Как работает трехфазный асинхронный двигатель

Асинхронный двигатель с короткозамкнутым ротором: конструкция, принцип работы

Как работает трехфазный асинхронный двигатель

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока.

Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой.

Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Рис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца.

В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия.

К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

  • однофазные;
  • двухфазные;
  • трёхфазные.

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

n1 = (f1*60) / p, где n1 – синхронная частота,  f1 – частота переменного тока, а p – количество пар полюсов.

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем.

В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы.

Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

Источник: https://www.asutpp.ru/asinxronnyj-dvigatel-s-korotkozamknutym-rotorom.html

Трехфазный асинхронный электродвигатель — цена 850 грн в Украине

Как работает трехфазный асинхронный двигатель

Электродвигатель асинхронный трехфазный представляет собой устройство, используемое для питания от 3-х фазной сети переменного тока. Конструктивное исполнение стандартное – статор и ротор. Первый элемент представляет собой неподвижную часть, а второй – подвижную. Между ротором и статором присутствует незначительное расстояние, именуемое воздушным зазором (примерно 0,5–2 мм).

Устройство широко используется в технике и промышленности. Чаще всего под понятием «трехфазный асинхронный двигатель» подразумевается трёхфазный асинхронный электродвигатель. Эта разновидность устройств отличается от синхронных тем, что здесь вал вращается немного медленнее скорости поля статора.

Трёхфазный электродвигатель — специфика функционирования 

Электродвигатель асинхронный трехфазный работает на основе способности 3х-фазной обмотки при её подключении к сети образовывать вращающееся магнитное поле.  Именно оно является основной движущейся силой в двигателе. Под действием магнитного поля в роторе появляются токи, которое создают поле, взаимодействующее в дальнейшем с полем статора.

Образовавшийся пусковой момент стремится повернуть вал по направлению вращения магнитного поля статора. Когда он достигает значения тормозного момента ротора, а потом превышает его, вал приводится в действие. При этом процессе создаётся скольжение. Оно показывает то, насколько частота магнитного поля статора больше частоты вращения ротора (в %).

Подключение к однофазной сети

Трёхфазный асинхронный электродвигатель может быть подключён к 1-фазной сети. Это достигается при помощи фазосдвигающих элементов. При всём этом трёхфазное устройство будет функционировать только в режиме однофазного электродвигателя или конденсаторного с постоянной работой конденсатора.

При 1-фазном запуске одна обмотка принимает на себя ток через ёмкость или индуктивность, сдвигающую фазу напряжения вперёд или назад на 90 градусов. После подключения электродвигателя к сети и начала вращения ротора, нельзя отключать рабочий конденсатор. Это действие равносильно обрыву одной из фаз при работе 3-х фазного электродвигателя. Потому даже при небольшом увеличении тормозного момента двигатель остановится и сгорит.

Иногда при работе с однофазной сетью получается выполнить ручной запуск путём поворота вала. После этого электродвигатель асинхронный трехфазный может функционировать самостоятельно.

В целом, трёхфазные эл двигатели с короткозамкнутым ротором лучше использовать в соответствующей сети. Для однофазной больше подойдёт асинхронный трехфазный двигатель.

Большой выбор устройств

В нашем интернет-магазине представлены различные трёхфазные, однофазные асинхронные двигатели и запчасти к ним. Вы можете выбрать оптимальную мощность, монтажное исполнение, количество оборотов устройства и купить товар в пару кликов. Цена электромоторов зависит от их технических характеристик. Доставка актуальна по всей Украине.

Источник: https://tmmotor.ua/ru/products/elektrodvigateli-3-h-faznye

Асинхронный электродвигатель: принцип работы и устройство

Как работает трехфазный асинхронный двигатель

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом.

Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл.

В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.

Источник: https://www.szemo.ru/press-tsentr/article/asinkhronnyy-elektrodvigatel-printsip-raboty-i-ustroystvo/

Принцип работы трёхфазного двигателя

Электродвигателем называется такое электромеханическое устройство, которое преобразует электрическую энергию в механическую энергию. При использовании трёхфазной системы переменного тока, наиболее широко используется трёхфазный асинхронный двигатель, так как этот тип двигателя не требует в большинстве случаев пускового устройства. Большинство трёхфазных асинхронных двигателей запускается в работу с помощью прямого пуска с использованием коммутационных аппаратов.

Для лучшего понимания принципа работы трёхфазного асинхронного двигателя, необходимо знать его основные конструкционные особенности.

Этот двигатель состоит из двух основных частей, неподвижной части – статора, и вращающейся части – ротора.

Статор трёхфазного асинхронного двигателя имеет слоты (пазы), в которых размещаются обмотки на каждую фазу. Трёхфазная обмотка расположена таким образом, чтобы быть способной создать вращающееся магнитное поле при протекании по обмоткам переменного тока (AC) от трёх источников питания.

Ротор трёхфазного асинхронного двигателя состоит из цилиндрического ламинированного сердечника имеющего параллельные пазы на периферии. В этих пазах расположены проводники, которые замкнуты на конечных кольцах с торцов ротора. Эти проводники в виде стержней образуют короткозамкнутую обмотку ротора типа «беличья клетка».

Проводники на роторе выполнены обычно из алюминия, а также могут быть сделаны из меди или латуни. Пазы для проводников немного повёрнуты на поверхности ротора, поэтому они расположены под некоторым углом к валу ротора. Такое расположение позволяет уменьшить магнитное сцепление в момент пуска двигателя, а также сделать работу двигателя плавной, без рывков и пробуксовки.

Как работает трёхфазный асинхронный двигатель?

Прежде всего, для работы трёхфазного асинхронного двигателя, необходимо создать вращающееся магнитное поле.

