Подключение электродвигателя звездой или треугольником
О достоинствах асинхронных двигателей спорить не приходится. Специалисты, в частности, выделяют:
- высокую производительность;
- надежность;
- неприхотливость;
- простоту конструкции;
- умеренную стоимость ремонта и обслуживания и т.п.
Асинхронный двигатель состоит из двух основных элементов: статора и ротора. Они имеют токопроводящие обмотки, начала и концы которых выводятся в распределительную коробку и фиксируются в два ряда. Они обозначаются либо литерами С (С1, С2, С3 – начала обмоток, С4, С5, С6 – их концы), либо согласно новой маркировке: U1, V1, W1 –начала, U2, V2, W2 – концы.
Очень часто у людей, впервые имеющих дело с двигателями подобного типа, возникает вопрос: как же их лучше подключить? Существует три схемы подключения:
- «треугольник»;
- «звезда»;
- комбинированная («звезда-треугольник»).
Итак, каким образом осуществляется подключение электродвигателя звездой и треугольником?
Подключение звездой
В этом случае концы обмоток статора соединяются вместе в одной точке с помощью специальной перемычки. Трехфазное напряжение подается на их начала. Таким образом, на фазной обмотке напряжение будет 220в, а линейное напряжение между двумя оставшимися фазными обмотками – 380в.
Подключение трехфазных двигателей с питающим напряжением 220/127в к стандартным однофазным сетям выполняется только по типу звезды, в противном случае агрегат быстро придет в негодность. Также именно по данной схеме подключаются все электромоторы российского производства на 380в.
В целом подключение звездой обеспечивает более мягкий запуск двигателя и плавность его работы, давая также возможность перезагрузки. Поэтому двигатели средней мощности принято запускать по данной схеме. Однако следует учесть, что в этом случае трехфазный двигатель не сможет работать на полную мощность.
Подключение треугольником
Обмотки соединяются последовательно в замкнутую ячейку, т.е. конец одной из них соединяется с началом следующей и т.д. Ряды контактов с клеммами располагаются так, чтобы они были смещены относительно друг друга (т.е. напротив вывода С6 (W2)помещается С1 (U1) и т.п.). Места соединения следует подключить к соответствующим фазам питающего напряжения. Линейное напряжение сети и напряжение на фазной обмотке равны 220в
Соединение треугольник гарантирует достижение максимальной мощности асинхронного электродвигателя (т.е. полной паспортной мощности, что в полтора раза больше, чем при соединении звездой), но при этом он подвержен большему нагреву и имеет большие значения пусковых токов.
Это обусловлено конструктивными особенностями двигателей данного типа: ротор достаточно массивен и имеет большую инерционность, следовательно, когда он раскручивается, мотор работает в режиме перегрузки. Соответственно, двигатель может быстро выйти из строя.
Однако если вам нужно подключить к электросети электромотор, произведенный в Европе и рассчитанный на номинальное напряжение 400/690, то это единственно правильный вариант.
Комбинированное подключение
Эту функцию используют только для двигателей с соответствующей пометкой (Δ/Y), которая обозначает, что возможны оба варианта соединения. Запуск осуществляется при подключении звездой для уменьшения пускового тока, затем после набора номинальной частоты вращения переключение на треугольник происходит в автоматическом режиме. Таким образом мы получаем максимально возможную мощность на выходе.
Использование данного способа связано со скачками токов. При переключении между схемами происходит следующее: прекращается подача тока, снижается скорость вращения ротора (иногда достаточно резко), затем восстанавливается изначальная скорость вращения.
Пусковые реле
Для того чтобы запустить электродвигатель согласно схеме «звезда-треугольник», разработано специальное оборудование. Названия могут быть разными: реле «Старт-дельта», «Пусковые реле времени» и т.п., но схема их действия всегда одинакова: после подачи напряжения на реле начинается отсчет времени разгона, включается пускатель «звезда», затем, по окончании времени разгона контакты размыкаются, пускатель выключается, замыкаются контакты, включающие пускатель «треугольник».
Подобные реле производятся в Чехии (CRM-2T, TRS2D), Австрии (РВП-3, D6DS, ВЛ-32М1), Украине (ВЛ-163), Италии (80 series, Finder). Он могут быть модульными, программируемыми, съемными, одно- или многофункциональными, механическими или цифровыми, суточными, недельными – выбор достаточно широк.
Итак, вопрос: как подключить электродвигатель звездой или треугольником — решается достаточно просто. Внимательно изучите инструкцию, прилагаемую к агрегату, обращая особое внимание на метки на бирке мотора.
Источник: https://www.szemo.ru/press-tsentr/article/podklyuchenie-elektrodvigatelya-zvezdoy-ili-treugolnikom/
Как подключить электродвигатель, схема подключения
Трехфазные электродвигатели — имеют более высокую эффективностью, чем однофазные электродвигатели на 220 вольт. Поэтому подключение электродвигателя на 380 вольт обеспечивает более стабильную и экономичную работу устройства. Для запуска электродвигателя не понадобятся конденсаторы или другие пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.
На шильде электродвигателя должно быть видно, что обмотки электродвигателя можно соединить, как треугольником на 220 Вольт, так звездой на 380 Вольт. В клеммной коробке электродвигателя вы увидите шесть выводов — U1, U2, V1,V2, W1, W2. Это означает что электродвигатель можно подключить на 220 или 380 Вольт.
Схема подключения трехфазного электродвигателя:
Подключение звездой — большинство промышленных трехфазных электродвигателей подключается по схеме — «звезда» 380В. При подключении звездой вам нужно подключить 3 фазы на разъемы А, В, С.
При подключении треугольником на 220В — необходимо сделать три разные последовательные соединения. После чего можно подключать к 3 независимым последовательным соединениям 3 фазы на разъемы А, В и С как не рисунке.
Подключение звезда-треугольник — В очень редких случаях для получения большей отдачи по мощности, электродвигатель подключают «звезда-треугольник»
Внимание:
Указанная мощность на бирке электродвигателя, это не электрическая, а механическая мощность на валу.
Хочу заметить, что при подключении электродвигателя по схеме «звезда» запуск будет достаточно плавным, но при этом сложно будет достичь максимальной мощности работы трехфазного асинхронного электродвигателя.
Поэтому для достижения максимальных показателей электродвигатель подключают «треугольником» и тогда он выдаст полную заявленную мощность, а это в 1,5 раза больше чем при подключении звездой. Но нужно знать что при запуске «треугольником» ток настолько высокий, что может повредить изоляцию проводки и сократить срок службы электродвигателя.
