Расчет сварочного трансформатора на тороидальном сердечнике
Трансформатор является главным узлом сварочного аппарата независимо от его конструкции. При самостоятельном изготовлении этого элемента возникает много вопросов: Как выбрать форму магнитопровода? Какой требуется намоточный провод? Как сделать расчет необходимого количества витков?
Тороидальный трансформатор имеет ряд преимуществ перед трансформаторами другого типа:
- Равномерное распределение обмоток;
- Снижение массы на 2030 % при сохранении мощности;
- Сниженные токи Х.Х. в 1020 раз;
- Высокий К.П.Д;
- Уменьшение полей рассеяния;
- Низкий уровень шума.
Если приложить определенные усилия для создания тороидального трансформатора своими руками, то можно получить свой уникальный набор характеристик устройства, которое удовлетворит все потребности при работе со сваркой. И даже более того – можно учесть текущие реалии нашей действительности такие как, например пониженное напряжение в сети вашего дома.
Используя формулы и методы, приведенные в нашей статье, вы получите практическое пособие по расчету сварочного трансформатора на тороидальном сердечнике.
Методика расчета – пошаговая инструкция
Сам же расчет тороидального трансформатора разделяется на две части:
- Непосредственно рассчитать мощность тороидального сердечника, чтобы ее определить вы можете получить, при наличии у вас конкретного сердечника, или заданной мощности, то определить размеры будущего трансформатора.
- Расчет собственно электрической части, которая включает в себя количество витков в обмотках, а также какое сечение будет применяться в обмотках и материал провода.
Расчет сердечника
Его мы произведем по формуле, которая уже включает в себя константы, для упрощения понимания его результатов. Дальше останется подставить в ниже приведенную формулу только переменные значения, а именно:
Рекомендуем! Контактная сварка из микроволновки своими руками
«P=1,9*Sc*So», где:
- P – это мощность, которую возможно получить, применяя сердечник с таким габаритными размерами
- 1,9 – результат математических действий над всеми константами для данного вида трансформаторов
- Sc- площадь сердечника, единица измерения сантиметры квадратные
- So – площадь отверстия в теле сердечника, в «кв. см.»
Формулы расчета площади сечения тороидального сердечника
Если сделанный трансформатор будет иметь основное назначение – сварка, то размеры его сердечника должны быть адекватными, иначе полученной мощности устройства будет не достаточно для выполнения своих функций. Для примера возьмем следующие значения и применив калькулятор вычислим.
«P=1,9*70*70=9310 Ватт»
Определим количество витков первичной обмотки
В первую очередь рассмотрим расчет с единой первичной обмоткой, без регулировки. Для этого сначала выясним, сколько витков обмотки должен иметь тороидальный трансформатор для получения 1 вольта напряжения. Применим следующую формулу.
К=35/ Sc, где:
- K – количество витков на 1 вольт напряжения.
- 35 – это константа, которая одинакова для всех типов тороидальных сердечников.
- Sc- площадь сердечника, единица измерения сантиметры квадратные.
Таким образом, если у нас имеется сердечник площадью 70 «кв. см.», то подставив значения в формулу, получим следующую ситуацию.
«K=35/70=0,5» витка на каждый вольт, и соответственно объём первичной обмотки узнаем, применив соответствующую формулу.
«W1=U1*K», где:
- W1- количество витков в первой обмотке.
- U1 – необходимое напряжение в этой точке.
- K – количество витков на 1 вольт напряжения.
«W1=220*0,5=110» – витков.С учетом того, что мы проводим вычисления для сварочного трансформатора, то примем за рабочее напряжение вторичной равное 35 вольт, тогда исходя из аналогичной формулы, получим.
«W2=35*0,5=17,5» – витков.
Расчет сечения применяемых проводов
Чтобы рассчитать необходимые сечения нужно понять какой ток будет через них протекать, это единственный параметр который влияет на толщину используемого материала, итак, вычисление величины тока в обмотках трансформатора:
«I пер.=9310 Ватт/220 Вольт=42.3 Ампера»С вторичной обмоткой несколько сложнее, все должно опираться на напряжение дуги и ток сварки.
«I свар.=(29 Вольт-14)/0.05=300 Ампер», где 29 вольт среднее значение дуги сварки. Теперь проверяем, возможна ли такая мощность у нашего устройства 300 Ампер*29 Вольт=8700 Ватт.
Это значение вполне укладывается в мощность, которой обладает тороидальный трансформатор, рассчитываемый нами, поэтому 300 Ампер, считаем током вторичной обмотки. Проведя эти нехитрые вычисления, для которых даже не всегда нужен калькулятор, можно перейти к определению сечения проводов и их материала.
Из руководящих документов таких как, например «ПУЭ», известно, что для продолжительной работы требуется 1 квадратный миллиметр сечения меди на каждые 5 ампер тока, а при использовании алюминия 2 ампера.
Исходя из этих данных, вычисляем сечение проводов в устройстве для меди:
- Первичная обмотка=42,3/5=8,46 кв. мм, ближайший стандарт сечения это 10.
- Вторичная обмотка=300/5=60 кв. мм, выбираем следующее по стандарту сечение в сторону увеличения это 70.
Применяем условие продолжительности нагрузки 40 процентов, так как никто не работает все время под нагрузкой. В этом случае сечение можно уменьшить в два раза, тогда получаем:
- 8,46/2=4,23 ближайший стандарт сечения -6 кв. мм.
- 60/2=30 следующий стандарт 35 кв. мм.
Как упростить задачу по намотке витков на сердечник
Зная как создать трансформатор во всех подробностях и всеми данными, остается перейти к практической работе, но намотка витков представляет собой достаточно трудоемкий процесс, требующий особой концентрации внимания. Правильность намотки также имеет значение и напрямую влияет на характеристики устройства, которое в итоге получится.
Но для таких случаев в помощь людям существует специальное устройство, станок для намотки тороидальных трансформаторов, цена такого приспособления не высока, но купить его не просто, поэтому на рынке часто встречаются самодельные устройства, и если почитать соответствующую литературу, то можно попробовать сделать этот станок самому.
Источник: https://svarkagid.ru/sdelaj-sam/oborudovanie/kak-rasschitat-toroidalnyj-transformator.html
Расчет трансформатора
> Советы электрика > Расчет трансформатора
Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения.
Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания.
Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.
Принцип действия и разновидности трансформаторов
Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.
Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).
Типы сердечников
Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.
Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:
- броневые;
- стержневые;
- кольцевые.
Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.
Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.
Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали, намотанной на оправку и скрепленной клеящим составом.
Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.
Ниже приведена методика расчета трансформатора, где показано:
- как рассчитать мощность трансформатора;
- как выбрать сердечник;
- как определить количество витков и сечение (диаметр) проводов обмоток;
- как собрать и проверить готовую конструкцию.