Создание вращающегося магнитного поля

Обмотки, которые расположены на статоре, равномерно смещены на 120 градусов относительно друг друга. Обмотка каждой фазы смещена относительно двух других на угол 120 градусов, то есть по обе стороны через 120 градусов расположены соседние фазы.

Статор представляет собой полый цилиндр, который в сечении представляет собой кольцо. Внутри такого цилиндра расположен ротор. Три источника тока, отличатся друг от друга фазовым сдвигом. Этот сдвиг также составляет 120 градусов.

ЭТО ИНТЕРЕСНО:  Как подключить варочную электрическую панель

В итоге, при прохождении трёхфазного переменного тока в обмотках статора, внутри статора образуется вращающееся магнитное поле.

В чем секрет создания вращения магнитного поля? Так как ток переменный, то создаваемое каждой фазой магнитное поле будет также переменным. Магнитный поток, который порождается прохождением тока в каждой обмотке, будет изменяться во времени точно также как породивший его ток.

В то время когда один магнитный поток от первой фазы будет возрастать по величине, магнитный поток от второй фазы достигнет своего максимального значения и начнёт убывать по величине, магнитный поток от третьей фазы будет всё более уменьшаться, пока не достигнет своего минимального значения.

Магнитный поток переменного синусоидального тока любой из фаз изменяется по величине и направлению, тем самым чередуясь и пульсируя. Там где ранее был северный магнитный полюс, становится южный, а там где был южный полюс, там на его месте образуется северный полюс. Магнитное поле как бы пульсирует, но не вращается.

Если пространственно равномерно по окружности расположить три катушки (соленоиды) так, чтобы их сердечники были направлены к центру окружности, а затем соединить в один общий магнитопровод наружные концы соленоидов (катушек), то мы получим прототип статора трёхфазного асинхронного двигателя.

Подключив каждую катушку к источнику переменного тока, а именно к трём разным фазам, которые сдвинуты относительно друг друга на 120 градусов, мы получим не пульсирующее, а вращающееся магнитное поле.

По той причине, что магнитопровод будет общим, пульсирующие магнитные потоки от каждой катушки будут складываться с учётом направления и величины, тем самым образуя вращающийся вектор магнитного потока. Это удивительно, потому как статор неподвижен, но представляет собой магнит, поле такого магнита вращается, но статор остаётся неподвижен!!!

Как же преобразуется в дальнейшем электрическая энергия в механическую энергию? Если в статор, по обмоткам которого протекает трёхфазный ток и, соответственно, внутри него сосредоточено вращающееся магнитное поле, внести металлический предмет, то на него будет действовать механическая сила, которая будет пытаться этот предмет выкинуть из поля статора.

Как такое происходит? Магнитный поток статора индуцирует в короткозамкнутом роторе асинхронного двигателя ЭДС, так как цепь ротора замкнута, то по ней будет протекать электрический ток, который создаст второй магнитный поток – поток ротора. Взаимодействие двух встречных потоков ротора и статора создаст крутящий момент на роторе, и он начнёт вращаться. В соответствии с законом Ленца, ротор будет вращаться в том направлении, которое позволяет уменьшить магнитный поток статора.

Следует заметить, что принцип работы асинхронного двигателя не допускает синхронной скорости ротора с магнитным полем статора. В этом случае исчезнет ЭДС индукции в роторе, и ротор начнёт останавливаться. Синхронизация не достижима для асинхронного электродвигателя, скорость ротора в двигательном режиме может быть меньше скорости вращения магнитного поля.

Если ротору придать дополнительный крутящий момент от внешнего механического источника, так, чтобы его скорость стала больше чем скорость вращающегося магнитного поля статора, тогда электрическая машина перейдёт в генераторный режим работы, при котором происходит преобразование механической энергии в электрическую энергию.

Разница скоростей между статором и ротором позволяет говорить о таком явлении как скольжение ротора в магнитном поле статора. Необходимо помнить, что асинхронная электрическая машина переменного тока – это обратимая машина, которая может работать как в генераторном, так и двигательном режимах.

Краткие практические выводы по трёхфазному асинхронному двигателю

  1. Отсутствует необходимость в контактных кольцах на роторе и в щёточном механизме.
  2. Асинхронный трёхфазный двигатель является самозапускающимся, так как создаётся вращающееся магнитное поле, а не пульсирующее.
  3. Отсутствие щёточного механизма и щёток исключает искрение контактов в работе двигателя.
  4. Долговечность конструкции при правильной эксплуатации и обслуживании.
  5. Экономичность, высокая эффективность (КПД).
  6. Простота в обслуживании.

Дата: 26.01.2016

Valentin Grigoryev (Валентин Григорьев)

Источник: http://electricity-automation.com/page/princip-raboty-trokhfaznogo-dvigatelya

Как работает трехфазный асинхронный двигатель?

В асинхронном двигателе роль клочка сена играет магнитное поле, которое «бежит» по кругу, вырабатываемое совершенно неподвижными катушками статора. А роль ишачка играет ротор, который гонится за этим полем.

Ну а как только ишачок побежал, главная задача — научиться им управлять. И задача эта не из легких.

Бегущее магнитное поле

Статор асинхронных двигателей, подключаемых к трехфазной сети, состоит из трех электромагнитов. На них подается напряжение разных фаз сети. А так как разные фазы работают — нарастают и уменьшаются — со сдвигом во времени друг от друга, аналогично будет нарастать и уменьшаться магнитное поле в катушках.

Сначала поле возникнет и будет расти в катушке 1 фазы, через одну треть периода точно так же возникнет и будет возрастать поле во второй фазе, а поле в первой при этом постепенно и плавно, по синусоиде, сначала перестанет нарастать, а потом начнет уменьшаться.