Именно поэтому для мощных электродвигателей применяют комбинированную схему подключения по принципу «звезда-треугольник». Сначала запуск мотора происходит по схеме «звезда», но когда электродвигатель набирает достаточную мощность происходит ручное или автоматическое (через реле) переключение на схему «треугольник».
После чего мощность возрастает в несколько раз.
Подключение трехфазного электродвигателя, видео:
Источник: https://mirprivoda.ru/articles/kak-podklyuchat-elektrodvigatel
Схема подключения электродвигателя по схеме звезда и треугольник, для чего это необходимо. Что дает подключение звездой и треугольником
В раздел: Советы → Подключение электродвигателя
Для чего трехфазные электродвигатели подключают к напряжению по — разному соединив их обмотки? Мы иногда слышим в разговоре между электриками про соединения звездой и треугольником.
А нельзя ли обойтись без этих разных электрических схем подключения?
Оказывается, можно соединить двигатели звездой, а точнее по «схеме звезда», но в этом случае для разгона самого двигателя потребуется больше времени и он будет отдавать меньшую мощность, а можно включать по схеме «треугольник» — двигатель при включении (разгоне) потребляет больше энергии, происходит бросок тока, а в сети падает напряжение, вот поэтому и комбинируют между собой эти схемы включения.
Схемы подключения электродвигателя. Звезда — треугольник
Применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником». При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).
При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).
Клеммные колодки электродвигателей и схемы соединения обмоток :
Схема включение двигателя (насоса) звезда-треугольник.
Не вдаваясь в технические и подробные теоретические основы электротехники необходимо сказать, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенные обмотками в треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность.
При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.
В связи с этим целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме звезда, после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме треугольник. Схема управления :
Еще вариант схемы управления двигателем Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3. После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.
При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2. Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2.
После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.
На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.
Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.
Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др., но назначение у них одно и тоже: РВП-1-15, ВЛ-32М, ВЛ-163, CRM-2T ELKO Чехия.
Диаграмма работы пускового реле. При подаче напряжения питания на реле, начинается отсчёт времени разгона t1 и через контакты пускового реле 15-18 включается пускатель «звезда» (обмотки двигателя включены по схеме «звездой»). По окончании времени разгона t1 контакты 15-18 размыкаются, выключается пускатель «звезда», и через время паузы t2 замыкаются контакты 25-28 встроенного электромагнитного реле, включающие пускатель «треугольник» (обмотки двигателя включены по схеме «треугольник»). Времена T1, T2 устанавливаются органами управления реле, время паузы Т2 имеет фиксированное значение, обычно 20,30,40,80 мс, оно переключается дискретно. ИТОГ-общее: Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме когда электродвигатель «набрал обороты»), происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.
https://www.youtube.com/watch?v=PjZextDphQU
В итоге что дает для двигателя подключение звездой или треугольником? При соединении звездой пусковой ток электродвигателя уменьшается в 1,73·1,73 = 3 раза.
Плавный пуск при использовании УПП
На смену традиционным схемам включения для уменьшения пускового тока широкое распространение получили так называемые устройства плавного пуска — УПП.
В чем отличие и преимущество УПП?
Источник: https://www.110volt.ru/text/start_delta
Звезда и треугольник принцип подключения. Особенности и работа
Для увеличения мощности передачи без увеличения напряжения сети, снижения пульсаций напряжения в блоках питания, для уменьшения числа проводов при подключении нагрузки к питанию, применяют различные схемы соединения обмоток источников питания и потребителей (звезда и треугольник).
Схемы
Обмотки генераторов и приемников при работе с 3-фазными сетями могут соединяться с помощью двух схем: звезды и треугольника. Такие схемы имеют между собой несколько отличий, различаются также нагрузкой по току. Поэтому, перед подключением электрических машин необходимо выяснить разницу в этих двух схемах — звезда и треугольник.
Схема звезды
Соединение различных обмоток по схеме звезды предполагает их подключение в одной точке, которая называется нулевой (нейтральной), и имеет обозначение на схемах «О», либо х, у, z. Нулевая точка может иметь соединение с нулевой точкой источника питания, но не во всех случаях такое соединение имеется. Если такое соединение есть, то такая система считается 4-проводной, а если нет такого соединения, то 3-проводной.
Схема треугольника
При такой схеме концы обмоток не объединяются в одну точку, а соединяются с другой обмоткой. То есть, получается схема, похожая по виду на треугольник, и соединение обмоток в ней идет последовательно друг с другом. Нужно отметить отличие от схемы звезды в том, что в схеме треугольника система бывает только 3-проводной, так как общая точка отсутствует.
В схеме треугольника при отключенной нагрузке и симметричной ЭДС равно 0.
Фазные и линейные величины
В 3-фазных сетях питания имеется два вида тока и напряжения – это фазные и линейные. Фазное напряжение – это его величина между концом и началом фазы приемника. Фазный ток протекает в одной фазе приемника.
При применении схемы звезды фазными напряжениями являются Ua, Ub, Uc, а фазными токами являются I a, I b, I c. При применении схемы треугольника для обмоток нагрузки или генератора фазные напряжения — Uaв, Ubс, Ucа, фазные токи – I ac, I bс, I cа.
Линейные значения напряжения измеряются между началами фаз или между линейных проводников. Линейный ток протекает в проводниках между источником питания и нагрузкой.
В случае схемы звезды линейные токи равны фазным, а линейные напряжения равны U ab, Ubc, U ca. В схеме треугольника получается все наоборот – фазные и линейные напряжения равны, а линейные токи равны I a, I b, I c.
Большое значение уделяется направлению ЭДС напряжений и токов при анализе и расчете 3-фазных цепей, так как его направление влияет на соотношение между векторами на диаграмме.
Особенности схем
Между этими схемами есть существенная разница. Давайте разберемся, для чего в различных электроустановках используют разные схемы, и в чем их особенности.
Во время пуска электрического мотора ток запуска имеет повышенную величину, которая больше его номинального значения в несколько раз. Если это механизм с низкой мощностью, то защита может и не сработать. При включении мощного электромотора защита обязательно сработает, отключит питание, что обусловит на некоторое время падение напряжения и перегорание предохранителей, или отключение электрических автоматов. Электродвигатель будет работать с малой скоростью, которая меньше номинальной.
Видно, что имеется немало проблем, возникающих из-за большого пускового тока. Необходимо каким-либо образом снижать его величину.
