Соединение конденсаторов — Основы электроники
В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.
Рисунок 1. Способы соединения конденсаторов.
Параллельное соединение конденсаторов
Если группа конденсаторов включена в цепь таким образом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2.).
Рисунок 2. Параллельное соединение конденсаторов.
При заряде группы конденсаторов, соединенных параллельно, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока.
Общее же количество электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из конденсаторов, так как заряд каждого их конденсаторов происходит независимо от заряда других конденсаторов данной группы.
Исходя из этого, всю систему параллельно соединенных конденсаторов можно рассматривать как один эквивалентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.
Обозначим суммарную емкость соединенных в батарею конденсаторов буквой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:
Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и вообще при любом числе конденсаторов.
Последовательное соединение конденсаторов
Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последовательным (рисунок 3).
Рисунок 2. Последовательное соединение конденсаторов.
При последовательном соединении все конденсаторы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заряжаются через влияние. При этом заряд пластины 2 будет равен по величине и противоположен по знаку заряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пластины 2 и т. д.
Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.
Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.
Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.
Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряжения, существующего на всей группе конденсаторов. Напряжение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединенных последовательно, меньше емкости самого малого конденсатора в группе.
Для вычисления общей емкости при последовательном соединении конденсаторов удобнее всего пользоваться следующей формулой:
Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:
Последовательно-параллельное (смешанное) соединение конденсаторов
Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.
На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.
Рисунок 4. Последовательно-параллельное соединение конденсаторов.
При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:
1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.
2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.
3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.
4. Рассчитывают емкость полученной схемы.
Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.
Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.
Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Источник: http://www.sxemotehnika.ru/soedinenie-kondensatorov.html
Конденсаторы. Назначение, устройство и виды. Физика. 10 класс. — Объяснение нового материала
Электроёмкость. Конденсаторы
Электроемкость
На предыдущих уроках мы знакомились с элементарными электрическими понятиями и принципами, в частности, мы говорили об электризации – явлении перераспределения заряда. Разговор о более глубоком исследовании этого явления начнем с опыта.
Изначально пусть нам даны две разные по размеру изолированные банки, подключенные к электроскопу (рис. 1):
Рис. 1
Теперь к каждой из банок поднесли одинаково заряженное тело. Естественно, с каждой банкой произойдет процесс электризации, и стрелки обоих электроскопов разойдутся. Однако оказалось, что электроскоп большей банки показал меньшее отклонение (рис. 2):
Рис. 2
Данный опыт доказывает, что различные тела электризуются одним и тем же зарядом по-разному (конкретно большая банка одним и тем же зарядом зарядилась до меньшего потенциала). И существует некоторая величина, которая показывает способность тела накапливать электрический заряд. Собственно, о ней и пойдет речь.
Определение. Электроемкость (емкость) – величина, равная отношению заряда переданного проводнику к потенциалу этого проводника.
Здесь: – емкость; – переданный заряд; – потенциал, до которого зарядился проводник.
Конденсаторы
Теперь непосредственно познакомимся со специализированными приборами для накопления зарядов.
Определение. Конденсатор – набор проводников, служащий для накопления электрического заряда. Конденсаторы состоят из двух проводников и разделяющего их диэлектрика, причем толщина диэлектрического слоя много меньше размеров проводников (рис. 3).
Рис. 3. Схематическое изображение конденсатора
Особое внимание мы будем уделять так называемым плоским конденсаторам (слой диэлектрика расположен между двумя плоскими пластинами проводника). На электрической схеме конденсатор обозначается следующим образом (рис. 4):
Рис. 4. Условное обозначение конденсатора на электрической схеме
Емкость конденсатора определяется так же, как и любая другая электроемкость, однако с небольшим отличием (так как речь идет о системе проводников, а не о отдельно взятом проводнике, в формуле фигурирует не потенциал, а разность потенциалов или напряжение)
Здесь: – заряд на обкладках конденсатора (так называются проводники, из которых состоит конденсатор); – напряжение между обкладками конденсатора.
Единица измерения емкости: Ф – фарад
Однако, конечно же, емкость конденсатора – не постоянная величина, она зависит от конструкторских особенностей самого конденсатора. В случае плоского конденсатора эта зависимость имеет следующий вид:
Здесь: – диэлектрическая проницаемость среды; – электрическая постоянная; – площадь обкладки конденсатора; – расстояние между обкладками.
В конденсаторах роль диэлектрической прослойки, как правило, выполняет пропитанная соответствующим составом бумага, расположенная между двумя тонкими листами металла (рис. 5).