Все повторится и для катушки третьей фазы — поле появится, будет возрастать, тогда как поле во второй сначала остановит свой рост, потом пойдет на спад. А в это время поле в первой фазе уже дойдет до нуля и будет возрастать в отрицательную сторону.

Структура трехфазного двигателя

Если в статоре сделать только три обмотки, по числу фаз в питающем напряжении, то магнитное поле будет вращаться с той же частотой, что и напряжение, то есть 50 раз за одну секунду. Но на практике их делают гораздо больше.

Поле в статоре

Тогда бегающее по кругу поле будет иметь частоту вращения меньше, но вращение при этом станет более плавным.   

Поведение ротора в бегущем магнитном поле

 «Обмотки» ротора представляют собой проводники, расположенные «почти» параллельно валу ротора и набранные по кругу в виде «беличьей клетки». Это не обмотки, так как там ничего не намотано, а проводники, воткнутые в два металлических круга. То есть через эти металлические круги, накоротко замкнутые.

Ротор асинхронных двигателей

«Беличья клетка» является замкнутой накоротко обмоткой, которая заполнена пакетом-сердечником, набранным из поперечных тонких пластин из электротехнической стали

Когда на ротор воздействует внешнее изменяющееся магнитное поле статора, в роторе наводятся кольцевые токи, которые, в свою очередь, создают магнитное поле. Это поле, усиленное сердечником, направлено так, что ротор начинает вращаться вслед за бегущим магнитным полем статора. Вращение направлено в направлении «догнать» убегающую волну. Ротор разгоняется, но, по мере того, как он будет догонять волну статора, наводки в нем будут все меньше и меньше.

Он начнет «приотставать» (от силы трения или от силы сопротивления механической нагрузки на вал ротора), но усиливающаяся от этого в нем индукция снова толкает ротор к вращению. Такой принцип порождает некоторое рассогласование частот: частота напряжения, которая является причиной движения ротора, не изменяется во времени — стабильно 50 герц, а частота вращения то догоняет, то отстает.

Такие несоответствия могут быть незаметны там, где частота не очень важна, но из-за них двигатель и называется асинхронным.

Все мы это прекрасно видели и слышали, когда включали вентилятор. Он сначала набирает скорость, хорошо «берется за дело». Только потом как-то слегка «проваливается» — крутится по инерции, но опять «спохватывается» и «поддает газу».

Идеальный случай вращения в таком двигателе — это когда совсем нет трения и сопротивления, это холостой ход такого мотора. Тогда скорость определяется формулой вращения самого бегущего поля от статора

Формула

Здесь  nr – скорость вращения в оборотах в минуту,
fu – частота питающего напряжения,
p – число катушек статора в каждой фазе.

   Например, если, как нарисовано на картинке с красной стрелочкой вращения поля статора, в статоре три катушки, то есть по одной на каждую фазу, то получим

  nr = 60 50/1 = 3000 (об./мин) или 50 об./с. То есть скорость вращения равна частоте напряжения в сети. Увеличением количества обмоток в статоре можно добиться снижения скорости вращения

Во многих случаях точная частота вращения двигателя действительно не так важна, поэтому электродвигатели асинхронные трехфазные находят широкое применение.

Трехфазные электродвигатели имеют и другой недостаток: циклические токи ротора вызывают его непрерывный разогрев, поэтому и делают кольцевые металлические пластины с ребрами для охлаждения воздухом при вращении.

Схемы и способы подключения

Так как есть несколько обмоток внутри двигателя — обмотки статора, — и сеть переменного тока бывает однофазной, а бывает трехфазной, то и схема включения всего этого хозяйства допускает вариации.

Обмоток на статоре обычно три. Ну а если их больше, то все равно обмотки каждой фазы внутри уже соединены последовательно. То есть в качестве выходных клемм максимум может быть 6. И их подсоединить к сети можно по-разному. Систем обозначений клемм две. На старых обозначались буквами С и цифрами 1,2,3 — начала обмоток; цифрами 4,5,6 — концы обмоток. В новых обозначениях для разных обмоток употребляются буквы U, V, W, а для начал и концов цифры 1 и 2 соответственно.

Клеммы обмоток могут быть на двигателе выведены наружу, и можно самостоятельно подключить трехфазный двигатель к сети переменного тока

Как подключить двигатель по схеме «звезда»

При соединении обмоток по типу «звезда» концы обмоток нужно объединить, а на клеммы начала обмоток подать напряжения фаз из сети.

Подключение трехфазного электродвигателя по схеме «Звезда»

Здесь использованы обозначения клемм электродвигателей трехфазных, применяемые на схемах, старые и новые

При подключении типа «звезда» нулевой провод из сети желательно подавать на общую клемму двигателя. Это защитит его от порчи в случае перекоса фаз в сети.

Как подключить электромотор по схеме «треугольник»

Подключить трехфазный двигатель обмотками в «треугольник» в сеть переменного тока не сложнее. Надо начало одной обмотки соединять с концом следующей. И еще все начала подключить к фазным проводам переменного тока.

Подключение асинхронного двигателя по схеме «треугольник» Клеммник для подключения асинхронного электродвигателя по типу «Звезда»

Два эти подключения — «звезда» и «треугольник» — в сети дают разные результаты по токам и мощностям. В «звезде» на каждую обмотку подано фазное напряжение 220 В, а две обмотки вместе нагружены линейным напряжением в 380 В.

Протекающие в обмотках токи при этом меньше, чем при конфигурации «треугольник». Отсюда и работа отличается: «звезда» дает мягкий запуск, но при работе развивает меньшую мощность, чем «треугольник».

Зато «треугольник» при запуске дает большие стартовые токи, превышающие номинал раз в 7–8.