Исходные данные, необходимые для расчета
Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:
- до 50 Вт – КПД 0.6;
- от 50 Вт до 100 Вт – КПД 0.7;
- от 100 Вт до 150 Вт – КПД 0.8;
- выше 150 Вт – КПД 0.85.
Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.
Выбор магнитопровода сердечника
Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.
Расчет резистора для светодиода
Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:
Умножая полученное значение на КПД, завершаем расчет габаритной мощности.
Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:
Источник: https://elquanta.ru/sovety/raschet-transformatora.html
Тороидальный трансформатор своими руками: пошаговая инструкция
На практике выделяют достаточно большое разнообразие преобразователей электрической энергии, как по конструктивным особенностям, так и по принципу действия. Среди устройств для изменения величины напряжения существуют броневые, стержневые и тороидальные трансформаторы.
Последний вариант по своей форме напоминает бублик, за счет чего он является наиболее эффективным в части передачи магнитного потока.
Его КПД может приближаться к 100% и отличается достаточной простотой намотки, поэтому многие радиолюбители стараются изготовить тороидальный трансформатор своими руками.
Конструкция и принцип работы
Конструктивная особенность такого трансформатора заключается в форме магнитопровода, которая представляет замкнутое кольцо, называемая тором.
В остальном состав его элементов идентичен другим типам электрических машин:
- Обмотка – выполняется медным проводником, разделяется на первичную и вторичную. Обе обмотки могут отличаться сечением проводника.
- Тороидальный сердечник — имеет форму кольца, изготавливается наборной шихтовкой, ленточной сталью или монолитным железом, в зависимости от габаритов и назначения. В качестве материала берутся ферромагнитные сплавы, обеспечивающие хорошую магнитную проводимость.
- Изоляционных материалов – часть диэлектрика заранее наносится на монтажных провод, остальной диэлектрик разделяет катушку тора с железом, обмотки между собой, между катушками и кожухом. В качестве изоляции используются ленточные или лакотканевые материалы, электроизоляционный картон, клей и т.д.
- Защитный кожух – предназначен как для защиты силового трансформатора от механических повреждений, так и для предотвращения контакта человека с поверхностью обмоток.
- Выводы вторичной и сетевой обмотки, крепежные и вспомогательные детали.
Рис. 1. Конструкция тороидального трансформатора
Принцип действия тороидального преобразователя заключается в подаче напряжения питания на выводы первичной обмотки. После чего в ней начинает протекать электрический ток, который создает магнитный поток внутри витков. Магнитный поток перемещается внутри каркасов катушек и наводит ЭДС во вторичной обмотке. При условии подключения нагрузки к ее выводам будет происходить потребление заданной мощности.
Данное устройство нашло применение в тороидальных автотрансформаторах (ЛАТРах), радиоэлектронике, сварочных трансформаторах и прочих преобразователях. В домашних условиях занимаются перемоткой трансформатора такого типа за счет относительно простого процесса.
Изготовление своими руками
Чтобы изготовить тороидальную электрическую машину вам необходимо определиться с ее типом.
Всего выделяют повышающий и понижающий трансформатор, в первом случае с низкого напряжения, к примеру, 220В получают высокое — 600В, а во втором, с высокого низкое, как наиболее распространенный вариант с 220В – 12В.
Важным параметром для изготовления и расчета тороидального агрегата является коэффициент трансформации, показывающий, во сколько раз изменяется электрическая величина во вторичной обмотке по отношению к первичной. Для его определения используется одно из следующих соотношений:
U1/U2 = W1/W2 = I2/I1 = n
U1 и U2, I1 и I2 — величина напряжения и тока в обмотках, W1 и W2 – это число витков.
Что необходимо для работы?
Вам обязательно пригодится набор слесарных инструментов для элементарных работ: отвертки, пассатижи, круглогубцы, ножи, паяльник, заклепочник и т.д. Также для того чтобы намотать тороидальный сетевой трансформатор или самодельный сварочный агрегат вам понадобятся некоторые материалы:
- Медный провод с лаковым покрытием – можете взять и с виниловой изоляцией, но у него будет толщина больше. Как результат, намотка потребует больших усилий, что не сильно удобно при большом числе витков.
- Устройство для намотки – чаще всего применяется либо автоматизированный механизм с кольцевым расцеплением, либо челночная катушка. Первый позволяет наматывать провода быстро и без лишних усилий, но его приобретение или самостоятельное изготовление требует дополнительных затрат. Второй способ куда проще, но он хуже применяется для жил большого сечения.
- Изоляционный материал – вам пригодится электроизоляционный картон, полимерный диэлектрик, лакотканевая изоляция, тканевая изолента. Чтобы перемотать трансформатор можно использовать не все вышеперечисленные материалы, а выбрать некоторые из них.
- Магнитопровод или тор – наилучшим вариантом будет готовый заводской сердечник круглой формы от другого трансформатора. Однако если его нет, можно собрать тороидальную конструкцию самостоятельно. Для этого подойдет шихтовка от стержневого магнитопровода.
Возьмите длинный лист стали и согните кольцом, на краю зафиксируйте концы.
Рис. 2. Согните пластину железа
Внутрь полученного тороидального листа поместите следующий, следите за тем, чтобы края ложились стык в стык. При необходимости, края можно подрезать, что особенно актуально на внутренних слоях. Каждую пластину необходимо четко обжимать, чтобы при мотании тор получился плотным без зазоров.
Если вы решите изготовить сердечник, его края обязательно следует обработать эпоксидным клеем с обеих сторон. После этого сборку сердечника можно считать оконченной. Помимо этого можно использовать ленточную сталь, которую по такой же технологии закручивают плотной по спирали.
Рис. 3. Намотайте сердечник из ленточной стали
Расчет
Чтобы начать вычисления, вам необходимо определиться с величиной напряжения на вторичной и первичной обмотке и нужной мощностью тороидального трансформатора. Далее вам понадобится определить сечение тора:
S = H * ((D-d))/2
где
- S – площадь сечения магнитопровода;
- H – высота тороидального сердечника;
- D – внешний диаметр тороидального сердечника;
- d – внутренний диаметр тороидального сердечника.
Чтобы вычислить количество витков воспользуйтесь двумя выражениями для коэффициента передачи магнитопровода:
k = f/S и W1= k*U1
Здесь k – коэффициент передачи, f – частота в подключаемой сети, S – площадь сечения магнитопровода. W1 – число витков в первичной катушки, U1 – напряжение в первичке. Из второй формулы вы узнаете количество витков, аналогично рассчитываются витки для вторичной обмотки тороидального трансформатора.
