аварий и сбоев.

Работы по обслуживанию измерительных трансформаторов производятся по наряду в соответствии с технологическими картами. Капитальный ремонт, например, у трансформаторов тока не делают. Если испытания и замеры сопротивления основной изоляции показали неудовлетворительные результаты трансформатор меняют на другой. Основная изоляция должна иметь сопротивление не менее 300 МОм.

Вторичная обмотка в отключенном и отсоединенном состоянии должна показать сопротивление не менее 50 МОм, с подключенными вторичными цепями не менее 1 МОм.

При обслуживании трансформаторов тока проверяют переходное сопротивление болтового контактного соединения. Оно не должно превышать 33 мкОм для контактов на 2000 А и не выше 60 мкОм для контактных соединений на 630 А. 

Технология ремонта измерительных трансформаторов: разборка магнитопровода, демонтаж и ремонт катушек, перемотка обмоток, замена пластин магнитопровода и прочее схожи с ремонтом силовых трансформаторов. На время ремонта трансформатора обмотки закорачивают между собой, чтобы исключить возможный контакт и обратную трансформацию и напряжение при выполнении ремонтных работ. 

Важные примечания 

В индукционных однополюсных измерительных трансформаторах тока при замыкании цепи и во время затухания токов замыкания на «землю» возникает феррорезонанс, следствием которого является перегрев, появляется высокое напряжение, а сам трансформатор может разрушиться.

Для предупреждения феррорезонанса в разомкнутую треугольную цепь трех обмоток трансформатора напряжения включают резистор. Заземление выполняют только в одной точке. В контакты разомкнутого треугольника присоединяют приборы, которые следят за токами замыкания не землю.

Приобретение и установка измерительного трансформатора в соответствии с паспортными данными нагрузки и напряжения электроустановки гарантируют бесперебойную и точную работу приборов и оборудования.  

Источник: https://www.kesch.ru/info/articles/naznachenie-i-printsip-deystviya-izmeritelnykh-transformatorov/

Подключение измерительного трансформатора тока

Как работает измерительный трансформатор тока

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д.

Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства.

Упрощенная конструкция ИТТ представлена ниже.

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W2 – число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

Основная область применения ТТ – учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.
ЭТО ИНТЕРЕСНО:  Можно ли заряжать аккумулятор в квартире

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

  1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

Обозначения:

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
  • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция.

    Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ.

Такой вариант конструкции существенно упрощает монтаж/демонтаж.

Расшифровка маркировки

Обозначение отечественных моделей интерпретируется следующим образом:

  • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
  • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
  • Третьей литерой шифруется исполнение изоляции.
  • Цифрами указывается класс напряжения (в кВ).
  • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
  • КТ, с указанием номинального тока первичной и вторичной обмотки.

Приведем пример расшифровки маркировки трансформатора тока.

Шильдик на ТТ с указанием его марки

Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

Схемы подключения

Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

Источник: https://crast.ru/instrumenty/podkljuchenie-izmeritelnogo-transformatora-toka

Измерительные трансформаторы тока и напряжения | мтомд.инфо

Как работает измерительный трансформатор тока

Измерительные трансформаторы тока и напряжения применяются совместно с измерительными приборами для расширения их пределов измерения.

Измерительные трансформаторы напряжения

Измерительный трансформатор напряжения представляет собой понижающий трансформатор с таким отношением витков w1/w2, чтобы при U1 = Uсети; U2 = 100 В.

Во вторичную цепь включаются вольтметры, частотомеры, обмотки напряжения ваттметров, счетчиков и фазометров. Так как электрическое сопротивление этих приборов велико (порядка 1000 Ом), то трансформаторы напряжения работают в режиме, близком к холостому ходу. Такой режим связан с большими магнитными потерями, а это, в свою очередь, приводит к увеличению размеров магнитопровода и устройству специального масляного охлаждения.

Измерительные трансформаторы тока

Измерительные трансформаторы тока применяются для включения в сеть амперметров, обмоток тока ваттметров, счетчиков и фазометров.

Первичная обмотка трансформатора тока выполняется из провода большого поперечного сечения и включается в цепь последовательно.

Вторичная обмотка выполняется всегда на ток I2 = 5А. Рабочий режим трансформатора тока близок к короткому замыканию, поэтому размеры магнитопровода у него значительно меньше, чем у трансформатора напряжения.