Чтобы сочетать преимущества обеих конфигураций, коммутацию делает особая схема. Она при запуске двигателя коммутирована как «звезда», а при достижении определенной мощности переключается в вариант «треугольник». В этом случае (и в других случаях с постоянными подключениями обмоток), на входном клеммнике оставляют только 3 или 4 клеммы, и вариантов по переключению обмоток по своему усмотрению не остается. В этом случае просто подключаются фазы в нужном порядке.

Подключение трехфазного двигателя в однофазную сеть

Трехфазное напряжение нашей сети можно представить как одну и ту же фазу, только повторенную еще два раза со сдвигом, сначала на 120°, потом плюс еще на столько же, то есть в результате на 240°. И такое напряжение вполне схематически посильно «добыть» из одной выделенной фазы.

Однако когда мы запускаем «бегущее поле» статора, совсем не обязательно делать его именно с таким сдвигом между поданными на обмотки фазами. Потому что увеличение количества полюсов в обмотках проявляется как уменьшение скорости вращения, но механизм работает.

Поэтому разработаны простые схемы получения сдвинутых фаз из однофазной линии не под таким углом, а под 90°. Это можно сделать простой схемой, дающей подключение трехфазного двигателя в однофазную сеть с применением одного конденсатора. Результатом является снижение мощности двигателя.

При маркировке двигателей, которые можно использовать в однофазной сети 220 В и в сети 380 В трехфазной, так и пишется — двигатель 220/380, а который предназначен для работы только в трехфазной — двигатель 380.

Подключение трехфазного двигателя в однофазную сеть 220 В типа «Треугольник» и «Звезда»

Схема подключения «звезда» в этом случае дает потерю мощности, поэтому для более полного использования двигателя при подключении к однофазному напряжению чаще применяют «треугольник».       

Источник: https://domelectrik.ru/oborudovanie/dvigatel/trekhfaznaya-asinhronnaya-mashina

Как работает асинхронный электродвигатель — Спецтехника

Наука в области электричества в XIX и XX веках стремительно развивалась, что привело к созданию электрических асинхронных двигателей. С помощью таких устройств развитие промышленной индустрии шагнуло далеко вперед и теперь невозможно представить заводы и фабрики без силовых машин с использованием асинхронных электродвигателей.

История появления

История создания асинхронного электродвигателя начинается в 1888 году, когда Никола Тесла запатентовал схему электродвигателя, в этом же году другой ученый в области электротехники Галлилео Феррарис опубликовал статью о теоретических аспектах работы асинхронной машины.

В 1889 году российский физик Михаил Осипович Доливо-Добровольский получил в Германии патент на асинхронный трехфазный электрический двигатель.

Все эти изобретения позволили усовершенствовать электрические машины и привели к тому, что в промышленность стали массово применяться электрические машины, которые значительно ускорили все технологические процессы на производстве, повысили эффективность работы и снизили её трудоемкость.

В настоящий момент самый распространенный электродвигатель, эксплуатируемый в промышленности, является прототипом электрической машины, созданной Доливо-Добровольским.

Устройство и принцип действия асинхронного двигателя

Главными компонентами асинхронного электродвигателя являются статор и ротор, которые отделены друг от друга воздушным зазором. Активную работу в двигателе выполняют обмотки и сердечник ротора.

Под асинхронностью двигателя понимают отличие частоты вращения ротора от частоты вращения электромагнитного поля.

Статор – это неподвижная часть двигателя, сердечник которой выполняется из электротехнической стали и монтируется в станину. Станина выполняется литым способом из материала, который не магнитится (чугун, алюминий). Обмотки статора являются трехфазной системой, в которой провода уложены в пазы с углом отклонения 120 градусов. Фазы обмоток стандартно подключают к сети по схемам «звезда» или «треугольник».

ЭТО ИНТЕРЕСНО:  Как заряжать аккумулятор в машине

Ротор – это подвижная часть двигателя. Роторы асинхронных электродвигателей бывают двух видов: с короткозамкнутым и фазным роторами. Данные виды отличаются между собой конструкциями обмотки ротора.

Источник: https://mzoc.ru/prochie/kak-rabotaet-asinhronnyj-elektrodvigatel.html

Трехфазный асинхронный электродвигатель

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателя

Ротор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателя

Конструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Магнитное поле прямого проводника с постоянным током Магнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°) Вращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.

На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.

Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый ротор Магнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Источник: https://agregat.me/information/elektrodvigateli/trekhfaznyj-asinkhronnyj-elektrodvigatel

Асинхронный трёхфазный двигатель

Асинхронный трёхфазный электродвигатель был изобретён в 1889 году русским электротехником Доливо-Добровольским. Трёхфазные двигатели получили широкое применение в различной промышленной технике, в том числе и в промышленных стиральных машинах. С развитием современных технологий и электронных систем управления, подобные двигатели стали распространены и в бытовой технике.

В бытовых стиральных машинах трёхфазные двигатели стали применяться примерно с 2005 года. Сегодня можно встретить такие двигатели только в некоторых моделях стиральных машин торговых марок: AEG, Electrolux, Ariston, Indesit, Whirpoll, Candy, Bosch, Siemens, Miele, Haier.

Трёхфазные двигатели из-за низкого уровня шума, очень часто применяются в так называемых бесшумных стиральных машинах.