Чтобы определить сечение проводов катушек преобразователя, воспользуйтесь формулой:
Источник: https://www.asutpp.ru/toroidalnyy-transformator-svoimi-rukami.html
Что такое трансформаторы тока
16 Марта 2020
В числе задач, которые решает электротехника – проведение профессиональных измерений при больших значениях величин. В качестве вспомогательного оборудования при проведении «исследований» выступает трансформатор тока. Основными элементами прибора выступают его обмотки.
Для производства «измерений» осуществляется последовательное подключение первичной обмотки к сети переменного (исследуемого) тока. При этом вторичный контур прибора замыкается на контрольно-измерительную аппаратуру.
В числе ведущих характеристик трансформатора высокая точность, которая достигается постоянным пропорциональным соотношением значений тока между обмотками. В целях исследований могут применяться прибора с большим количеством обмоток.
Главным отличием прибора для измерения токов от аналогичных устройств мощности или напряжения является использование нескольких витков. Первичная обмотка изготавливается в виде катушки или плоского, установленных на сердечник. Есть и другие варианты исполнения, например, в виде шины, расположенной на центральном отверстии. В нашем случае применяются трансформаторы тока Т-0,66 и ТШП.
Особенности вспомогательных приборов
Компоновка первичной обмотки трансформатора обычно не имеет более одного витка. Такое расположение позволяет подключать прибор в последовательную цепь.
Вторичная же обмотка выполняется с большим количеством витков, посаженных на многослойный сердечник, что обеспечивает низкую плотность магнитного поля.
В этой части трансформатора будет происходить короткое замыкание (при подаче на амперметр), либо ток будет подаваться на резистивную нагрузку. Во втором случае происходит эффект насыщения сердечника с одновременным пробоем напряжения до отказа.
Вне зависимости от подаваемого на первичную обмотку тока, значение на вторичном контуре будет равняться 1 или 5 Ампер. В отличие от последовательного прибора, на трансформаторе напряжения зависимость входящего и выходного значений сохраняется.
Типы вспомогательных приборов, используемых в промышленных целях:
- Обмоточный трансформатор. Первичная обмотка устройства имеет постоянное последовательное соединение с проводником. На этом участке цепи протекает замеренный ток. Вторичная обмотка выдает электрическую величину, значение которой будет зависеть от количества витков.
- Тороидальный трансформатор. Такие устройства не имеют первичной обмотки. Для изготовления приборов используется рулонная сталь. Ток проходит через специальное окно практически без потерь, при этом наблюдается высокая индукция насыщения. Сам сердечник может быть выполнен в раздельном виде, что позволяет отключать его без разрыва цепи. В числе преимуществ тороидального трансформатора меньшие вес, объем и уровень шума, экономия энергии и простой монтаж. Среди недостатков отмечаются более высокая стоимость, отсутствие магнитного зазора и повышенная чувствительность к сетевому напряжению.
- Стержневой трансформатор. В качестве первичной обмотки используется подключаемый кабель или шина основной цепи. Элементы фиксируются на жесткой сцепке, подключаются только при выполнении измерений.
Сухой силовой трансформатор обеспечивает снижение больших значений тока до нормативных 1 или 5 Ампер. При таких условиях может работать контрольно-измерительная аппаратура или управляющая автоматика.
Таким образом проявляется защитная функция приборов, в паре с которыми могут подключаться к высоковольтным линиям передач защитные реле, магнитные выключатели, измерители мощности или МСВ (модульные автоматические расцепители).
Также устройства используются при оборудовании комплектных трансформаторных подстанций (КТП).
Конструктивные особенности
На практике трансформаторы тока не используются в качестве одиночной компоненты. Включаются в цепь как вспомогательные приборы. Примером такой связки служит согласованная пара трансформатора и амперметра. При этом под различные типы контрольно-измерительной аппаратуры подбирается подходящий тип устройства. В случае с трансформатором осуществляется калибровка на предмет установления пропорциональной зависимости между первичной и вторичной обмотками.
В технических характеристиках вспомогательных приборов чаще можно найти стандартное значение вторичной мощности 5 А. Соотношение на первичной и вторичной обмотках при этом устанавливается как 100/5. Расшифровка пропорции означает, что входящий ток больше выходного в 20 раз. Для соотношения 500/5 будет применяться соответственно стократное превышение на первичной обмотке.
Учитывая стандартные параметры трансформаторов и их возможности, появляется возможность регулирования значений выходного тока за счет увеличения количества вторичных обмоток. В этом случае используется обратная пропорциональность между количеством витков между двумя контурами устройства. Исходя из этого подтверждаются два уравнения электрической цепи:
- Соотношение витков T.R.=N=Np/Ns=Is/Ip.
- Для вычисления выходного тока (на вторичной обмотке) Is=Ip*Np/Ns.
Коэффициент тока как параметр трансформатора устанавливает соотношение для витков в обмотках. Если в первичном контуре может быть один или несколько оборотов проводника, то на втором их число может достигать нескольких сотен.
При этом соотношения 100/5 и 20/1 не определяют аналогичные трансформаторы, поскольку входные токи будут разные. Что касается преобразования трансформаторов, это можно сделать за счет изменения проходов на входной обмотке.
Так, для преобразования прибора 300/5А в меньший достаточно поменять (увеличить) число витков на первичном контуре. Наращивание числа витков позволит получить трансформатор с максимальными выходными параметрами.
Примеры расчетов
Назначением трансформатора стержневого типа с количеством витков 1 и 160 на первичной и вторичной обмотках соответственно будет использование в паре с амперметром 0.2 Ом. Измерительный прибор рассчитан на максимальный входной ток в 800 А. Для расчета выходных параметров будет использоваться формула:
Is=Ip*Np/Ns=800/160=5 A.
Напряжение на амперметре рассчитается следующим образом: vs=Is*Ra=5*0.2=1 V
Формула показывает, что при использовании силового трансформатора тока в паре с амперметром малого сопротивления падение напряжения будет незначительным. При условиях подачи максимального тока составит 1 В.
При удалении из связки измерительного прибора произойдёт размыкание вторичной обмотки. При таком условии трансформатор станет повышающим, поскольку на выходном сердечнике будет наблюдаться значительное увеличение намагничивающего потока.
Для расчета возрастающего напряжения используется формула Vp*Ns/Np. К примеру, если трансформатор включен в цепь линии электропередач с расчетным напряжением 480 В, то на выходе значение будет 76.8 кВ.
Указанное значение получится по формуле Vp*Ns/Np=480 В*160 витков первичной обмотки/1 проход первичного контура.
Исходя из этого использование трансформатора без нагрузки не допускается. Аналогично вспомогательные приборы для напряжения не могут включаться без короткого замыкания. Для того чтобы исключить поражение электрическим током, перед удалением измерительной аппаратуры следует закоротить вторичный контур.
Возвращаясь к расчетной формуле, растущее напряжение является только показателем высокого насыщения. Отсутствие сдерживающих факторов может привести к повреждению изоляционного слоя проводника и пробою цепи. В этом случае на выходе трансформатора возрастает риск поражения электрическим током.