Эксплуатация измерительных трансформаторов

Для определения напряжения или тока в цепи необходимо показания приборов умножить на коэффициент трансформации измерительных трансформаторов. В целях безопасности нельзя оставлять вторичную обмотку трансформатора тока разомкнутой, если первичная включена в сеть. В этом режиме напряжение U2 возрастает до нескольких тысяч вольт.

Разновидностью измерительного трансформатора тока являются токоизмерительные клещи с разъемным магнитопроводом, где роль первичной обмотки выполняет сам провод, по которому течет измеряемый ток.

Источник: http://www.mtomd.info/archives/2426

Трансформаторы тока ТПП-Н-0.66 и ТПП-0.66

Измерительные трансформаторы тока ТПП-Н-0.66 и ТПП-0.66 предназначены для масштабного преобразования силы переменного тока и его дальнейшего измерения приборами учета, защиты автоматики, сигнализации и управления в сетях частотой 50 Гц и номинальным напряжением до 0.66 кВ включительно. 

Проходные трансформаторы тока применяются в цепях коммерческого учета электрической энергии (трансформаторы тока для счетчиков активной электрической энергии) для расчета с потребителями, а также в схемах измерения и защиты.

Проходные измерительные трансформаторы тока ТПП-Н-0.66 и ТПП-0.66 – инновационные продукты от компании «Юджэн». 

Основные преимущества трансформаторов «Юджэн» — это:

  • Магнитопроводы измерительных трансформаторов тока изготовлены из нанокристаллического сплава, обеспечивая долговременную стабильность параметров в течении 30 лет 
  • Быстрый монтаж на объектах непосредственно на жилу кабеля или дополнительную кронштейн-шину с помощью прижимного винта или кабельной стяжки за счет удобного широкого отверстия
  • Дополнительный крепеж в виде вставки для быстрого крепления на шину 
  • Лучшая защищенность от краж электроэнергии из-за отсутствия соединений в цепи первичного тока
  • Отличаются от аналогов на рынке своей конкурентоспособной ценой, обладая всеми необходимыми техническими характеристиками
  • Гарантия 5 лет
  • Соответствуют требованиям технического регламента Таможенного союза «О безопасности низковольтного оборудования» ТР ТС 004/2011 (ГОСТ 12.2.007.0-75).

Область применения проходных измерительных трансформаторов тока ТПП-Н-0.66 и ТПП-0.66

  1. на сборках ЩРНВ в типовых подстанциях 2БКТП, 2ТО
  2. установка на сборках СБ, ЩО, МКС на подстанциях типа 2ТО, ТК, БКТПу
  3. на вводах в многоквартирных домах

Технические характеристики

Наименование параметраТПП-Н-0.66ТПП-0.66
Номинальный первичный ток 0,5S: 75, 80 А 0,2S и 0,5S: 100, 150, 200, 250, 300, 400, 500, 600, 750, 800, 1000, 1200 А   0,5S: 200, 250, 300, 400, 500 А0,2S и 0,5S: 600, 750, 800, 1000, 1200, 1500, 2000 А 
Номинальный вторичный ток 5 А 5 А
Номинальное напряжение 0,66 кВ 0,66 кВ
Наибольшее рабочее напряжение 0,72 кВ 0,72 кВ
Номинальная частота 50 Гц 50 Гц
Класс точности 0,2S и 0,5S 0,2S и 0,5S
Номинальная вторичная нагрузка c коэффициентом мощности cos φ = 1,0 0,5; 1; 2; 2.5 и 5 В·А 0,5; 1; 2; 2.5 и 5 В·А
Номинальная вторичная нагрузка c коэффициентом мощности cos φ = 0,8 3 и 5 В·А 3; 5 и 10 В·А
Номинальный коэффициент безопасности от 2 до 5 от 3 до 16
Масса, кг 0,25-0,39 0,3-0,52
Средняя наработка до отказа 2,9·105 часов 2,9·105 часов
Средний срок службы 30 лет 30 лет
  • Проходные трансформаторы тока ТПП-Н-0.66 производятся классом точности 0,2S и 0,5S на номинальный первичный ток 75, 80, 100, 150, 200, 250, 300, 400, 500, 600, 750, 800, 1000, 1200 А, номинальный вторичный ток 5А.
  • Проходные измерительные трансформаторы тока ТПП-0.66 производятся классом точности 0,5S на номинальный первичный ток 200, 250, 300, 400, 500 А, классом точности 0,2S и 0,5S на номинальный первичный ток 600, 750, 800, 1000, 1200, 1500, 2000А, номинальный вторичный ток 5А.