2. Общие сведения о трёхфазном токе и трёхфазном двигателе

Как известно из курса электротехники, в промышленности трёхфазный ток создаётся трёхфазным генератором, который имеет три обмотки сдвинутые относительно своей геометрической оси на угол 120°, поэтому на выходе каждой из обмоток генератора образуются переменные токи, фазы которых соответственно сдвинуты друг относительно друга также на 120°. График трёхфазного тока представлен на (Рис.2). Конструкция и принцип работы трёхфазного и однофазного асинхронных двигателей почти одинаковы. Разница лишь в обмотках статора. Трехфазные электродвигатели имеют на статоре трёхфазную обмотку, каждая секция обмоток которых сдвинута на 120°. Ротор (подвижная часть) трёхфазного двигателя имеет такую же конструкцию, что и однофазные асинхронные двигатели, т.е. состоит из короткозамкнутой обмотки в виде «беличьего колеса». Статор (неподвижная часть) состоит из сердечника в пазы которого уложены секции обмоток и подключены к контактной колодке двигателя. В отличие от однофазного асинхронного конденсаторного двигателя, трёхфазный двигатель подключённый к трёхфазной сети, не нуждается в пусковом конденсаторе, поскольку сдвиг фаз токов необходимый для образования пускового момента и вращающегося кругового магнитного поля обусловлен самой системой питания.Трёхфазные асинхронные двигатели могут работать так же от однофазной сети, но с потерей мощности примерно на 50% и естественно уже с применением пусковой схемы построенной на конденсаторах. Рис.2 График трёхфазного тока
Рис.3 Соединение обмоток статора по схеме «звезда» и «треугольник» Существуют две классические схемы подключения трёхфазных двигателей — это соединение обмоток статора по схеме «звезда» и «треугольник» (Рис.3) В стиральных машинах применяются трёхфазные асинхронные двигатели обмотки статора которых соединены по схеме «треугольник», т.е.конец первой обмотки соединен с началом второй, конец второй с началом третьей, а конец третьей с началом первой, образуя замкнутый контур. При таком соединении в замкнутый контур нет никакой опасности, так как благодаря сдвигу по фазе между электродвижущими силами на 120° их геометрическая сумма равна нулю и, следовательно тока в контуре быть не может. Все обмотки в трёхфазном двигателе имеют одинаковое электрическое сопротивление, что обеспечивает равномерную нагрузку на каждую фазу.

Если не вдаваться в подробности основ теории электротехники, отметим главное — электродвигатели с обмотками, соединёнными звездой работают намного мягче, чем электродвигатели с соединением обмоток в треугольник, но нельзя не отметить, что при соединении обмоток звездой двигатель не способен выдать максимальную мощность. Если соединить обмотки треугольником, двигатель выдаст полную паспортную мощность (приблизительно в 1,5 раза выше, чем при соединении звездой), но значения пусковых токов будут высокими.

3. Система управления трёхфазным двигателем (инвертор)

Выше, мы провели очень краткий обобщающий обзор по трёхфазному току и трёхфазному асинхронному двигателю. На самом деле, в электротехнике этот материал занимает очень большой раздел, с описанием всех физических процессов трёхфазной системы.Как же работает асинхронный трёхфазный двигатель в бытовой стиральной машине, которая подключена к однофазной сети с переменным напряжением 220 вольт?

Для того, чтобы трёхфазный двигатель максимально эффективно работал в однофазной сети, применяют относительно сложный электронный преобразователь, который называют — инвертор. Структурная схема инвертора представлена ниже на (Рис.4).

Рис.4 Структурная схема инверторного преобразователя

Данный преобразователь имеет ярко выраженное звено постоянного тока. Переменное напряжение сети преобразуется при помощи диодного моста в постоянное, сглаживается индуктивностью (L) и ёмкостью (C), термистор (NTC) служит для защиты схемы от токовых перегрузок. Индуктивность и ёмкость в выпрямителе служат также фильтром, который защищает сеть от пульсаций при коммутации двигателя.

От переменной сети так же работает импульсный блок питания, который формирует пониженное постоянное напряжение различных значений для питания системы управления. С выхода выпрямителя постоянное напряжение поступает на силовую часть инвертора построенную на IGBT ( Insulated Gate Bipolar Transistor — биполярный транзистор с изолированным затвором ). На структурной схеме IGBT позиционированы как Q1, Q2, Q3, Q4, Q5, Q6.

В корпус данных транзисторов интегрирован диод включённый между цепью эмиттера и коллектора, который защищает транзистор от излишних токовых перегрузок возникающих при коммутации обмоток электродвигателя.В инверторе осуществляется преобрaзовaние постоянного нaпряжения в трехфaзное (или однофaзное) импульсное нaпряжение изменяемой aмплитуды и чaстоты.

По сигнaлaм системы упрaвления, кaждaя обмоткa электрического двигaтеля подсоединяется через соответствующие силовые трaнзисторы инверторa к положительному и отрицaтельному полюсaм звенa постоянного токa. Сигналы управления поступают на затворы транзисторов с драйверов (микросхем управления) IR1, IR2, IR3.Сигнал на драйверы приходит с цифрового сигнального процессора ( DSP-Digital signal processor ) системы управления.

Такие процессоры специально разработаны для управления двигателями. Длительность подключения кaждой обмотки в пределaх периодa следовaния импульсов модулируется по синусоидaльному зaкону. Чем выше частота преключения транзисторов, тем выше скорость вращения ротора трёхфазного двигателя, поэтому этот метод управления двигателя называют частотным.

Реверсивное вращение двигателя осуществляется за счёт изменения порядка включения транзисторов инвертора.Алгоритм системы управления двигателем заложен в цифровом сигнальном процессоре.

Тахогенератор (Т) (Рис.

4) расположенный на валу двигателя является звеном обратной связи между двигателем и блоком управления, благодаря чему, поддерживается необходимая стабильная скорость вращения двигателя на различных этапах работы стиральной машины.

По сигналу с тахогенератора определятся дисбаланс барабана на стадии отжима, а в некоторых моделях стиральных машин происходит даже примерное взвешивание белья, за счёт сравнения характера сигналов тахогенератора при пустом и заполненным бельём барабане.