Дополнительная классификация устройств
Промышленное назначение трансформаторов задается не только конструкцией первичной обмотки. Включение в цепь осуществляется по таким параметрам рабочих условий, принципу работы или типу установки:
- Назначение приборов. Промежуточные, защитные или измерительные трансформаторы используются в паре с соответствующими устройствами. Назначение задает схему подключения, в том числе для проведения лабораторных испытаний, где важны коэффициенты трансформации;
- Тип установки. Трансформаторы могут быть встраиваемыми, накладными или переносными. Тип установки внутренний или наружный учитывается при включении устройств в схему промышленного оборудования или специальных аппаратов. При монтаже также учитываются опорные или проходные способы;
- При активной эксплуатации трансформаторов имеет значение тип изоляции. В технических характеристиках приборов встречаются описания конденсаторных, сухих, фарфоровых или бакелитных исполнений. Самый надежных вид изоляции – заливка компаундом;
- Количество ступеней трансформации. Этот параметр определяет возможности приборов по корректировке значений входного тока. Существуют одноступенчатые или каскадных устройства.
Технические характеристики трансформаторов тока, определяющие практическое применение
Поскольку вспомогательные приборы используются в промышленных условиях, выбор устройств должен осуществляться профессионально, по ряду параметров. В их числе следующие:
- Номинальный ток. Это не максимальное значение цепи, а параметр, при котором будет сохраняться отказоустойчивость трансформатора. Запас перегрева обычно находится на уровне 20% от номинального тока.
- Коэффициент трансформации. Отличается от установленного значения номинального тока. Определяет соотношение между токами на входной (первичной) и выходной (вторичной) обмотках.
- Номинальное напряжение. Аналогично нормативному значению для тока задает нормальные для прибора условия работы. Номинальное напряжение определяет качество изоляции, способность к отказоустойчивости в режиме перегрузок.
- Токовая погрешность. Явление, возникающее под действием намагничивающего тока. Обозначает разницу между параметрами входного и выходного токов. Возрастает при увеличении намагничивания сердечника в трансформаторе.
- Нагрузка номинальная. Под этим параметром понимается значение в Ом, определяющее нормативные условия работы устройства. Нормированными остаются значение входного тока и класс точности.
- Номинальная предельная кратность. Соотношение тока первичного к току номинальному.
- Максимальное значение кратности для вторичного контура. Соотношение токов на выходной обмотке к номинальному току задает предельный уровень насыщения магнитопровода.
Трансформаторы тока остаются популярными приборами с широким спектром применения в электроэнергетике. Используются для измерений, защиты или в качестве промежуточных устройств корректировки цепи. Самый высокий класс точности применяется в лабораторных условиях.
Источник: https://eltcom.ru/info/articles/chto-takoe-transformatory-toka/
Изготовление тороидального трансформатора своими руками – расчёт и изготовление по сечению сердечника, перемотка и намотка
Трансформатор переводится с латинского как «превращатель», «преобразователь». Это электромагнитное устройство статического типа, предназначенное для преобразования переменного напряжения или электрического тока. Основу любого трансформатора составляет замкнутый магнитопровод, который иногда называют сердечником.
На сердечник наматываются обмотки, которых может быть 2−3 и более в зависимости от вида трансформатора. Когда на первичной обмотке возникает переменное напряжение, внутри сердечника возбуждается магнитный ток. Он, в свою очередь, вызывает на остальных обмотках токовое переменное напряжение с точно такой же частотой.
Обмотки различаются между собой количеством витков, что определяет коэффициент изменения величины напряжения. Иными словами, если вторичная обмотка имеет в своём составе в два раза меньше витков, то на ней возникает переменное напряжение по величине в два раза меньшее, чем на обмотке первичной. Но мощность тока при этом не меняется. Это делает возможным работу с токами большой силы при относительно небольшом напряжении.
Виды трансформаторов
В зависимости от формы магнитопроводаразличают три вида трансформаторов:
- Броневой. Имеет квадратную форму с двумя боковыми, одним центральным и двумя поперечными стержнями. При этом эффективно используется только центральный стержень. Именно на него надевается обмотка. Поэтому КПД данного устройства не очень высокое. Образует два витка магнитного поля. Данный трансформатор рассчитан на большие нагрузки. Этим объясняется его очень большой вес.
- Стержневой. В каком-то смысле похож на первый вид. По форме это половинка от броневого магнитопровода. Имеет в своём составе два боковых сердечника и два поперечных. Магнитное поле одновитковое, и, как следствие, мощность у него меньше. КПД у такого трансформатора составляет 40%.
- Тороидальный. Своё название получил за счёт оригинальной формы. В математике существует такое понятие, как тороидальная поверхность. Если говорить проще — это объёмный круг или форма бублика. Благодаря такой форме магнитопровода тороидальные трансформаторы имеют самый высокий уровень КПД, приближающийся к 100%. Поэтому такие трансформаторы всегда имеют меньшие размеры при одинаковой мощности, по сравнению с другими видами. Ввиду того, что обмотки равномерно распределяются по всей площади сердечника, происходит более эффективное охлаждение витков. Что, в свою очередь, позволяет максимально нагружать такие устройства без возникновения опасности перегрева.
Материалы пластин
Сердечники для трансформаторов изготавливают либо из металла, либо из феррита. Феррит, или ферромагнетик, — это железо с особым строением кристаллической решётки. Применение феррита увеличивает КПД трансформатора. Поэтому чаще всего сердечник трансформатора изготавливается именно из феррита. Существует несколько способов изготовления сердечника:
- Из наборных металлических пластин.
- Из намотанной металлической ленты.
- В виде отлитого из металла монолита.
Любой трансформатор может работать как в повышающем, так и в понижающем режиме. Поэтому условно все трансформаторы делятся на две большие группы. Повышающие: на выходе напряжение больше, чем на входе. Например, было 12 В, стало 220 В. Понижающие: на выходе напряжение ниже, чем на входе. Было 220, а стало 12 вольта. Но в зависимости от того, на какую обмотку подаётся первичное напряжение, можно понижающий трансформатор превратить в повышающий, который 10 А превратит в 100 А.
Тороидальный трансформатор своими руками
Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.
Преимущества и недостатки тора
Тор обладает несомненными достоинствами по сравнению с другими видами:
- Относительно небольшие размеры.
- Очень сильный выходной сигнал.
- Обмотки имеют маленькую длину, и, как следствие, эти устройства характеризуются небольшим сопротивлением и очень высоким КПД.
- Благодаря своей форме легко устанавливаются и также легко демонтируются в случае необходимости.
Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции.
Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков.
Изменяя число витков, можно преобразовывать любое напряжение.
Расчет мощности тороидального трансформатора
Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.