Для этого можно применить некоторые методы:
- Подключить на запуск электродвигателя реостат, дроссель, либо трансформатор.
- Изменить вид соединения обмоток ротора электродвигателя.
В промышленности в основном применяют второй способ, так как он наиболее простой и дает высокую эффективность.
Здесь работает принцип переключения обмоток электромотора на такие схемы, как звезда и треугольник. То есть, при запуске мотора его обмотки имеют соединение «звезда», после набора эксплуатационных оборотов, схема соединения изменяется на «треугольник».
Этот процесс переключения в промышленных условиях научились автоматизировать.
В электромоторах целесообразно применение сразу двух схем — звезда и треугольник. К нулевой точке необходимо подключить нейтраль источника питания, так как во время использования таких схем возникает повышенная вероятность перекоса фазных амплитуд. Нейтраль источника компенсирует эту асимметрию, которая возникает вследствие разных индуктивных сопротивлений обмоток статора.
Соединение по схеме звезды имеются важные преимущества:
- Плавный пуск электрического мотора.
- Позволяет функционировать электродвигателю с заявленной номинальной мощностью, соответствующей паспорту.
- Электродвигатель будет иметь нормальный рабочий режим при различных ситуациях: при высоких кратковременных перегрузках, при длительных незначительных перегрузках.
- При эксплуатации корпус электродвигателя не перегреется.
Основным достоинством схемы треугольника является получение от электродвигателя наибольшей возможной мощности работы. Целесообразно поддерживать режимы эксплуатации по паспорту двигателя.
При исследовании электромоторов со схемой треугольника выяснилось, что его мощность повышается в 3 раза, по сравнению со схемой звезды.
При рассмотрении генераторов, схемы – звезда и треугольник по параметрам аналогичны при функционировании электродвигателей. Выходное напряжение генератора будет больше в схеме треугольника, чем в схеме звезды. Однако, при повышении напряжения снижается сила тока, так как по закону Ома эти параметры обратно пропорциональны друг другу.
Поэтому можно сделать вывод, что при разных соединениях концов обмоток генератора можно получить два разных номинала напряжения. В современных мощных электромоторах при запуске схемы – звезда и треугольник переключаются автоматически, так как это позволяет снизить нагрузку по току, возникающей при пуске мотора.
Процессы, происходящие при изменении схемы звезда и треугольник в разных случаях
Здесь, изменение схемы — имеется ввиду переключение на щитах и в клеммных коробках электрических устройств, при условии, что имеются выводы обмоток.
Обмотки генератора и трансформатора
При переходе со звезды в треугольник напряжение уменьшается с 380 до 220 вольт, мощность остается прежней, так как фазное напряжение не изменяется, хотя линейный ток увеличивается в 1,73 раза.
При обратном переключении возникают обратные явления: линейное напряжение увеличивается с 220 до 380 вольт, а фазные токи не изменяются, однако линейные токи снижаются в 1,73 раза. Поэтому можно сделать вывод, что если есть вывод всех концов обмоток, то вторичные обмотки трансформатора и генераторы можно применять на два типа напряжения, которые отличаются в 1,73 раза.
Лампы освещения
При переходе со звезды в треугольник лампы сгорят. Если переключение сделать обратное, при условии, что лампы при треугольнике горели нормально, то лампы будут гореть тусклым светом. Без нулевого провода лампы можно соединять звездой при условии, что их мощность одинакова, и распределяется равномерно между фазами. Такое подключение применяется в театральных люстрах.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrotehnika/zvezda-i-treugolnik/
Подключение трехфазного двигателя: схемы и рабочие варианты
Среди электрических машин, предназначенных для совершения механической работы одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток.
Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом.
Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.
Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.
Конструктивно трехфазные электродвигатели состоят из:
- Статора с магнитопроводом;
- Ротора с валом;
- Обмоток.
В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках. Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.
Схемы подключения обмоток двигателя
В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:
- Звезда;
- Треугольник;
- Звезда и треугольник.
Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:
Пример обозначения на шильде
Если шильд отсутствует или информация на нем стерлась, то схему подключения можно узнать, открыв борно. Если вы увидите 6 выводов, имеющих клеммные соединения, можно определить тип включения обмоток. Гораздо хуже, когда борно имеет только три вывода, а подключение производится внутри корпуса. В этом случае нужно разобрать трехфазный электромотор, чтобы увидеть способ соединения.
Звезда
Схема подключения трехфазного двигателя звездой предусматривает, что начало каждой обмотки объединяется в одну точку, а к их концам подключаются фазы от питающей линии. Такой тип обеспечивает значительно более плавный пуск и относительно щадящий режим работы. Однако мощность, с которой вращается ротор, в полтора раза ниже, чем при подключении треугольником. Схематически данное подключение выглядит следующим образом:
Схема подключения звезда
Как видите на рисунке, концы выводов обмоток трехфазного двигателя A2, B2, C2 соединены в один электрический узел. А к клеммам A1, B1, C1 – подключаются фазные провода, как правило, на 220 или 380 вольт.
Если рассматривать данную схему на примере борна, выглядеть оно будет так:
Соединение обмоток звездой
Треугольник
Чтобы подключить электродвигатель треугольником вам необходимо подвести конец одной обмотки к началу другой. И таким образом замкнуть обмотки в своеобразное кольцо, в точки соединения которых и подключаются выводы питающей линии. Схема соединения треугольником обеспечивает максимальный момент и усилие на валу, что особенно актуально для больших нагрузок. Однако и ток в обмотках при номинальной нагрузке также пропорционально повысится, не говоря о режимах перегрузки.
Поэтому включение трехфазного двигателя треугольником и требует понижения напряжения. К примеру, если одну и ту же электрическую машину можно подключить с соединением обмоток и треугольником, и звездой, то звезда будет иметь напряжение питания 380, а треугольник 220 вольт или 220 и 127 вольт соответственно. Схематически подключение обмоток треугольником будет выглядеть так:
Схема подключения треугольник
Как видите, соединение производится от A2 к B1, от B2 к C1, от C2 к A1, в некоторых моделях электрических машин маркировка выводов может отличаться, но на крышке борна будет отображаться их принадлежность к той или иной обмотке и возможные варианты соединения между собой.
Соединение обмоток треугольником
Варианты подключения
Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.
В однофазную сеть
Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить.
Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети.
Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°, а вот однофазный конденсатор, наоборот, в положительную до +90°, графически функция отставания напряжения от тока будет выглядеть следующим образом:
Изменение тока и напряжения на емкости и индуктивности
Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:
Схема включения в однофазную сеть
Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.
Расчет конденсаторного пуска производится по формуле:
Сраб = (2800*I)/U — для включения трехфазного двигателя звездой
Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником
Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.
В трёхфазную сеть
В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.
Схема включения в трехфазную сеть
На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:
- подача напряжения на двигатель от сети производится через рубильник 1.
- далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
- после чего двигатель начинает вращение, а пусковая кнопка 6 шунтируется через повторитель 5;
- для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
- защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.
Источник: https://www.asutpp.ru/podklyuchenie-trexfaznogo-dvigatelya.html
Схема обмоток асинхронного трехфазного двигателя
страница » Электродвигатель асинхронный: схемы звезда треугольник
Электродвигатель асинхронный – электромеханическое оборудование, широко распространённое в различных сферах деятельности, а потому знакомое многим.
Между тем, даже учитывая тесную связь асинхронного электродвигателя с народом, редкий «сам себе электрик» способен раскрыть всю подноготную этих приборов.
Например, далеко не каждый «держатель пассатижей» может дать точный совет: как соединить обмотки электродвигателя «треугольником»? Или как ставить перемычки схемы соединения обмоток двигателя «звездой»? Попробуем раскрыть эти два простых и одновременно сложных вопроса.
Электродвигатель асинхронный: устройство
Как говаривал Антон Павлович Чехов:
Начать повторение темы электрических асинхронных двигателей логично детальным обзором конструкции. Двигатели стандартного исполнения построены на базе следующих конструктивных элементов:
- алюминиевый корпус с элементами охлаждения и крепёжным шасси;
- статор – три катушки, намотанные медным проводом на кольцевой основе внутри корпуса и размещённые противоположно одна другой под угловым радиусом 120º;
- ротор – металлическая болванка, жёстко закреплённая на валу, вставляемая внутрь кольцевой основы статора;
- подшипники упорные для вала ротора – передний и задний;
- крышки корпуса – передняя и задняя, плюс крыльчатка для охлаждения;
- БРНО – верхняя часть корпуса в виде небольшой прямоугольной ниши с крышкой, где размещается клеммник крепления выводов обмоток статора.
Структура мотора: 1 – БРНО, где размещается клеммник; 2 – вал ротора; 3 – часть общих статорных обмоток; 4 – крепёжное шасси; 5 – тело ротора; 6 – корпус алюминиевый с рёбрами охлаждения; 7 – крыльчатка пластиковая или алюминиевая
Вот, собственно, вся конструкция. Большая часть асинхронных электродвигателей являются прообразом именно такого исполнения. Правда, встречаются иногда экземпляры несколько иной конфигурации. Но это уже исключение из правил.
Обозначение и разводка статорных обмоток
Остаются в эксплуатации ещё достаточно большое число асинхронных электродвигателей, где обозначение статорных обмоток выполнено по устаревшему стандарту.
Таким стандартом предусматривалась маркировка символом «С» и добавлением к нему цифры — номера вывода обмотки, обозначающего её начало либо конец.
При этом цифры 1, 2, 3 – всегда относятся к началу, а цифры 4, 5, 6, соответственно, обозначают концы. Например, маркеры «С1» и «С4» обозначают начало и конец первой статорной обмотки.
Маркировка концевых частей проводников, выводимых на клеммник БРНО: А – устаревшее обозначение, но всё ещё встречающееся на практике; В – современное обозначение, традиционно присутствующее на маркерах проводников новых моторов
Современные стандарты изменили эту маркировку. Теперь отмеченные выше символы заменены другими, соответствующими международному образцу (U1, V1, W1 – начальные точки, U2, V2, W2 – концевые точки) и традиционно встречаются при работе с асинхронными движками нового поколения.
Проводники, исходящие от каждой из обмоток статора, выводятся в область клеммной коробки, что находится на корпусе электродвигателя и подключаются к индивидуальной клемме.
В общей сложности количество индивидуальных клемм равно числу выведенных начальных и конечных проводов общей намотки. Обычно это 6 проводников и такое же число клемм.
Таким выглядит клеммник движка стандартной конфигурации. Шесть выводов соединяются латунными (медными) перемычками перед подключением мотора под соответствующее напряжение
Между тем, встречаются также вариации развода проводников (редко и обычно на старых моторах), когда в область БРНО выведены 3 провода и присутствуют только 3 клеммы.
Как подключать «звезду» и «треугольник»?
Подключение асинхронного электродвигателя с выведенными на клеммную коробку шестью проводниками, выполняется стандартной методикой с помощью перемычек.
Размещая должным образом перемычки между индивидуальными клеммами, легко и просто установить необходимую схемную конфигурацию.
Так, чтобы создать интерфейс для подключения «звездой», следует начальные проводники обмоток (U1, V1, W1) оставить на индивидуальных клеммах одиночными, а клеммы концевых проводников (U2, V2, W3) соединить между собой перемычками.
Схема соединения «звезда». Отличается высокой потребностью линейного напряжения. Даёт плавный ход ротора в режиме запуска
Если же потребуется создать схему соединения «треугольник», вариант размещения перемычек изменяется. Для соединения статорных обмоток треугольником нужно соединить начальные и концевые проводники обмоток по следующей схеме:
- начальная U1 – концевая W2
- начальная V1 – концевая U2
- начальная W1 – концевая V2
Схема соединения «треугольник». Отличительная черта – высокие пусковые токи. Поэтому зачастую моторы по этой схеме предварительно запускаются на «звезде» с последующим переводом в рабочий режим
Подключение для обеих схем, конечно же, предполагается в трёхфазную сеть с напряжением 380 вольт. Особой разницы при выборе того или иного схемного варианта нет.
Однако следует учитывать большую потребность в линейном напряжении для схемы «звезда». Эту разницу, собственно, показывает маркировка «220/380» на технической пластине моторов.
Вариант последовательного соединения «звезда-треугольник» в рабочем режиме видится оптимальным пусковым методом 3-фазного асинхронного электродвигателя переменного тока. Этот вариант часто используется для плавного пуска мотора при малых начальных токах.
Первоначально подключение организуется по схеме «звезды». Затем, через некоторый промежуток времени, моментальным переключением выполняется соединение на «треугольник».
Подключение с учётом технической информации
Каждый асинхронный электродвигатель обязательно оснащается металлической пластиной, которая закреплена на боковине корпуса.