Подобные критерии сигналов тахогенератора, записаны в программе процессора системы управления двигателем или в микросхеме памяти блока управления.

В качестве дополнения, ко всему описанному в этом пункте, представим внешний вид и расположение некоторых компонентов инверторных блоков управления для стиральных машин.

Существует три основных вида:

1.Единый блок управления (инвертор и управление остальными элементами стиральной машины совмещены в общий модуль) (Фото 1)

2.Отдельный блок для управления 3-х фазным двигателем (Фото 2)

3.Блок управления (инвертор) расположен на самом двигателе

Фото 1. Единый блок управления стиральной машины Ariston
Фото 2. Отдельный блок для управления 3-х фазным двигателем

4.Диагностика трёхфазных асинхронных двигателей

Рис.6 Схема соединения частей трёхфазного двигателя с контактной колодкой Сразу хочется отметить, что трёхфазные асинхронные двигатели стиральных машин довольно надёжные. В практике ремонта стиральных машин, известно крайне мало случаев выхода из строя подобных двигателей. Большая часть неисправностей связанная с некорректной работой двигателей, заключается в неисправности самой системы управления. При неисправности системы управления, двигатель может вращаться рывками или наблюдается нестабильная частота вращения ротора, а иногда он вовсе не вращается. Блок управления трёхфазным двигателем может быть выполнен в виде отдельного модуля или совмещён с общим модулем управления стиральной машины.

На (рис.4) приведена лишь структурная схема инверторного преобразователя, на самом деле принципиальная схема инвертора намного сложнее и содержит в себе микропроцессорную систему, операционные усилители, оптические развязки и т.п.Невозможно полноценно проверить работоспособность или напрямую включить трёхфазной двигатель стиральной машины без подключения к электронной схеме.

При помощи мультиметра представляется возможным проверить лишь целостность цепи обмоток статора двигателя, пробой обмоток на корпус, электрическое сопротивление катушки тахогенератора и тепловое защитное устройство.

5. Преимущество и недостатки трёхфазных двигателей в стиральных машинах

К преимуществу трёхфазных двигателей перед коллекторными и однофазными асинхронными двигателями можно отнести низкий уровень шума и высокий КПД двигателя, а также простоту конструкции и большой эксплуатационный ресурс. Благодаря импульсно-частотной электронной схеме управления достигается широкий диапазон и точность регулирования частоты вращения ротора двигателя. При сравнительно небольших габаритах обладает большой мощностью.

К недостаткам стоит отнести лишь сложную электронную систему управления двигателем.

Источник: https://www.a-qualux.ru/blog/asinkhronnyy-tryokhfaznyy-dvigatel/

Принцип работы асинхронного электродвигателя

Асинхронные электродвигатели – это устройства, главным назначением которых является преобразование энергии переменного электротока в механическую. Своим названием двигатель обязан асинхронному типу вращения ротора относительно частоты вращения магнитного поля, индуцирующего электроток в обмотке статора.

Принцип работы на примере асинхронного электродвигателя трехфазного тока

Этот тип электрического двигателя наиболее часто применяется в различных сферах промышленности. Двигатель имеет 3-и обмотки на статоре, со смещением на 120 градусов. Обмотки запитаны переменным током и объединены по схеме «звезда» или «треугольник». При подаче напряжения на обмотку статора во всех трёх фазах появится магнитный поток.

Вместе с изменением частоты напряжения на обмотке статора, изменяется и магнитный поток. Фазы и магнитные потоки смещены относительно друг друга на сто двадцать градусов. Суммарный магнитный поток и будет вращающимся магнитным потоком, создающим электродвижущую силу (ЭДС).

ЭДС, в замкнутой электроцепи обмотки ротора, индуцирует электроток. Во взаимодействии с магнитным потоком статора, ток создает пусковой момент электрического двигателя.

Ротор начинает вращение в таком же направлении, что и магнитное поле статора при превышении пусковым моментом двигателя его тормозного момента.

ЭТО ИНТЕРЕСНО:  Какое должно быть напряжение автомобильного аккумулятора

Преимущества и недостатки асинхронных электродвигателей

Простота эксплуатации и хорошая ремонтопригодность – главные достоинства асинхронного двигателя, сделавшие его наиболее востребованным в очень разных сферах машиностроения и приборостроения. Привлекает и:

  • Сравнительно невысокая цена;
  • Надёжность
  • Несложность подсоединения в общую электроцепь устройств.

Асинхронные электродвигателиимеют и ряд недостатков:

  • Трудности с точным регулированием скорости;
  • Большой пусковой ток;
  • Относительно невысокий коэффициент мощности.

По типу обмотки ротора, короткозамкнутой или фазной, асинхронные двигатели, подразделяются на 2 типа:

  • Электродвигатели с короткозамкнутым ротором имеют обмотку, замыкающуюся на сам ротор;
  • Электродвигатели с фазным ротором – обмотку с концами, выведенными на щеточно-коллекторный узел.

Преимущество двигателя с фазным ротором в том, что скорость вращения можно регулировать путем подключения дополнительных сопротивлений (реостатного регулирования).

Источник: https://www.ruselt.ru/articles/printsip-raboty-asinkhronnogo-elektrodvigatelya/

Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель — это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам.

С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Работа трехфазного асинхронного двигателя в неноминальных условиях | Общие сведения об электрических машинах

Подробности Категория: Электрические машины

Работа трехфазного асинхронного двигателя в условиях, отличных от номинальных

Асинхронные двигатели, согласно ГОСТу 183—66, должны отдавать номинальную мощность при отклонениях напряжения сети от номинального значения в пределах от —5 до +10%.