Рис. 5. Устройство конденсатора
Конденсаторы можно разделить на три основных типа:
Конденсатор постоянной емкости – это свернутая в рулон упомянутая выше трехслойная лента (две ленты проводника и лента диэлектрика между ними). Конденсаторы переменной емкости – приборы, используемые в радиотехнике, позволяющие регулировать параметры, от которых зависит емкость – ширина пластин и расстояние между ними (рис. 6). Батарея же конденсаторов – это несколько конденсаторов, связанных по определенной схеме.
Рис. 6. Модель конденсатора переменной емкости
Энергия конденсаторов
Конденсатор – прибор для накопления заряда, и проводники, на которых накапливается заряд, создают между собой электрическое поле, а значит, конденсатор обладает некоторой энергией. Энергия конденсатора, по закону сохранения энергии, должна быть равна работе, выполненной по разделению зарядов.
Как мы уже знаем, работа по перемещению заряда в поле равна:
Здесь: – заряд; – напряженность; – модуль перемещения.
И теперь, если рассмотреть наш случай поля конденсатора, получается, что напряженность создается одновременно двумя обкладками, и для рассмотрения одной обкладки мы должны записать
Рис. 7. Однородное поле конденсатора
Воспользовавшись теперь формулой связи напряженности и напряжения из прошлого урока:
Формула для энергии конденсатора принимает вид:
Использовав в этой формуле формулу определения емкости конденсатора, можно получить еще две формы записи для энергии:
или
Этот урок завершает тему электростатики. Следующий будет посвящен уже электрическому току.
Дополнение 1. Электроемкость шара.
Для того чтобы оценить насколько велика емкость в 1 Ф, возьмем в качестве накапливающего заряд тела проводящий шар и выведем зависимость его емкости от его размеров.
Из предыдущего урока мы знаем формулу для определения потенциала шара:
Подставим теперь её в определение емкости:
Давайте рассмотрим случай в вакууме или же в воздухе (). Каковы же должны быть размеры шара, чтобы его емкость равнялась 1 Ф?
Для сравнения радиус Земли равен:
Дополнение 2. Соединение конденсаторов.
Иногда не получается найти конденсатор нужной конфигурации, тогда приходится составлять блоки из нескольких конденсаторов. Соединить два или более конденсатора можно двумя различными способами: параллельно или последовательно.
Параллельное соединение (рис. 8):
Рис. 8. Параллельное соединение конденсаторов
Так как выходы источника питания подсоединены одновременно к обкладкам всех конденсаторов, то потенциалы всех обкладок равны, металл является эквипотенциальной поверхностью:
Заряды на обкладках параллельно соединенных конденсаторов суммируются:
Разделив второе равенство на напряжение (любое, так как они равны) и воспользовавшись определением емкости конденсатора, получим:
Последовательное соединение (рис. 9):
Рис. 9. Последовательное соединение конденсаторов
Так как две обкладки соседних конденсаторов являются одной деталью, отрезанной от остальных проводников, по закону сохранения заряда, сумма их зарядов должна оставаться равной нулю, а значит, они равны по модулю, но противоположны по знаку, поэтому:
Падение же напряжения на всем участке складывается из падений напряжения на каждом конденсаторе:
Теперь, разделив второе равенство на заряд (любой, так как они равны) и воспользовавшись определением емкости конденсатора, получим:
К занятию прикреплен файл «!». Вы можете скачать файл в любое удобное для вас время.
Использованные источники:
- http://www.umnik-umnica.com/ru/school/physics/10-klass/
- http://www..com/watch?v=xTNJafhwnJc
- http://www..com/watch?v=caL9tZ1MExs
Источник: https://www.kursoteka.ru/course/3897/lesson/13079/unit/31779
Соединение конденсаторов
Радиоэлектроника для начинающих
У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”
Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!
Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?
Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.
В реальности это выглядит так:
Параллельное соединение
Принципиальная схема параллельного соединения
Последовательное соединение
Принципиальная схема последовательного соединения
Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.
Как рассчитать общую ёмкость соединённых конденсаторов?
Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.
Общая ёмкость параллельно соединённых конденсаторов:
С1 – ёмкость первого;
С2 – ёмкость второго;
С3 – ёмкость третьего;
СN – ёмкость N-ого конденсатора;
Cобщ – суммарная ёмкость составного конденсатора.
Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!
Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!
Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.
Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:
Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .
Или то же самое, но более понятно:
Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.
В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:
Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.
Стоит также запомнить простое правило:
При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.
Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.
Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.
Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).
Замер ёмкости при последовательном соединении
Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)
А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).
Измерение ёмкости при параллельном соединении
Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).
Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.
При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.
Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.
Для электролитических конденсаторов
При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.
Параллельное соединение электролитов
Схема параллельного соединения
В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.
Последовательное соединение электролитов
Схема последовательного соединения
Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор.
То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт.
Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.
Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.
Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены
Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!
» Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Источник: https://go-radio.ru/connection-of-capacitors.html
Как соединить конденсаторы
Июль 23, 2014
14519 просмотров
В предыдущих статьях были рассмотрены вопросы работы и характеристики конденсаторов. Сейчас Я расскажу о всех методах соединения конденсаторов для подключения в схему. Сразу скажу, что в жизни практически везде, за исключением редких случаев используется только параллельная схема подключения.
Следует знать, что в цепи переменного тока конденсатор выступает еще как емкостное сопротивление. При чем с увеличением величины емкости конденсатора- уменьшается сопротивление в цепи переменного тока.
Соединение конденсаторов последовательно
При последовательном соединении конденсаторов каждая из обкладок соединяется только в одной точке с одной обкладкой другого конденсатора. Получается цепочка конденсаторов. Крайние два вывода подключаются к источнику тока, в результате чего происходит перераспределение между ними электрических зарядов. Заряды на всех промежуточных обкладках одинаковые величине с чередованием по знаку.
Через все соединенные конденсаторы последовательно протекает одинаковой величины ток, потому что у него нет другого пути прохождения.
Общая же емкость будет ограничиваться площадью обкладок самого маленького по величине, потому что как только зарядится полностью конденсатор с самой маленькой емкостью- вся цепочка перестанет пропускать ток и заряд остальных прервется.
Высчитывается же емкость по этой формуле:Но при последовательном соединении увеличивается расстояние (или изоляция) между обкладками до величины равной сумме расстояний между обкладками всех последовательно подключенных конденсаторов.
Например, если взять два конденсатора с рабочим напряжением 200 Вольт и соединить последовательно, то изоляция между их обкладками сможет выдержать 1000 Вольт при подключении в схему.
Из выше сказанного можно сделать вывод, что последовательно соединять необходимо:
- Для получения эквивалентного меньшего по емкости конденсатора.
- Если необходима емкость, работающая на более высоких напряжениях.
- Для создания емкостного делителя напряжения, который позволяет получить меньшей величины напряжение из более высокого.
Практически, для получения первого и второго достаточно просто купить один конденсатор с необходимой величиной емкости или рабочим напряжением. Поэтому данный метод соединения в жизни не встречается.
Смешанное соединение конденсаторов
Встречается смешанное соединение только на различных платах. Для него характерно наличие в одной цепи параллельного и последовательного соединения конденсаторов. При чем смешанное соединение может быть как последовательного, так параллельного характера.
В жизни подробные знания о смешанном соединении могут только пригодится радиолюбителям, поэтому не буду на этом подробно останавливаться.
Из следующей статьи Вы узнаете как правильно проверить и определить емкость конденсатора.
Источник: http://jelektro.ru/elektricheskie-terminy/soedinenie-kondensatorov.html
Что такое конденсатор. Его параметры
Приветствую, друзья!
В первой части статьи мы рассмотрели, как устроен конденсатор.
Вы уже знаете, в каких единицах измеряется его ёмкость, как конденсаторы обозначаются в электрических схемах.
Вы уже знаете, где и как используются конденсаторы в компьютерной технике.
Конденсатор, как и любой компьютерный «кирпичик», обладает параметрами, которые характеризуют его работу.
Давайте углубим наши знания и посмотрим
Какими ещё параметрами характеризуются конденсаторы?
Вообще говоря, таких параметров много. У нас тут не нобелевская лекция, поэтому ограничимся только необходимым минимумом, который пригодится в практической деятельности.
Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего.
Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.
Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты.
Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры.
Полная информация о всех параметрах конденсатора имеется в соответствующем даташите (справочных данных), который имеется на сайте фирмы — производителя.
ESR (Equivalent Series Resistance) — эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.
Это приведет к нагреву конденсатора.
Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру.
В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR.
Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома.
Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора. Поэтому он быстро выйдет из строя.
Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.
Что будет, если перепутать полярность конденсатора?
Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя!
Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток.
Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус.
Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе.
Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.
При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу.
Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме.
Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.
Как правильно заменить неисправные конденсаторы при ремонте материнской платы компьютера можно прочитать здесь.
Как измерить ёмкость и ESR конденсатора?
Ёмкость конденсатора можно измерить с помощью обычного цифрового мультиметра.
Большинство цифровых мультиметров могут измерять не только ток, напряжение или сопротивление, но и ёмкость.
При измерении емкости надо с помощью переключателя выбрать необходимый поддиапазон и использовать отдельные гнёзда с маркировкой «F».
Однако большинство мультиметров измеряет емкость не более 20 микрофарад. А если надо измерить ёмкость в несколько тысяч микрофарад?
В этом случае необходимо использовать комбинированные приборы — измерители ёмкости и ESR. Существует множество разновидностей таких приборов и приборчиков.
Автор использует в своей практике мультитестер с АлиЭкспресс.