Мощность будущего трансформатора рассчитывается по следующей формуле:
P=U*I*cosf/n
U — напряжение холостого хода
I — сила тока
cos f — коэффициент мощности, равный 0.8
n — коэффициент полезного действия, равный 0.7
Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.
После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:
N=4960*U/(S*I)
U — напряжение тока на первичной обмотке.
I — ток вторичной обмотки, или сварочный ток.
Источник: https://ice-people.ru/raznoe-2/izgotovlenie-toroidalnogo-transformatora-svoimi-rukami-raschyot-i-izgotovlenie-po-secheniyu-serdechnika-peremotka-i-namotka.html
Расчет трансформатора с тороидальным магнитопроводом :: АвтоМотоГараж
Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18). Тороидальный тип: ОЛ70/110-60.
ИСХОДНЫЕ ДАННЫЕ для расчёта трансформатора с тороидальным магнитопроводом:
- напряжение первичной обмотки, U1 = 220 В;
- напряжение вторичной обмотки, U2 = 36 В;
- ток вторичной обмотки, l2 = 4 А;
- внешний диаметр сердечника, D = 110 мм;
- внутренний диаметр сердечника, d = 68 мм;
- высота сердечника, h = 60 мм.
Расчет трансформатора с магнитопроводом типа ШЛ32х50(72х18) показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна.
Приступаем к расчёту трансформатора с магнитопроводом типа ОЛ70/110-60.
Программный (он-лайн) расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже.
Описание вводимых и расчётных полей программы: поле светло-голубого цвета – исходные данные для расчёта, поле жёлтого цвета – данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета – рассчитанное значение.
Формулы и таблицы для ручного расчет трансформатора:
1. Мощность вторичной обмотки;
2. Габаритная мощность трансформатора;
Табл.№1.
КПД | 0,76-0,88 | 0,88-0,92 | 0,92-0,95 | 0,95-0,96 |
3. Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;
4. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;
5. Фактическая площадь сечения окна сердечника;
6. Величина номинального тока первичной обмотки;
Табл.№2.
COS Φ | 0,85-0,90 | 0,90-0,93 | 0,93-0,95 | 0,95-0,93 | 0,93-0,94 |
7. Расчёт сечения провода для каждой из обмоток (для I1 и I2);
Табл.№3.
Кольцевая | 5-4,5 | 4,5-3,5 | 3,5 | 3,0 |
8. Расчет диаметра проводов в каждой обмотке без учета толщины изоляции;
9. Расчет числа витков в обмотках трансформатора;
n — номер обмотки,
U’ — падение напряжения в обмотках, выраженное в процентах от номинального значения, см. таблицу.
В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами.
Табл.№4.
U’1 | 7 | 6 | 5 | 3.5 | 2.5 |
U’2 | 7 | 6 | 5 | 3.5 | 2.5 |
Табл.№5.
Тор | 1,7 | 1,7 | 1,7 | 1,65 | 1,6 |
10. Расчет числа витков приходящихся на один вольт;
11. Формула для расчёта максимальной мощности которую может отдать магнитопровод;
Источник: https://automotogarage.ru/equipment/electrical/calculation_of_toroidal_transformer/
Расчет тороидального трансформатора для сварки
› Сварка
13.12.2019
Трансформатор является главным узлом сварочного аппарата независимо от его конструкции. При самостоятельном изготовлении этого элемента возникает много вопросов: Как выбрать форму магнитопровода? Какой требуется намоточный провод? Как сделать расчет необходимого количества витков?
Тороидальный трансформатор имеет ряд преимуществ перед трансформаторами другого типа:
- Равномерное распределение обмоток;
- Снижение массы на 2030 % при сохранении мощности;
- Сниженные токи Х.Х. в 1020 раз;
- Высокий К.П.Д;
- Уменьшение полей рассеяния;
- Низкий уровень шума.
Если приложить определенные усилия для создания тороидального трансформатора своими руками, то можно получить свой уникальный набор характеристик устройства, которое удовлетворит все потребности при работе со сваркой. И даже более того – можно учесть текущие реалии нашей действительности такие как, например пониженное напряжение в сети вашего дома.
Используя формулы и методы, приведенные в нашей статье, вы получите практическое пособие по расчету сварочного трансформатора на тороидальном сердечнике.
Изготовление тороидального трансформатора своими руками
Многие домашние мастера задумываются об изготовлении тороидального трансформатора своими руками. Объясняется это тем, что его эксплуатационные характеристики значительно лучше, чем у трансформаторов с сердечниками другой формы. Например, при тех же электрических характеристиках, его вес может быть до полутора раз меньше. К тому же и КПД такого трансформатора заметно выше.
Основных причин, по которым изготовление тороида не всегда удается, две:
- Трудно найти подходящий сердечник.
- Трудоемкость изготовления, особенно сложна намотка трансформатора.
Что такое плазморез и как он устроен.
Об аргонно-дуговой сварке читайте здесь.
Расчет тороидального трансформатора
Схема сварочного полуавтомата.
Для упрощенного расчета трансформатора на тороидальном магнитопроводе необходимо знать следующие исходные данные:
- Подаваемое на первичную обмотку входное напряжение U1.
- Наружный диаметр D сердечника.
- Его внутренний диаметр – d.
- Толщина магнитопровода – H.
Площадь поперечного сечения магнитопровода Sc определяет мощность трансформатора и, соответственно, надежность работы будущего сварочного аппарата. Оптимальными считаются значения 45-55 см 2 . Рассчитать ее значение можно по формуле:
Важной характеристикой сердечника является площадь его окна S, поскольку этот параметр определяет не только удобство намотки обмоточных проводов и интенсивность отвода избытков тепла, но и оказывает влияние на характер магнитного рассеяния. Оптимальные значения этого параметра 80-110 см 2 . Вычислить его значение позволяет формула:
Броневой тип трёхфазных трансформаторов.
Зная эти значения, можно рассчитать ориентировочную мощность трансформатора:
P = 1,9 * Sc * S, где Sc и S берутся в квадратных сантиметрах, а P получается в ваттах.
Далее можно найти число витков на вольт:
Зная значение k, можно рассчитать количество витков во вторичной обмотке:
Количество витков в первичной обмотке лучше рассчитать, используя в качестве исходного данного напряжение на вторичной обмотке:
W1 = (U1 * w2) / U2, где U1 – напряжение, подводимое к первичной обмотке, а U2 – снимаемое со вторичной.
Дело в том, что регулировать сварочный ток лучше изменением числа витков первичной обмотки, поскольку величина тока в ней меньше, чем во вторичной. Пусть, например, нужно получить три значения выходного тока 60 А, 80 А и 100 А при мощности трансформатора 5000 Вт.