Такая пластина является своего рода панелью-идентификатором оборудования. Здесь размещается вся необходимая информация, требуемая для корректной установки изделия в сеть переменного тока.
Техническая пластина на боковине корпуса движка. Здесь отмечаются все важные параметры, требуемые для обеспечения нормальной работы электродвигателя
Этими сведениями не следует пренебрегать, включая мотор в цепь питания электрическим током. Нарушения условий, отмеченных на информационной пластине – это всегда первые причины выхода моторов из строя.
Что указывается на технической пластине асинхронного электродвигателя?
- Тип мотора (в данном случае – асинхронный).
- Число фаз и рабочая частота (3Ф / 50 Гц).
- Схема включения обмоток и напряжение (треугольник/звезда, 220/380).
- Рабочий ток (на «треугольнике» / на «звезде»)
- Мощность и число оборотов (кВт / об. мин).
- КПД и COS φ (% / коэффициент).
- Режим и класс изоляции (S1 – S10 / А, В, F, H).
- Производитель и год выпуска.
Обращаясь к технической пластине, электрик уже предварительно знает на каких условиях допустимо включать мотор в сеть.
С точки зрения подключения «звездой» или «треугольником», как правило, существующая информация даёт электрику знать, что в сеть 220В корректно подключение «треугольником», а на линию 380В асинхронный электродвигатель следует включать «звездой».
Испытывать мотор либо эксплуатировать следует только при условии разводки через защитный автоматический выключатель. При этом внедряемый в цепь асинхронного электродвигателя автомат следует корректно подбирать по току отсечки.
Трёхфазный асинхронный электродвигатель в сети 220В
Теоретически и практически тоже, асинхронный электродвигатель, рассчитанный на подключение к сети через три фазы, может работать в однофазной сети 220В.
Как правило, этот вариант актуален лишь для моторов мощностью не выше 1,5 кВт. Объясняется сие ограничение банальным дефицитом ёмкости дополнительного конденсатора. На большие мощности требуется ёмкость под высокие напряжения, измеряемая сотнями мкФ.
Применяя конденсатор, можно организовать работу трёхфазного двигателя в сети 220 вольт. Однако при этом теряется практически половина полезной мощности. Уровень КПД снижается до 25-30%
Действительно, самый простой способ запуска трёхфазного асинхронного электродвигателя в однофазной сети 220-230В, это исполнение соединения через так называемый пусковой конденсатор.
То есть из трёх существующих клемм две объединяются в одну включением между ними конденсатора. Образованные таким образом две сетевых клеммы присоединяются к сети 220В.
Переключением сетевого провода на клеммах с подключенным конденсатором можно изменять направление вращения вала мотора.
Включением в трёхфазный клеммник конденсатора, схема подключения трансформируется в двухфазную. Но для чёткой работоспособности двигателя требуется мощный конденсатор
Номинальная ёмкость конденсатора рассчитывается по формулам:
Сзв = 2800 * I / U
C тр = 4800 * I / U
где: C – искомая ёмкость; I – пусковой ток; U – напряжение.
Однако простота требует жертв. Так и здесь. При подходе к решению задачи пуска с помощью конденсаторов отмечается существенная потеря мощности мотора.
Чтобы компенсировать потери, приходится изыскивать конденсатор большой ёмкости (50-100 мкФ) с рабочим напряжением не менее 400-450В. Но даже в этом случае удаётся набрать мощность не более 50% от номинала.
Поскольку подобные решения используются чаще всего для асинхронных электродвигателей, которые предполагается запускать и отключать с частой периодичностью, логично применять схему, несколько доработанную по сравнению с традиционным упрощённым вариантом.
Схема для организации работы в сети 220 вольт с учётом частых включений и отключений. Применение нескольких конденсаторов позволяет в какой-то степени компенсировать потери мощности
Минимум потерь мощности даёт схема включения «треугольником» в отличие от схемы «звезды». Собственно, на этот вариант указывает и техническая информация, что размещается на технических пластинах асинхронных движков.
Как правило, на бирке именно схема «треугольника» соответствует рабочему напряжению 220В. Поэтому на случай выбора способа соединения, прежде всего, следует взглянуть на табличку технических параметров.
Нестандартные клеммники БРНО
Изредка встречаются конструкции асинхронных электродвигателей, где БРНО содержит клеммник на 3 вывода. Для таких моторов применяется схема разводки внутреннего исполнения.
То есть, та же «звезда» либо «треугольник» схематично выстраиваются соединениями непосредственно в области расположения статорных обмоток, куда доступ затруднён.
Вид нестандартного клеммника, какие могут встречаться на практике. При такой разводке следует руководствоваться исключительно сведениями, указанными на технической пластине
Источник: http://crast.ru/instrumenty/shema-obmotok-asinhronnogo-trehfaznogo-dvigatelja
Подключение электродвигателя на 380 В
Июнь 23, 2014
66110 просмотров
Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.
Выбор схемы включения электродвигателя
Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.
Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.
В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.
Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.
Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике.
Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу от сети напряжением 400/690. Пример такого шильдика на картинке снизу.
Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.
https://www.youtube.com/watch?v=LO7C3iTQbgY
На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке. В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.
Схема подключения электродвигателя звезда треугольник
В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.
Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.
При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.
При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.
Подключение схемы звезда-треугольник
Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.
Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.
Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.
Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.
Отключение происходит пускателем К1. При повторном запуске все снова повторяется.
Источник: http://jelektro.ru/vse-o-elektromontazhe/podkljuchenie-dvigatelja-380v.html
Соединение обмоток электродвигателя «треугольником» и «звездой»
На сегодняшний день асинхронные электродвигатели большой мощности отличаются надежностью работы и высокой производительностью, удобством эксплуатации и обслуживания, а также приемлемой ценой. Конструкция этого типа двигателя позволяет выдерживать сильные механические перегрузки.
Как известно, из основ электротехники, основными частями любого двигателя являются статичный статор, и вращающейся внутри его ротор.
Оба эти элемента состоят из токопроводящих обмоток, при этом статорная обмотка находиться в пазах магнитопровода с соблюдением расстояния в 120 градусов. Начало и конец каждой обмотки выведены в электрическую распределительную коробку и установлены в два ряда.
При подаче напряжения от трехфазной электросети на обмотки статора создается магнитное поле. Именно оно заставляет ротор вращаться.
Как подключить электродвигатель правильно – знает опытный электрик.