Преимущества измерительных трансформаторов тока ТПП-Н-0.66 и ТПП-0.66

  1. устойчивость метрологических характеристик к намагничиванию постоянным током (у трансформаторов ТПП-Н-0,66) 

  2. высокое электросопротивление материала и уменьшенные в 4-10 раз потери на вихревые токи и перемагничивание сердечника

  3. повышенный (двойной) технологический запас по классу точности

  4. более длительный срок службы с сохранением метрологических характеристик (и потенциально больший межповерочный интервал)

  5. меньшие затраты материала на сердечник и обмотки, меньшие габариты, вес сердечника и вес трансформатора тока в целом

  6. большая устойчивость к хищениям электроэнергии (при нагрузках потребителя менее 50% номинальной) и росту коммерческих потерь, при снижении технологических потерь электроэнергии и эксплуатационных затрат

  7. остаются в своём классе точности при изменении нагрузки от номинальной вплоть до нулевой (0 ВА), что подтверждено контрольными испытаниями и отражено в эксплуатационной документации. Это дополнительное преимущество для проектировщиков — необходимость согласования по мощности (догрузки) систем трансформатор тока-кабель-счётчик отпадает. 

Дополнительная информация

  • Проходные измерительные трансформаторы тока ТПП-Н-0.66, ТПП-0.66 допущены к применению в качестве средств измерения в Республике Беларусь, Российской Федерации и Республике Казахстан
  • Межповерочный интервал — 8 лет
  • Возможны три варианта крепления:

           > с использованием прижимных винтов

           > с использованием хомута пластикового

           > с использованием вставки

  • Возможна поставка крепежной скобы для крепления ИТТ к плоскости

Единая вставка на 4 ориентации позволяет установить ИТТ на шину 5*30 мм в 2-х вариантах по смещению от центра относительно вертикальной оси, а также в 2-х варианта максимального смещения ИТТ по горизонтали влево или вправо. Это даёт возможность применения ИТТ во многих случаях, когда значительно меньшие ИТТ (и более дорогие) по габаритам (ширине и высоте) — не подходят или устанавливаются с большими трудностями на объекте. 

Скачать

Запрос в техподдержку

Источник: https://www.allmonitoring.ru/produkcziya/transformatory-toka/transformatory-toka-tpp-n-0.66-i-tpp-0.66

������������� �������������� ���� � ����������

������� / .. / 2016 / ������������� �������������� ���� � ����������

������������� �������������� � ��� ������ ������������������ ���������, ������� ������ ����������� ��� ��������� �������� �������� ���������� (���, ����������) � ������� � ������������ ����� � �������� 50-60 ����.

������� ���������� ���� ��������� ����������� � ���������� �������� ���������� ���� ��� ���������� � ���� ��� ����������� ����������� ������������� ��������, ��������� ���������� � �������� ������ (����-�����������).

����������� � ���� �������������� �������������� ��������� ��������� ���� ������� � ������� ����������, ��� ����������� �������������� ������������ ��� ���������� ���������� ��������� (�������������, �������� ������� ���������), �������� ����� ���� ���� � ����� � �������� ���������� ���� � ����������.

�������� ������������� � ������������� ������������� ���������������

���������� ����� ��� ����������, �� ������� ���������� ������������� ������������� ���������������.

� ����������� �� ����������� �������� ����� �������� ��������� ���� ������������� ���������������:

  • �������� �������� � ��� ����������� ��������. ���������� ������������� �������������� ���� � ����������, ������� �������� �� ������ � ���������� ��� ���������� �����;
  • �� ������������ ������������� ������� ����� ���� ����������������� ��� ����������������;
  • ���� � �������� �������� ����� ������ ���������, �� ����� �������� �������, ���������, ����������, ������������ � ���������� ��������������;
  • � ����������� �� ����������� ������������� ��������� ���� ������������ � ��������, ������� ��� �����.

�������������� ������������� ��������� ������� ��� ���� ������������� ��������������� � ��������� ���������������� �� ������ �� �������� ���������.

� ����������� ������� ������� �������������� ������ �� ��������� �������� � ���� ����������� ��������. ������� ���������� ���� ������ ����� ��������.

����� ���������� �������� �������� ���������

������������� �������������� ���������� � ��������� ������ ������������������ ���������, ������� �� �������� ������ ����������� ������� �������� ���������� � ����� ������, ������� ��� ������ ����������-������������� ���������� � ��������.