В том случае, когда от номинальных значений одновременно отклоняются напряжение и частота, асинхронные двигатели должны отдавать номинальную мощность, если сумма процентных значений этих отклонений (без учета знака этих отклонений) не превосходит 10%.

В условиях эксплуатации сельских электроустановок часты случаи отклонения напряжения сети от номинального значения; частота сети отличается от номинальной прежде всего при питании от автономных энергетических установок (дизельные электростанции совхозов, отдельных хозяйств, резервные электростанции небольшой мощности).

Рассмотрим влияние на работу трехфазного асинхронного двигателя отклонений напряжения и частоты от их номинальных значений.

Напряжение ниже номинального.

Согласно уравнению (141), без учета падения напряжения U1=E1 = cf1Ф. При понижении напряжения понижается магнитный поток, а следовательно, и ток холостого хода /о. Если двигатель должен развить тот же момент, что и при номинальном напряжении, причем Имеется в виду момент номинальный или близкий к нему, то, согласно уравнению (182), М=смФ12COSф2, возрастает ток ротора и составляющая тока статора.

Поэтому в зависимости от насыщения двигателя может остаться тем же, уменьшиться (при преобладании влияния) или, как чаще всего бывает, возрасти. При уменьшении напряжения свыше 5% ток, как правило, растет.

Коэффициент мощности при уменьшении напряжения (в оговоренных вначале пределах) обычно увеличивается в соответствии с увеличением активной и уменьшением реактивной составляющих тока статора, скольжение возрастает, коэффициент полезного действия несколько падает, перегрузочная способность двигателя уменьшается.

Напряжение выше номинального.

При повышении напряжения выше номинального все происходит противоположно сказанному выше. В двигателях с большим насыщением стали намагничивающий ток вместе с увеличением напряжения может возрасти непропорционально напряжению и ток статора может увеличиться.

В этом случае двигатель будет перегреваться как из-за нагрева стали, так и вследствие увеличения тока в обмотке статора. Между напряжением на зажимах статора и рабочими характеристиками двигателя (кривыми момента, тока статора) нет простой аналитической зависимости из-за нелинейности кривой намагничивания двигателя и влияния насыщения на параметры машины.

Эти вопросы требуют специального рассмотрения. Переключение обмоток статора слабо нагруженного двигателя с треугольника на звезду. Как показано выше, при нагрузке двигателя, близкой к номинальной, снижение напряжения на его зажимах обычно приводит к перегрузке обмоток по току и влечет за собой уменьшение коэффициента полезного действия и перегрев обмоток.

Но при малых нагрузках двигателя (до 30—35% номинальной) снижение подводимого к двигателю напряжения может улучшить его энергетические показатели. В этом случае, несмотря на увеличение тока ротора, а следовательно, и составляющей тока статора, из-за малой нагрузки ток ротора может не превысить номинального значения.

Между тем уменьшение намагничивающего тока и потерь в стали статора вследствие уменьшения магнитного потока благоприятно скажется на значении энергетических показателей — коэффициенте мощности cos ф1 и коэффициенте полезного действия.

В отдельных случаях асинхронные двигатели в условиях эксплуатации могут оказаться временно недогруженными в оговоренных выше пределах. Если обмотка статора таких двигателей нормально соединена в треугольник, то для улучшения энергетических показателей при работе двигателя обмотку статора целесообразно переключить на звезду, понижая таким образом фазное напряжение в 3 раз. Перегрузочная способность при малой нагрузке остается обычно достаточной.

Работа двигателя при частоте, отличной от номинальной

Поскольку при уменьшении частоты U1=E1 — cflФ, магнитный поток, а следовательно, и намагничивающий ток двигателя увеличиваются. Если двигатель должен развить тот же момент, что и при номинальной частоте, то активные составляющие тока ротора и тока статора уменьшаются, Снижается и коэффициент мощности cosф1.

Ток статора обычно возрастает из-за преобладающего влияния увеличения намагничивающего тока. Увеличиваются в статоре потери электрические и в стали, охлаждение несколько ухудшается, так как скорость вращения ротора понижается, нагрев двигателя возрастает.

Увеличение частоты и соответствующее ему уменьшение магнитного потока приводят к уменьшению намагничивающего тока. Однако при постоянном моменте растет ток ротора; при определенных условиях ток статора может также возрасти.

Изменение таких показателей, как коэффициент мощности cosф, потери в стали статора, скорость вращения двигателя, будет противоположным тому, как об этом говорилось выше при анализе работы двигателя на пониженной частоте.

Отклонения частоты от номинального значения в Электрических сетях обычно бывают небольшими, не превосходя ±1%. Такие колебания частоты не оказывают сколь-либо заметного влияния на работу асинхронного двигателя. По ГОСТу 183—66 двигатели должны отдавать номинальную мощность при отклонениях частоты от номинального значения до ±5%.

Работа двигателя при несимметричном напряжении сети

Возможная несимметрия напряжения в трехфазной сети предусматривается действующими электротехническими нормами, допускающими асимметрию напряжения до 5% (асимметрия напряжений оценивается отношением напряжения обратной последовательности к напряжению прямой последовательности. Несимметричное напряжение в трехфазной сети наблюдается при присоединении ее к тяговым железнодорожным подстанциям.

К потребителям, вызывающим появление заметной асимметрии напряжений в питающих линиях и сетях, обусловленной асимметрией токов в проводах, относятся однофазные электронагревательные установки и установки с однофазными контактно-сварочными аппаратами, сельские районы, электрифицированные по трехфазно-однофазной системе.

Не принимая во внимание насыщение двигателя, во время рассмотрения работы трехфазного двигателя при несимметричной системе напряжений, подводимой к его зажимам, используем метод симметричных составляющих.