Подключение асинхронного двигателя к электрической сети осуществляется только по следующим схемам: «звезда», «треугольник» и их комбинации.
Определение типа способа соединения
Выбор того или иного подсоединения зависит от:
- надежности энергосети;
- номинальной мощности;
- технических характеристик самого двигателя.
Каждое соединение имеет свои плюсы и минусы в работе. В паспорте двигателя от завода-изготовителя, а также на металлическом лейбле на самом устройстве обязательно указана схема его подключения.
При соединении «Звезда» все концы статорных обмоток сходятся водной точке, а напряжение поступает на начало каждой из них. Подключение двигателя «звездой» гарантирует плавный, безопасный пуск агрегата, но на начальном этапе наблюдается значительная потеря нагрузки.
Подключение «треугольником» подразумевает последовательное соединение обмоток в замкнутую структуру, т.е.начало первой фазы соединяют с концом второй и. т.д.
Такое соединение дает выходную мощность до 70% от номинальной, но в таком случае существенно возрастают пусковые токи, что может спровоцировать поломку электродвигателя.
Существует также комбинированное соединение «звезда-треугольник» (такой значок Y/Δ обязательно должен значиться на корпусе мотора). Представленная схема вызывает скачки тока в момент переключения, которые приводят к тому, что скорость вращения ротора быстро снижается, а потом постепенно входит в норму.
Комбинированные схемы актуальны для электромоторов мощностью свыше 5 кВт.
Зависимость выбора от напряжения
Сейчас в промышленности более применимы асинхронные трехфазные электродвигатели отечественного производства, рассчитанные на номинальное напряжение от сети220/380 В. (агрегаты на 127/220 В уже редко используются).
Схема подключения «треугольник»- единственно верная для подключения к российским энергосетям зарубежных электромоторов номинальным напряжением 400-690 В.
Подключение трехфазного двигателя любой мощности осуществляется по определенному правилу: агрегаты низкой мощности присоединяются по схеме «треугольник», а высокомощные – только «звездой».
Так электромотор прослужит долго и проработает без сбоев.
Способ «звезды» применяется при подключении трехфазных асинхронных двигателей номинальным напряжением 127/220 В к однофазным сетям.
Как снизить пусковые токи электродвигателя?
Явление значительного повышения пусковых токов при запуске высокомощных устройств, подсоединенных по схеме Δ, приводит в сетях с перегрузкой к кратковременному падению напряжения ниже допустимого значения.
Все это объясняется особой конструкцией асинхронного электродвигателя, у которого ротор с большой массой обладает высокой инерционностью.
Поэтому на начальном этапе работы мотор перегружается, особенно это актуально для роторов центробежных насосов, турбинных компрессоров, вентиляторов, станочного оборудования.
Чтобы снизить влияние всех этих электротехнических процессов, используют подключение электродвигателя «звездой» и «треугольником». Когда двигатель набирает обороты, ножи специального переключателя (пускателя с несколькими трехфазными контакторами) переводит обмотки статора со схемы Y на Δ.
Для реализации смены режимов кроме пускателя нужно специальное реле времени, благодаря которому происходит временная задержка 50-100 мс при переключении и защита от трехфазного короткого замыкания.
Сама процедура использования комбинированной схемы Y/ Δ эффективно помогает уменьшить пусковые токи мощных трехфазных агрегатов. Происходит это следующим образом:
При подаче напряжения 660 В по схеме «треугольник», каждая обмотка статора получает 380 В (√3 раза меньше), а, следовательно, по закону Ома, в 3 раза уменьшается сила тока. Поэтому при запуске в свою очередь в 3 раза снижается мощность.
Но такие переключения возможны только для моторов с номинальным напряжением 660/380 В при включении их в сеть с такими же значениями напряжения.
Опасно подключать электродвигатель с номинальным напряжением 380/220 В в сеть 660/380 В, его обмотки могут быстро перегореть.
И также помните, что вышеописанные переключения недопустимо применять для электромоторов, у которых на валу размещена нагрузка без инерции, к примеру, вес лебедки или сопротивление поршневого компрессора.
Для такого оборудования устанавливают специальные трехфазные электрические двигатели с фазным ротором, где реостаты уменьшают значение токов при пуске.
Чтобы изменить направление вращения электромотора, необходимо сменить местами две любые фазы сети при любом типе подключения.
Для этих целей при эксплуатации асинхронного электродвигателя применяют специальные электроаппараты ручного управления, к которым относятся реверсивные рубильники и пакетные переключатели или более модернизированные приборы дистанционного управления — реверсивные электромагнитные пускатели (рубильники).
Источник: https://electriktop.ru/oborudovanie/soedinenie-zvezdoj-i-treugolnikom.html
Ювелирное обозрение
Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.
Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.
Различия между «звездой» и «треугольником»
Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.
Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.
Соединение «звездой» и его преимущества
Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.
При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.
Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества применения схемы «звезда»:
- Устойчивый и длительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность, за счет снижения мощности оборудования;
- Максимальная плавность пуска электрического привода;
- Возможность воздействия кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
- Увеличение до максимального значения мощности электрооборудования;
- Использование пускового реостата;
- Повышенный вращающийся момент;
- Большие тяговые усилия.
Недостатки:
- Повышенный ток пуска;
- При длительной работе двигатель сильно греется.
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Тип соединения «звезда-треугольник»
В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.
В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».
В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.
Основные преимущества комбинации:
- Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.
Соединение звездой и треугольником обмоток электродвигателя
- Соединение обмоток звездой и треугольником
- Запуск трехфазного электродвигателя с переключением со звезды на треугольник
- Когда нужно переключаться с треугольника в звезду
Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.
Источник: https://uvelirobzor.com/kak-soedinit-zvezdoj-vyvody-obmotok-trehfaznogo/
Определение начала и конца обмоток трехфазного электродвигателя
В данной статье мы постарались максимально подробно объяснить, как правильно определить необходимые выводы обмотки асинхронного трехфазного электродвигателя, в частности АИР, для дальнейшего правильного его подключения.
Определение пар выводов с помощью тестера
Пара выводов — это конец и начало одной обмотки трехфазного электродвигателя. Для определения пары начало/конец одной обмотки используют тестер, установленный на предел измерения сопротивления:
- Первый щуп тестера подсоединяют к одному из выводов
- Вторым поочередно касаются остальных проводов.