Этим значениям сварочного тока будут соответствовать следующие значения напряжений на вторичной обмотке:
U21 = P / I21 = 5000 Вт / 60 А = 83,3 В;
U22 = P / I22 = 5000 Вт / 80 А = 62,5 В;
Классификационная схема трансформаторов.
U23 = P / I23 = 5000 Вт / 100 А = 50 В.
Пусть вторичная обмотка содержит w2 = 70 витков. Теперь можно рассчитать число витков в соответствующих ступенях первичной обмотки для напряжения в сети U1 = 220 В:
W11 = (U1 * w2) / U21 = 220 В * 70 / 83,3 В ≈ 185 витков;
W12 = (U1 * w2) / U22 = 220 В * 70 / 62,5 В ≈ 246 витков;
W13 = (U1 * w2) / U23 = 220 В * 70 / 50 В = 308 витков.
Последнее значение следует увеличить на 5%:
W13 = 308 * 1,05 ≈ 323 витка – это и будет их необходимое число в первичной обмотке, а отводы следует сделать от 185-го и 246-го витка.
Для самодельных трансформаторов для сварки допустимая плотность тока в обмотках j = 3 А/мм 2 . Зная ее, можно найти площадь поперечного сечения проводов обмоток. В приведенном ранее примере максимальный ток в первичной обмотке:
Сечение этого провода должно составлять:
Источник: http://stalcu.ru/svarka/raschet-toroidalnogo-transformatora-dlya-svarki.html
Расчет тороидального сварочного трансформатора
По сравнению с обычными конструкциями тороидальные трансформаторы имеют ряд существенных преимуществ. При незначительных размерах и массе, они обладают значительно большим коэффициентом полезного действия.
Поэтому данные устройства нашли широкое применение в сварочных аппаратах и стабилизаторах напряжения. Большое значение имеет правильный расчет тороидального трансформатора, применительно к конкретным условиям эксплуатации.
Существуют различные способы расчетов, позволяющие получить результаты с разной степенью точности. Чаще всего для расчетов используются таблицы.
Определение основных параметров
Перед началом расчетов необходимо определиться с основными параметрами трансформатора. В первую очередь это касается типа проводов и количества витков, от которых зависит общая длина проводника. Далее нужно сделать правильный выбор сечения, влияющего на показатели выходного тока и мощность устройства.
Следует учитывать и тот фактор, что при небольшом количестве витков, первичная обмотка будет нагреваться. Точно такая же ситуация возникает, когда мощность потребителей, включаемых во вторичную обмотку, превышает мощность, отдаваемую трансформатором. В результате перегрева снижается надежность устройства, иногда может произойти воспламенение трансформатора.
В качестве примера приводится таблица, с помощью которой можно рассчитать тороидальный трансформатор, работающий при частоте сети 50 Гц.
Сердечники устройств могут быть изготовлены из холоднокатаной стали марок Э310-330, толщиной от 0,35 до 0,5 мм. Может применяться и обычная сталь, марок Э340-360, где толщина ленты будет в пределах от 0,05 до 0,1 мм.
Условные обозначения в таблице соответствуют:
- Pг – габаритная мощность трансформатора;
- ω1 – количество витков на 1 вольт для стали Э310, Э320, Э330;
- ω2 – количество витков на 1 вольт для стали Э340, Э350, Э360;
- S – сечение сердечника;
- ∆ – значение допустимой плотности тока в обмотках;
- ŋ – КПД трансформатора.
При наматывании тороидальной катушки используется только наружная и межобмоточная изоляция. Несмотря на ровную укладку обмоточных проводов, толщина намотки по внутреннему диаметру обязательно увеличивается вследствие разницы между наружным и внутренним диаметром сердечника.
Поэтому рекомендуется использовать проводники, изоляция которых обладает повышенной механической и электрической прочностью, например, марки ПЭЛШО и ПЭШО, а в некоторых случаях – ПЭВ-2.
Для наружной и межобмоточной изоляции чаще всего применяется батистовая лента, лакоткань ЛШСС, толщиной 0,06-0,12 мм, а также триацетатная или фторопластовая пленка, толщиной 0,01-0,02 мм.
Формулы для расчета тороидального трансформатора
Основными параметрами для расчета тороидального трансформатора служат напряжение сети питания (Uc), равное 220 В, значение выходного напряжения (Uн) – 24 В, токовая нагрузка (Iн) – 1,8 А. Для определения мощности вторичной обмотки существует формула: Р =Uн хIн = 24 х 1,8 = 43,2 Вт.
Далее определяется габаритная мощность трансформаторного устройства по формуле:
Величина коэффициента полезного действия и прочие данные, необходимые для расчетов, выбираются из таблицы, в соответствующей графе и ряде под конкретную габаритную мощность.
Следующим этапом будет расчет площади сечения сердечника по формуле:
Выбор размеров сердечника осуществляется следующим образом:
Ближайшим типом сердечника со стандартными параметрами будет ОЛ50/80-40, с площадью сечения S = 60 мм 2 , которая должна быть не менее расчетной. Внутренний диаметр сердечника определяется в соответствии с условием, что dc имеет значение большее или равное dc’:
Если в качестве примера взять сердечник, изготовленный из стали Э320, то в этом случае количество витков на один вольт будет определяться по формуле:
Теперь необходимо определить количество витков в первичной и вторичной обмотках:
Поскольку в любом тороиде рассеивание магнитного потока совсем незначительное, падение напряжения в обмотках возможно определить только по их активному сопротивлению.
В результате, значение относительной величины падения напряжения в обмотках тороидального трансформатора будет намного меньше, чем в обычных трансформаторах.
В связи с этим, потери на сопротивлении вторичной обмотки компенсируются увеличением количества витков примерно на 3%. Расчет будет выглядеть следующим образом: W1-2=133 х 1,03=137 витков.
Диаметры обмоточных проводов можно определить по формуле:
Здесь I1 является током первичной обмотки, определяемый по собственной формуле: I1=1,1 (P2/Uc)=1,1 (48/220)=0,24A
Диаметр провода выбирается по ближайшему значению в сторону увеличения, что будет составлять 0,31 мм.
Трансформаторы, изготовленные по расчетам с помощью таблицы, прошли успешные испытания при постоянной максимальной нагрузке, воздействующей на протяжении нескольких часов. Таким образом, расчет тороидального трансформатора позволяет получить точные результаты, подтвержденные на практике. С помощью этой методики можно определить необходимые параметры для любого устройства.
Svapka.Ru
В этой статьепопытаюсьвам рассказать, как рассчитать трансформатор для сварочного аппарата.
На самом деле ни чего сложного здесь нет. Этот расчет относится как к простым (П и Ш образным) так и к тороидальным трансформаторам.
Для начала определим габаритную мощность будущего сварочного трансформатора:
Подставляя нужные значения упрощаем формулу, она будет иметь вид:
P габаритн = 1.9*Sc*So для торов (ОЛ).