�������� ����� ������ � �������� ���, ��� ��� ������� �� ������������� ��� �������� ��������.

�� ����� ����������� � �������� ������ ������� ����������� �� ���������� �� �������� ����������� �������������� � ��� �� �������� ���������, ���� ��������� � ��������� ��������� �������.

������ �� ������������ ����������� ��������� ���� �������������� ��������������� ����������:

  • �����������;
  • �������������;
  • ���������;
  • ����- ��� ��������������;
  • ���������.

�������� �������� � ���������� ���

������������� �������������� ���� ��������������� ��� � ���� �� �������� ��������. ������� ������ ������������ � �������� ���� ��� ������������ ����� �������������� ������ � � ��������� ����� ��������������, ��� � ������� ��������� ����� ���������.

����������� ������ �������������� ����������� � ���, ��� ��������� ������� ���������� �� ����������� ������������� ������� ��� �������� ����������, � �� ��������� �������� ���.

������������ ������ ������������� � � ������� � ������������ ����� ����������������, ��� ����� ����� ������������� ������������ ����������� ������������� �������.

���������� ��������� �������� �������������� ������������� ��������������� ����, ������� ���������� ����� ��������� ������� (����������, ������ � ����������).

���� ����� �� �������� ������� ����������, �� �������� ��� ������ ��������� � ���������� � ��������� �� 1000 ����� � ���� ���������� ��������.

���������� ���

������������� �������������� ����������� ���� �������� ������� ���������� ��� ������ �������� �������� ����������� � �������������� �����. �� ����� ����������� � �������� �������� ���� ��� ��������������� ����������� ����� �� ���������� �� ���������� ���������.

� ������ �������� ������ ����� ���������� ��������� �������� ���������������. ������������� ����� ������������� ����� ����������� ��������� �� ��������������� ��������� � ��� ������������� �������, ������� ������������� ��� ���������� � ���������� �����.

�� ���������� ��� ����������� ����� ��������� ������������� �������� ��������. � ����������� ������ ������� �������� ����� ��� �� ������ ����� ����, ������� �������� �������� ����������, ������� ������� � ������������� ��������������, � ������� �������� ��������������� ���������� � ���������� ������.

����������� �������� ���� ������������� ������� ����������, ��� ������ ���������� ������ ����� ����������� ���������� � ������� ��������� �� �������������� ������� ��������.

������� ������ ���� ������:

����������, ������� �������� ������������� ���������������, � ����� �� ������ � ������.

��������������, ������, ������������, ������������ ������ ����������������
�������������������

Источник: https://www.elektro-expo.ru/ru/articles/2016/izmeritelnye-transformatory-toka-i-napryazheniya/

Трансформаторы тока и напряжения

Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:

  • понижающими, выдающие на выходе меньшее напряжение, чем на входе;
  • повышающими, выполняющие противоположное преобразование;
  • разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.

Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.

С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.

Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.

Зачем нужны измерительные трансформаторы напряжения

В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:

  • при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
  • изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.

Трансформатор напряжения НОЛ

Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В.

Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более.

Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз.

Трехфазный трансформатор напряжения НАМИ

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета, имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.

Трансформатор напряжения НОМ-10

Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.

Три однофазных трансформатора ЗНОЛ, собранные вместе

А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации.

Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением.

Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Зачем нужны трансформаторы тока

Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.

Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:

  • максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
  • включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
  • вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
  • Заменить амперметр прямого подключения можно, только отключив нагрузку.

Принцип действия и конструкция трансформаторов тока

Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.

Варианты конструктивного исполнения трансформаторов тока до 1000 В

Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.

Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.

Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего.

И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.

Установка трансформаторов тока в ячейке выше 1000 В

Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой.

Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика.

А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.

Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения.

Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).

про трансформаторы тока

Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.

Источник: http://electric-tolk.ru/transformatory-toka-i-napryazheniya/

Измерительные трансформаторы тока: назначение, устройство, схемы

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Выбор

При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

  • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
  • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
  • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

Пример расчета трансформатора тока

Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

Обслуживание

Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

  • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
  • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
  • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
  • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
  • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
  • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
  • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

Источник: https://www.asutpp.ru/izmeritelnye-transformatory-toka.html

Трансформаторы тока. Виды и устройство. Назначение и работа

В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений.

Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии.

Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.

Назначение

Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.

По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.

Устройство

Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.

С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.