- Если на какой-то паре покажется целостность цепи – это и будет одна из фазных обмоток
- Аналогично выделяются все обмотки
- Каждую из обмоток помечают
Определение начала и конца одной обмотки
При подаче напряжения на любую из обмоток статора, оно индуцируется в оставшиеся 2 обмотки.
https://www.youtube.com/watch?v=3V0zbYIOfZY
Используя эту особенность, тестер и сеть низкого напряжения, можно определить начала и концы обмоток:
- Произвольно соединяются 2 вывода разных обмоток
- На оставшиеся концы обмоток подается низкое напряжение и проверяется напряжение на соединенных обмотках: (напряжение есть — значит соединенные провода — начало одной и конец другой обмотки. Напряжения нет — значит соединены 2 конца, либо 2 начала)
- Концы без напряжения условно помечаются как начала
- Повторяется опыт и соединяется уже найденное начало одной из обмоток с любым выводом на которое подавалось напряжение ранее. Теперь напряжение подается на оставшуюся обмотку.
- Поочередно, подобным образом, проверяются все обмотки.
Найдя начала и концы обмоток, можно приступать к подключению асинхронного электродвигателя по схемам «звезда» либо «треугольник».
Как видно из таблиц обмоточных данных электродвигателей серии АИР, большинство электродвигателей АИР предполагают подключение к сети 220/380 В. Соединив концы обмоток по схеме «треугольник» двигатель будет работать от питания 220 В, а по схеме «звезда» — от 380 В.
Маркировка концов обмотки
Как правило, выводы обмоток асинхронных электродвигателей АИР маркированы попарно и имеют такие обозначения:
Фаза 1: С1 (начало) С4 (конец)
Фаза 2: С2 (начало) С5 (конец)
Фаза 3: С3 (начало) С6 (конец)
Первоочередно определяют и выделяют каждую из пар обмоток электродвигателя. Но порой, для правильного подключения, необходимо определить концы и начала обмоток самостоятельно.
Для более подробного просмотра электрических параметров — переходите к интересующей Вас модели электродвигателя АИР.
Определение начала и конца обмоток электродвигателя обновлено: 17 февраля, 2020 автором: АИР Украины
Источник: https://xn--80aqy.com.ua/poleznoe/obmotka-asinhronnogo-elektrodvigatelya/
Трехфазный асинхронный двигатель
Дмитрий Левкин
Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.
Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.
Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.
Принцип работы. Вращающееся магнитное поле
Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.
Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.
Вращающееся магнитное поле асинхронного электродвигателя
Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.
,
- где n1 – частота вращения магнитного поля статора, об/мин,
- f1 – частота переменного тока, Гц,
- p – число пар полюсов
Концепция вращающегося магнитного поля
Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени
Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.
Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°)
Вращающееся магнитное поле
Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.
Влияние вращающегося магнитного поля на замкнутый проводник с током
Короткозамкнутый ротор асинхронного двигателя
По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.
Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)
Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.
На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.
Изменение тока в стержнях будет изменяться со временем.
Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.
Скольжение асинхронного двигателя. Скорость вращения ротора
Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.
Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2
Источник: https://engineering-solutions.ru/motorcontrol/induction3ph/
Схема подключения трёхфазного двигателя
Бывалому электрику ясна схема подключения магнитного пускателя. Понятно ему и как подключить асинхронный электродвигатель к трёхфазной сети. Но для домашнего мастера далёкого от электричества бывает сложным делом запустить дома станок, причем не имеет значения у него одна фаза или три В этой статье мы разберем как подключить трёхфазный асинхронный электродвигатель к трёхфазной сети переменного тока.
Схема соединения обмоток: звезда и треугольник
Начнем с двигателя, в нём, как известно есть обмотки, но так как он трёхфазный, то и обмотки обычно три (если двигатель односкоростной). Как и любую трёхфазную нагрузку их можно соединить либо звездой, либо треугольником. При подключении звездой — концы всех обмоток соединяют в одной точке, а в треугольнике соединяют конец первой, с началом второй, конец второй с началом третьей, конец третьей с началом первой обмотки.
На рис. 1 изображены эти схемы. На чертежах встречаются в двух вариантах, либо обмотки располагают, повторяя анатомически фигуры звезды и треугольника, либо в более привычном для электрическом схем виде, поэтому на рисунке представлены оба варианта. Цветными линиями условно показаны провода для подключения.
Рисунок 1 — Схемы подключения обмоток электродвигателя
Провода от обмоток электродвигателей выведены в клеммную коробку и закреплены на клеммниках. Эта клеммная коробка называется брно (или борно, а как её называете ВЫ?).
В зависимости от двигателя в брно может быть 3 или 6 проводов.
Если там шесть проводов (начало и конец каждой обмотки) — вы можете выбрать схему подключения для вашего случая и на шильдике указываются 2 номинальных напряжения (об этом поговорим ниже), если провода 3 — то обмотки соединены с завода по звезде или треугольнику, тогда на шильдике указывается 1 номинальное напряжение. Чтобы изменить схему подключения — нужно разбирать двигатель, искать места соединения обмоток, разъединять их и делать отводы в брно (см. рис. 3).
Рисунок 2 — клеммник электродвигателя: а — 6 проводов (возможно изменение схемы соединения обмоток); б – 3 провода на клеммнике. Рисунок 3 — Подключение дополнительных выводов непосредственно к обмотке электродвигателя
Схема подключения выбирается в зависимости от номинальных напряжений электродвигателя и напряжения в электросети, к которой его будут подключать.
Например, у нас есть трёхфазная электросеть с фазным напряжением в 220 вольт, а линейным — 380, стандартные величины для РФ. Нам нужно подключить электродвигатель, что выбрать звезду или треугольник? Осмотрим шильдик электродвигателя, на нем должны быть указаны номинальные напряжения для каждой из схем.
Рисунок 4 — шильдики электродвигателей: а) номинальные напряжения 220/380 для треугольника и звезды соответственно; б) то же самое, но на 380/660; в) без возможности схемы соединения обмоток, номинальное напряжение 380В.