P габаритн = 1.7*Sc*So для ПЛ,ШЛ.
P габаритн = 1.5*Sc*So для П,Ш.
Например у нас ОЛ сердечник (тор).
Площадь сердечника Sс = 45 см.кв.
Площадь окна сердечника So = 80 см.кв.
Формула для тора (ОЛ):
P габаритн = 1.9*Sc*So
P = 1.9*45*80 = 6840 ватт.
Далее нужно рассчитать количество витков для первичной и вторичной обмотки. Для этого сначала рассчитаем необходимое количество витков на 1 вольт.
Для этого используем формулу:
Источник: https://crast.ru/instrumenty/raschet-toroidalnogo-svarochnogo-transformatora
Рассчитать тороидальный трансформатор: принцип работы, сечение сердечника, преимущества эксплуатации
Высококачественные трансформаторы широко используются в различных отраслях. Многие мастера ценят такие агрегаты за то, что они достаточно компактны и легки, а вот коэффициент полезного действия находится на высоком уровне. Такие характеристики особенно важны в сварочных аппаратах и стабилизаторах напряжения. Но чтобы такой агрегат исправно работал, нужно правильно рассчитать тороидальный трансформатор.
Современные производители занимаются промышленным изготовлением нескольких разновидностей магнитопроводов для трансформаторов — броневого, стержневого, тороидального. Если сравнивать их эксплуатационные характеристики и сферы использования, то более эффективным можно считать последний вариант. Всё дело в том, что такое устройство обладает исключительно положительными параметрами, благодаря чему активно применяется в современной промышленности.
Высокая производительность и длительный эксплуатационный срок повлияли на то, что сейчас тороидальный трансформатор является базовым элементом в осветительной технике, стабилизаторах напряжения, источниках бесперебойного питания, радиотехнике, а также медицинском и диагностическом оборудовании.
Сами производители утверждают, что такой агрегат представлен в виде однофазной установки, которая может как понижать, так и повышать мощность. Для качественной эксплуатации трансформатор оборудован мощным сердечником с двумя и более обмотками. Но принцип его эксплуатации ничем не отличается от тех моделей, которые оснащены броневой или стержневой намоткой.
В независимости от эксплуатационных характеристик, трансформатор — это устройство, главная задача которого основана на преобразовании электроэнергии из одной величины в другую. Однако даже самые минимальные изменения в конструктивном исполнении могут существенно изменить итоговые размеры и вес электрической установки. Благодаря этому, технико-экономические параметры будут только возрастать.
Основные преимущества
У такого трансформатора магнитопровод имеет форму тороида, иными словами — все кольца отличаются прямоугольным сечением. Уникальные эксплуатационные характеристики высоко ценятся как в бытовых, так и промышленных сферах. Помимо этого, тороидальный агрегат имеет ряд дополнительных преимуществ в отличие от стандартных стержневых и бронированных моделей:
- У мастеров появилась отличная возможность использовать для сердечника сталь с повышенной магнитной проницаемостью (Э-370, 340).
- Известно, что итоговый поток рассеяния в идеальной тороидальной катушке должен быть равен нулю. В таком трансформаторе этот показатель имеет некоторую конечную величину. Но такие потоки рассеяния не такие уж и большие, как у обычных моделей, поэтому внешние магнитные поля не влияют на слаженную работу трансформатора.
- В сердечнике полностью отсутствуют зазоры и стыки.
- Мастер может смело использовать структурные свойства сердечника, так как в тороидальном агрегате направление магнитного поля полностью совпадает с прокатом ленты.
Все вышеперечисленные преимущества позволяют добиться высоких экономических и электрических показателей. За счёт этого существенно возрастает производительность оборудования:
- Существенно уменьшается общее количество витков, которые используются для получения величины индуктивной первичной обмотки. Такой эффект достигается благодаря использованию сталей с высокой магнитной проницаемостью. В отдельных конструкциях мастерам удалось снизить итоговый расход меди на 25%.
- Полное отсутствие зазоров и наличие высоколегированной стали является причиной того, что в сердечнике трансформатора достигается более высокая индукция. Это функциональное преимущество совершенно не влияет на коэффициент нелинейных искажений. В результате мастеру удаётся повысить Bmax в два раза, что считается невозможным в броневых трансформаторах. В итоге снижается итоговый вес и объём рабочего сердечника.
- Равномерная частотная характеристика каскад достигается за счёт небольшой величины индуктивности рассеяния. Наличие минимальных искажений по вине переходных процессов позволяет использовать довольно глубокую обратную связь отрицательного типа.
В связи с тем, что тороидальный трансформатор обладает небольшим магнитным полем, даже самый тесный монтаж не влияет на взаимодействие с другими элементами конструкции.
Самостоятельное изготовление агрегата
Прежде чем приступить к созданию такого агрегата, необходимо подготовить все необходимые инструменты и материалы. Для изготовления более качественной модели может понадобиться даже швейная машинка, прочная игла и обычные спички, но такие детали можно найти практически в каждом доме.
Основным расходным материалом является железо, из него изготавливаются базовые части трансформатора. Для работы понадобится качественная сталь, которая должна быть в форме тора. Не стоит забывать и о хорошем проводе в лаковой изоляции. Надёжная фиксация не может обойтись без клея ПВА и малярного скотча.
Отдельно стоит учесть, что качественная работа обмоток зависит от изоленты на тканевой основе. А также стоит приобрести высококачественный провод в резиновой или силиконовой изоляции. Этот элемент понадобится для надёжного соединения всех концов обмотки.
Подготовка трансформаторной стали
Начинающим мастерам может показаться, что достать базовый элемент конструкции крайне сложно, но на практике всё обстоит совершенно иначе. Дело в том, что даже обычные пункты приёма металла часто располагают неработоспособными стабилизаторами напряжения. В советский период они были очень распространены, так как использовались в чёрно-белых телевизорах, что продлевало работоспособность кинескопов.
Исправность такого устройства совершенно не имеет значения, так как особой ценностью обладают только тороидальные трансформаторы, которые расположены во внутреннем отсеке стабилизатора. Именно эта часть используется мастерами в качестве основы всей конструкции.
На пути к изъятию трансформаторов всегда лежит обмотка, изготовленная из алюминиевого провода. Не стоит забывать о том, что сердечник тоже нуждается в подготовительных работах. Мастер должен максимально округлить острые края этой детали, так как в процессе намотки может повредиться лаковая изоляция. Поверх трансформаторной стали обязательно укладывается изолента на тканевой основе. В этом случае нужен всего один изоляционный слой.
Правила обмотки
Прежде чем приступить к этому виду работы, нужно сделать расчёт тороидального трансформатора по сечению сердечника. Конечно, мастер может использовать специальные онлайн-калькуляторы, которых на просторах интернета существует очень много. Но можно выбрать более простой вариант, где для всех вычислений нужно подготовить только линейку и калькулятор.