Поскольку нулевая точка соединенных в звезду обмоток асинхронного двигателя обычно изолирована, составляющая нулевой последовательности в токах q6motok не возникает, и на зажимах двигателя действуют (согласно теории симметричных составляющих) независимо друг от друга системы напряжений прямой и обратной последовательностей.

В отдельных случаях, когда в системе первичных напряжений действует также система нулевой последовательности, по обмоткам статора двигателя могут проходить однофазные токи нулевой последовательности.

Токи нулевой последовательности могут появиться в обмотках двигателя, соединенных в треугольник, при питании его от несимметричной системы напряжения вследствие неравенства сопротивления обмоток, как из-за неодинакового насыщения путей потоков рассеяния в разных фазах (приводит к изменению х1 и х2), так и из-за неодинакового нагрева обмоток (приводит к изменению).

Но, поскольку токи нулевой последовательности не создают вращающегося магнитного поля и вращающего момента, при анализе работы двигателя их можно не принимать во внимание. Другими словами, и в этих случаях можно считать, что в системе первичных напряжений, подведенных к двигателю, нулевая последовательность как бы отсутствует.

Систему напряжений прямой последовательности можно рассматривать как ту, которая предполагалась приложенной к двигателю в условиях его питания от сети с симметричным напряжением. Теория рабочего процесса двигателя в этом случае достаточно подробно рассмотрена в предыдущих главах.

Перенося положения этой теории на рассматриваемый случай, можно сказать, что система напряжений прямой последовательности вызывает в обмотках статора и ротора токи прямой последовательности, в свою очередь, образующие намагничивающие силы соответственно статора F11 и ротора F21 (дополнительный индекс, стоящий вторым, — это номер последовательности) и вращающееся поле Ф, в направлении которого движется ротор.

По аналогии система напряжений обратной последовательности, приложенная к обмоткам статора, вызывает в них токи статора обратной последовательности, создающие намагничивающую силу обратной последовательности, вращающуюся с той же скоростью, что и н. с. прямой последовательности F11, но в обратную сторону, так как токи имеют обратное чередование фаз. Поле, вызванное н. с.

обратной последовательности, индуктирует в роторе токи обратной последовательности, создающие намагничивающую силу обратной последовательности ротора F22. В результате совместного действия н. с. F12 и F22 образуется общее магнитное поле обратной последовательности Ф2, идущее в сторону, противоположную движению ротора с синхронной скоростью. Ухудшение работы двигателя при несимметричном напряжении сети связано с тем, что значение развиваемого двигателем момента, а следовательно, и мощности, по существу определяется только составляющей тока прямой последовательности, а нагрев двигателя зависит от значения тока, включая также составляющую обратной последовательности. Поэтому при несимметричном напряжении нагрев двигателя окажется выше, чем при той же нагрузке и питании его от сети с симметричным напряжением. Результирующие токи в фазах статора, равные геометрической сумме токов прямой и обратной последовательностей, не одинаковы по значению, увеличиваясь в одних и уменьшаясь в других фазах по сравнению с симметричным режимом при той же нагрузке. При таком токораспределении длительную допустимую мощность можно установить на основе следующих рассуждений. При номинальном токе в наиболее нагруженной фазе статора, слагающемся из токов обеих последовательностей, значение электрических потерь в обмотке статора будет в целом меньше, чем при работе двигателя в номинальных условиях, когда номинальный ток проходит во всех трех фазах. При меньшем значении электрических потерь уменьшится отдача тепла, идущего от всех фаз статора на сталь, и, предполагая достаточную степень тепловыравнивания, можно считать, что температура стали статора будет меньше той, которая наблюдается при работе двигателя в номинальном режиме.

Следовательно, для наиболее нагруженной фазы можно увеличить перепад температуры между медью (проводом) и сталью по сравнению с симметричным режимом. Это позволяет установить значение тока наиболее нагруженной фазы выше номинального, чтобы температура обмотки (меди) наиболее нагруженной фазы при несимметрии оказалась равной температуре обмотки (меди) в симметричных условиях при номинальной нагрузке.

Как показали расчеты, проведенные для двигателей серии А, длительная допустимая мощность для двигателей до 7 квт (обмотка однослойная) типа А при а=5% снижается по сравнению с номинальной на 10—15%, при а=10%—на 25—45%, а для двигателей типа АО соответственно на 10—20 и 30—50%.

Для двигателей мощностью от 10 кет и выше с двухслойными обмотками допустимая мощность выше, чем для двигателей с однослойными обмотками, соответственно на 5% при а = 5% и на 10% при а=10%.

При коэффициенте несимметрии напряжений а=1—2% длительная допустимая мощность ниже номинальной на 3—4%; в эксплуатации за счет теплового запаса в двигателях серии А этого снижения можно не делать.

Асинхронный двигатель, работающий в сети с несимметричным напряжением, как вхолостую, так и под нагрузкой создает уравновешивающий эффект, то есть стремится уменьшить несимметрию напряжений. Это объясняется тем, что токи обратной последовательности двигателя частично компенсируют в линии токи обратной последовательности нагрузки. Уравновешивающий эффект тем сильнее, чем меньше результирующее сопротивление обратной последовательности двигателя.

Источник: https://leg.co.ua/info/elektricheskie-mashiny/obschie-svedeniya-ob-elektricheskih-mashinah-7.html

Трехфазный электрический двигатель – Трехфазный асинхронный двигатель

В асинхронном двигателе роль клочка сена играет магнитное поле, которое «бежит» по кругу, вырабатываемое совершенно неподвижными катушками статора. А роль ишачка играет ротор, который гонится за этим полем.

Ну а как только ишачок побежал, главная задача — научиться им управлять. И задача эта не из легких.

Понравилась статья? Поделиться с друзьями:
Электро Дело
Чем соленоид отличается от катушки

Закрыть