Разберем обозначения двигателей представленные на рисунке 4 подробнее:
а) — подключается по звезде к сети 380/220 (самый распространенный случай) или подключается по треугольнику к сети 127/220 (довольно редкий вариант), либо к трёхфазным частотным преобразователям с однофазным входом на 220В; б) подключается к сети 380/220 только по схеме «треугольник», но возможен запуск с переходом со звезды на треугольник (для уменьшения пусковых токов при пуске двигатель включают по звезде и на обмотки поступает пониженное напряжение, после разгона обмотки переключают в «треугольник» и на них уже поступает номинальное напряжение); в) без возможности переключения обмоток, они уже соединены по схеме звезды и рассчитаны на подключение к 380В, для подключения, например, к однофазной сети такой двигатель необходимо вскрыть для вывода концов обмоток и соединения их в «треугольник»., как было показано на рис. 3 Рисунок 5 — различные варианты клеммников для 3 и 6 проводов
С напряжениями и схемами разобрались, идём дальше, чтобы понять, как собрать ту или иную схему. К шпилькам клеммников провода от начал и концов обмоток подключаются строго в определенном порядке, так, чтобы с помощью трёх перемычек можно (или двух перемычек) было собрать звезду или треугольник с минимальным количеством действий. Перемычки, конечно, зачастую стоят из куска провода, но с завода двигатели поставляются с небольшими шинками соответствующих размеров и формы, что мы рассмотрим далее.
Так чтобы была возможность легко и правильно соединить обмотки, их концы располагают следующим образом: начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй (вспомните схемы на рисунке 1).
Рисунок 6 – Расположение концов обмоток на шпильках клеммника и схемы соединения шпилек перемычками (в нижней части рисунка) для треугольника и звезды Рисунок 7 – На крышках брно многих двигателей есть обозначения соответствующих схем, как памятка (справа) Рисунок 8 — Фото положения перемычек для треугольника и звезды
Схема подключения
С выбором схемы соединения обмоток разобрались, идём дальше. В простейшем случае, двигатель может подключаться напрямую к автоматическому выключателю.
Рисунок 9 — Схема прямого пуска асинхронного двигателя
Но этот вариант не удобный и не надёжный, хотя бы потому что автоматический выключатель создан для защиты и аварийного выключения цепи, а не для её постоянного рабочего включения и выключения. Для этого есть специальный прибор, такой как контактор или магнитный пускатель.
Они бывают разными как по силе коммутируемого тока, так и по номинальному напряжению их катушки. Ниже будут приведены схемы для пускателей с катушкой на 220 вольт, схемы на 380 аналогичны, но один из проводов катушки следует соединить не с нулем, а со второй фазой.
Контактор – это электромагнитный коммутационный прибор. Работает, как и обычное реле: чтобы привести его контакты в движение нужно подать на катушку напряжение.
Рисунок 10 — Назначение элементов контактора, катушка обозначается буквами A1 и A2 (на рисунке она на 220В обратите внимание, где это обозначается), силовые контакты L1(1), L2(3), L3(5), T1(2), T2(4), T3(6), а блок контакты 13, 14 NO (normal open), если они нормально-разомкнутые или NC (normal closed), если нормально-замкнутые.
Пускатели и контакторы обычно включают через кнопочные посты, это одна или несколько кнопок без фиксации. В каждой кнопке есть две пары контактов — нормально-замкнутая и нормально-разомкнутая.
Рисунок 11 — Кнопочный пост
Рассмотрим первую самую простую схему. Здесь двигатель будет работать только пока нажата кнопка «ПУСК». Если вместо кнопки поставить тумблер, то двигатель будет вращаться пока тумблер включен — такое решение подходит для большей части применений.
Рисунок 12 —Нереверсивная схема магнитного пускателя без самоподхвата, здесь: QF — автоматический выключатель, КМ-1 (слева) – силовые контакты магнитного пускателя, КМ-1 (справа) — катушка пускателя
Но если вам нужно, чтобы двигатель запускался и останавливался от кнопок «ПУСК» и «СТОП», следует использовать схему с самоподхватом.
Рисунок 13 — Нереверсивная схема магнитного пускателя с самоподхватом, здесь: QF — автоматический выключатель, КМ-1 (слева) – силовые контакты магнитного пускателя, КМ-1 (справа) — катушка пускателя, КМ-1.1 — нормально-разомкнутый блок контакт пускателя
Принцип работы схемы:
Когда автоматический выключатель QF включен на силовых контактах контактора и цепи управления появляется напряжение. Через нормально-замкнутую кнопку «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК» и блок-контакт. При нажатии кнопки «ПУСК» подаётся напряжение на катушку, контактор срабатывает, замыкаются его силовые контакты, замыкается и блок контакт.
Когда кнопку пуск отпускают — контактор остаётся включенным, поскольку ток катушки течет через блок контакт КМ-1.1. Именно это и называется «самоподхват». Чтобы отключить двигатель — нужно разорвать цепь катушки, для этого нажимают на кнопку «Стоп».
Но далеко не во всех случаях достаточно вращения двигателя в одном направлении, есть ряд примеров, когда необходимо обеспечить реверс.
Для реверсирования трёхфазных асинхронных двигателей следует поменять местами две любые фазы (см. подключение цветных проводов на рис. 14).
Рисунок 14 — Реверсивная схема с самоподхватомТакую схему часто называют «реверсивная схема пускателя»
Фактически, реверсивная схема подключения трёхфазного двигателя– это две нереверсивных схемы. Разберем отличия.
Здесь добавлена блокировка на нормально-замкнутых контактах контакторов КМ-1.2 и КМ-2.2. Они подключаются в цепь катушки противоположного контактора (КМ2.2 в цепь катушки КМ-1 и наоборот), электрики называют это «защитой от дурака», она защищает от случайного включения контактора, отвечающего за движение в противоположную сторону (когда включен КМ-1 нельзя включать КМ-2 и наоборот).
Если включить оба контактора сразу — произойдет межфазное замыкание.
Второе отличие как раз с этим и связано. Обратите внимание, как подключены силовые контакты КМ-2, а именно на то, как подключен красный проводник. С помощью этого контактора и происходит смена чредования фаз в обмотках двигателя и, как следствие, вращение в другую сторону.
Для смены направления вращения нужно остановить двигатель кнопкой «СТОП» и снова запустить уже в другом направлении.
Соответственно для сборки такой схемы либо в контакторе должно быть две пары блок контактов (нормально-замкнутый и нормально-разомкнутый), либо устанавливать на такой контактор как был показан выше приставку с блок-контактами.
Рисунок 15 — Контактор и приставка с дополнительными контактами
Заключение
Встречаются и другие схемы, например, без самоподхвата, для подключения тельферов и грузоподъемных механизмов, с тепловыми реле и универсальными устройствами для защиты двигателя и рассмотреть их все в пределах одной статьи сложно, поэтому предлагаю поделиться опытом и обсудить эту тему в комментариях.
Источник: https://vk.com/@etm_company-shema-podkluchenie-trehfaznogo-dvigatelya