Конечно, он может иметь некоторые погрешности, так как расчёт не подразумевает соблюдения всех тех факторов, которые встречаются в природе. Главное, придерживаться правила о том, что итоговая мощность во вторичной катушке не должна превышать аналогичных показателей в первой обмотке.
Когда мастер дошёл до этого этапа и нужно сделать намотку тороидального агрегата, ему стоит быть крайне внимательным, так как этот процесс довольно трудоёмкий. Отличным считается тот вариант, когда есть возможность самостоятельно разобрать магнитопровод, а уже после намотки собрать его.
В противном случае можно прибегнуть к помощи обычного веретена, на которое нужно аккуратно намотать определённое количество заранее подготовленного провода. Только после этого веретено можно пропустить необходимое количество раз сквозь тор, равномерно укладывая витки обмоток. Конечно, на реализацию такой идеи уйдёт достаточно много времени, но результат того стоит.
Стоит отметить, что в стандартных ситуациях мастера проводят дополнительную изоляцию тороидального сердечника от обмоток (даже в том случае, если используется лакированная проволока). Особой популярностью пользуется высококачественный электротехнический картон, который соответствует всем стандартам ГОСТ 2824 . Толщина этого материала находится в пределах 0,8 мм.
Во время работы мастера придерживаются следующей схемы:
- Картон аккуратно наматывается на сердечник с небольшим захватом предыдущего витка. Конец материала обязательно фиксируется киперной лентой либо клеем ПВА.
- Все торцы сердечника должны быть защищены картонными шайбами с небольшими надрезами от 10 до 20 мм, длина шага — 35 мм. Как наружная, так и внутренняя грань обязательно закрывается небольшими полосами. Стоит отметить, что технологические шайбы фиксируются на финишном этапе, а все прорезиненные зубцы загибаются. Поверх всей конструкции наматывается киперная лента.
- Если надрезы были сделаны на самых полосах, тогда должен присутствовать небольшой запас, чтобы добиться большей высоты торца. Все кольца должны быть прикреплены строго по ширине, накладываются они поверх загибов.
- В редких случаях кольца могут быть изготовлены из специальной электротехнической фанеры, толстого текстолита. Уязвимую внутреннюю и внешнюю грань защищают картонными полосами с небольшими загибами по краям. Между первыми витками обмотки и сердечником должен присутствовать небольшой воздушный зазор. Такой подход особенно важен в тех случаях, когда края под проволокой протрутся. Так уязвимая токонесущая часть никогда не коснётся тороидального сердечника. На верхний слой обязательно наматывается киперная лента. В некоторых случаях мастера предпочитают сглаживать внешнее ребро колец, за счёт чего намотка углов идёт плавно.
Если трансформатор обладает повышенной мощностью, тогда медный провод должен быть прямоугольного сечения. Такой подход позволяет сэкономить свободное пространство. Жила обязательно должна быть толстой, чтобы она не плавилась во время того, как по ней проходит большое напряжение.
Тонкости расчётных манипуляций
Чаще всего первичная обмотка питается от обычной сети переменного напряжения в 220 В. Если мастеру нужно две вторичные обмотки, чтобы каждая выдавала минимум по 12 В, то площадь сечения должна составлять минимум 0,23 кв. мм. Но этих данных мало, чтобы правильно рассчитать тороидальный трансформатор.
Мастеру нужно разделить 220 В на определённую сумму напряжений вторичной цепи. Так можно получить коэффициент 3,9, который будет обозначать, что сечение провода для вторичной обмотки должно быть аналогичным с этим показателем. А вот для того, чтобы определить количество витков, нужно прибегнуть к достаточно простой формуле: напряжение 220 В умножить на коэффициент 40, а полученную цифру следует разделить на площадь поперечного сечения магнитопровода.
Отдельно стоит учесть, что от правильности проведённых расчётов зависит уровень КПД тороидального трансформатора и его эксплуатационный срок. Именно поэтому лучше несколько раз всё перепроверить, дабы не допустить самых распространённых ошибок.
Рекомендации специалистов
Когда мастер тщательным образом изучил способ изготовления трансформатора своими руками, он может смело приступать к практической части. Так как намотка витков считается очень сложным процессом, понадобится запастись терпением, чтобы итоговый результат оправдал все ожидания. Ведь именно от того, насколько качественно выполнен этот этап, зависят эксплуатационные характеристики устройства.
Для упрощения этой задачи можно использовать специальный станок, предназначенный для намотки тороидальных трансформаторов. Цена такого агрегата считается доступной, а при желании его можно изготовить и своими руками.
Источник: https://220v.guru/elementy-elektriki/transformatory/sposob-rasschitat-toroidalnyy-transformator-po-secheniyu.html
Типы магнитопроводов
Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо).
В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора.
Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.
По типу используемого металла сердечники разделяют на:
Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.
По типу магнитопровода различают сердечники:
Каждый из перечисленных типов может различаться формой пластин или сегментов:
- Броневый;
- Ш образный;
- Кольцевой.
Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.
Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.
Исходные данные
Способы расчёта различных конфигураций трансформаторов
Исходными данными, на основе которых производится расчет трансформатора, в обязательном порядке являются:
- Напряжение сети;
- Напряжение и количество вторичных обмоток;
- Токи потребления нагрузок.
Для полного и точного расчета понижающего трансформатора необходимо учитывать температурный режим, допускаемые отклонения напряжения первичной обмотки и еще некоторые факторы, однако практика показывает, что трансформаторы, изготовленные по данным упрощенного расчета, имеют достаточно хорошие параметры. Далее будет рассказано, как рассчитать трансформатор, не прибегая к сложным и громоздким вычислениям.
Порядок расчета
Особенности применения и устройства сварочных трансформаторов
Расчет силового трансформатора начинается с определения габаритной мощности. Для начала определяется суммарная полная мощность всех вторичных обмоток:
Pс= P1+P2+P3+
Как рассчитать мощность трансформатора, если неизвестны мощности обмоток? Узнать ее поможет известная из курса физики формула:
P = U·I.
Габаритная мощность трансформатора находится из полной с учетом КПД, который различается для устройств разной мощности. Опытным путем установлены следующие ориентировочные значения КПД:
- До 50 Вт – 0.6 (60%);
- От 50 до 100 Вт – 0.7 (70%);
- От 100 до 150 Вт – 0.8 (80%).
Более мощный трансформатор будет иметь КПД 0.85.
Таким образом, расчет габаритной мощности выглядит таким образом:
Рг = КПД∙Рс, где Рс – полная мощность.
На основе габаритной мощности трансформатора можно определить площадь поперечного сечения магнитопровода:
Источник: https://amperof.ru/elektropribory/raschet-transformatora.html