Отличие от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:

  • Сухие.
  • Тороидальные.
  • Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Принцип работы и применение

При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.

Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.

В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.

Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.

Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе

В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.

С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.

На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.

Коэффициент трансформации

Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.

Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.

Установка

Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.

Подключение

Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.

Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.

Контроль

Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.

Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.

Безопасность

Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.

Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/transformatory-toka/

Все о трансформаторах тока. Классификация, конструкция, принцип действия

Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.

Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

Конструкция и принцип действия трансформатора тока

Трансформаторы тока конструктивно состоят из:

  • замкнутого магнитопровода;
  • 2-х обмоток (первичной, вторичной).

Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная — замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки.

Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

Интересное видео о трансформаторах тока смотрите ниже:

Погрешность ТТ определяется в зависимости от:

  • сечения магнитопровода;
  • проницаемости используемого для производства магнитопровода материала;
  • величины магнитного пути.

Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

Предельное значение сопротивление нагрузки указывается в справочных материалах.

Классификация трансформаторов тока

Трансформаторы тока принято классифицировать по следующим признакам:

  1. В зависимости от назначения их разделяют на:
    1. защитные;
    2. измерительные;
    3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
    4. лабораторные.
  2. По типу установки разделяют устройства:
    1. наружной установки (размещаемые в ОРУ);
    2. внутренней установки (размещаемые в ЗРУ);
    3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
    4. накладные — устанавливаемые сверху на проходные изоляторы;
    5. переносные (для лабораторных испытаний и диагностических измерений).
  3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
    1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
    2. одновитковые;
    3. шинные.
  4. По способу исполнения изоляции ТТ разбивают на устройства:
    1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
    2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
    3. имеющие заливку из компаунда.
  5. По количеству ступеней трансформации ТТ бывают:
    1. одноступенчатые;
    2. двухступенчатые (каскадные).
  6. Исходя из номинального напряжения различают:
    1. ТТ с номинальным напряжением — выше 1 кВ;
    2. ТТ с напряжением – до 1 кВ.

Ещё одно интересное видео о схемах включения трансформаторов тока:

Трансформаторы тока разных производителей

Рассмотрим несколько трансформаторов тока разных производителей:

Трансформаторы тока ТОЛ-НТЗ-10-01

Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

Рабочее положение трансформатора в пространстве – любое.

Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

  • класс нагревостойкости «В» по ГОСТ 8865-93;
  • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

Расположение вторичных выводов:

  • «А» — параллельно установочной поверхности;
  • «В» — перпендикулярно установочной поверхности;
  • «С» — из гибкого провода, параллельно установочной поверхности;
  • «D» — из гибкого провода, перпендикулярно установочной поверхности.

Требования к надежности

Для трансформаторов установлены следующие показатели надежности:

  • средняя наработка до отказа – 2´105 ч.;
  • полный срок службы – 30 лет.

Пример условного обозначения опорного трансформатора тока с литой изоляцией

ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

  • 10 — номинальное напряжение;
  • «0» — конструктивный вариант исполнения;
  • «1» — исполнение по длине корпуса;
  • «А» — вторичные выводы расположенные параллельно установочной поверхности;
  • «Б» — изолирующие барьеры;
  • 0,5S — класс точности измерительной вторичной обмотки;
  • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
  • 10Р — класс точности защитной вторичной обмотки;
  • 10 — номинальная предельная кратность вторичной обмотки для защиты;
  • 5 — номинальная вторичная нагрузка обмотки для измерения;
  • 15 — номинальная вторичная нагрузка обмотки для защиты;
  • 300 — номинальный первичный ток;
  • 5 — номинальный вторичный ток;
  • 31,5 — односекундный ток термической стойкости;
  • «УХЛ» — климатическое исполнение;
  • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

Опорные трансформаторы тока TОП-0,66

ОАО «СЗТТ»

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.

Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

  • высота над уровнем моря не более 1000 м;
  • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
  • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
  • рабочее положение — любое.

Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

Проходные шинные трансформаторы тока для внутренней установки BB, BBO

Изготовитель — Фирма ООО «ABB»

Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

  • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
  • Максимальное напряжение — 3.6 кВ — 25 кВ
  • Первичный ток — 600 A – 5000 A
  • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
  • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
  • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

Источник: https://pue8.ru/relejnaya-zashchita/241-transformatory-toka-printsip-dejstviya.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как правильно подключить резистор к светодиоду

Закрыть
Для любых предложений по сайту: [email protected]