Кроме измерения ESR и ёмкости, им можно проверять полупроводниковые приборы, сопротивления и индуктивности.
Удобная штука, доложу я вам!
Если проверять вздутые электролитические конденсаторы — выяснится, что у них повышенное ESR и сниженная емкость.
Иногда тестер вообще дают ошибку, не опознавая конденсатор как конденсатор. Может быть и так, что конденсатор по внешнему виду абсолютно нормальный, но имеет повышенное ESR (хотя и достаточную емкость).
Поэтому в блоке питания он нормально работать не будет!
Заканчивая, отметим, что конденсаторы небольшой ёмкости, использующиеся в «дежурке» компьютерного блока питания, имеют очень небольшие габариты. Электролита у них внутри немного, поэтому у них «не хватает силы» вздуться.
И только измеритель ESR позволит выявить их дефект.
Купить такой мультитестер можно здесь:
Питаться он может от батареи 6F22 («Крона»). Но можно использовать и адаптер AC/DC с выходным напряжением 9-12 В.
До встречи на блоге!
Источник: https://vsbot.ru/lektronika/chto-takoe-kondensator-ego-parametry.html
Конденсаторы. Параллельное и последовательное соединение конденсаторов
Если к заряженному проводнику приближать другие тела, то на них возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Q будут заряды противоположного знака. Эти заряды ослабляют поле, создаваемое зарядом Q, т. е. понижают потенциал проводника, что приводит к повышению его электроемкости.
Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком.
На емкость конденсатора недолжны, оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора.
Этому условию удовлетворяют: две плоские пластины; два коаксиальных цилиндра; две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.
Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, возникающие на разных обкладках, являются равными по модулю разноименными зарядами. Емкостью конденсатора называется физическая величина, равная отношению заряда, накопленного в конденсаторе, к разности потенциалов между его обкладками:
(1)
Если расстояние между пластинами конденсатора мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. При наличии диэлектрика между обкладками разность потенциалов между ними равна
(2)
где ε— диэлектрическая проницаемость.
Емкость плоского конденсатора:
Емкость цилиндрического конденсатора:
,
где l – длина конденсатора, r1, r2 – радиусы внутренней и внешней обкладок.
Емкость сферическогоконденсатора:
Конденсаторы характеризуются пробивным напряжением — разностью потенциалов между обкладками конденсатора, при которой происходит пробой — электрический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.
Для увеличения емкости и варьирования ее возможных значений конденсаторы соединяют в батареи, при этом используется их параллельное и последовательное соединение.
Параллельное соединение конденсаторов
У параллельно соединенных конденсаторов разность потенциалов на обкладках конденсаторов одинакова и равна А- В. Если емкости отдельных конденсаторов C1, C2, ., Сn,то их заряды равны
,
а заряд батареи конденсаторов
Важно! Когда работу писать становится сложно, можно обратиться с вопросом к экспертам. Это поможет сделать работу быстро.
Подробнее
Полная емкость батареи равна сумме емкостей отдельных конденсаторов
Допустимое напряжение определяется допустимым напряжением меньшего конденсатора.
Последовательное соединение конденсаторов
У последовательно соединенных конденсаторов заряды всех обкладок равны по модулю, а разность потенциалов на зажимах батареи
где для любого из рассматриваемых конденсаторов
С другой стороны,
откуда
т. е. при последовательном соединении конденсаторов суммируются величины, обратные емкостям. Таким образом, при последовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемойв батарее.
Источник: https://nauchniestati.ru/spravka/kondensatory-parallelnoei-i-posledovatelnoe-soedinenie-kondensatorov/
Последовательное и параллельное соединение конденсаторов
Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным (смешанным).
Если провести аналогию между соединением конденсаторов и соединением резисторов , то стоит отметить, что формулы расчета общей емкости и общего сопротивления идентичны, только между разными типами соединений:
Формула Cобщ при параллельном соединении конденсаторов = формула Rобщ при последовательном соединении резисторов.
Формула Cобщ при последовательном соединении конденсаторов = формула Rобщ при параллельном соединении резисторов.
- Cобщ — общая емкость
- Rобщ — общее сопротивление
Напряжение при параллельном соединении
На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения.
Падение напряжения при параллельном соединении
Ток при параллельном соединении
Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:
- ic — ток конденсатора
- C — Емкость конденсатора
- ΔVC/Δt – Скорость изменения напряжения
При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:
Ток при параллельном соединении
Ток при последовательном соединении
Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения:
Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости. Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора.
Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд:
Посмотрим на последовательную цепь из трех конденсаторов на рисунке выше. Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи.
В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится.
При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.
Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи.
Площадь и расстояние между обкладками при последовательном соединении
Падение напряжения и общая емкость при последовательном соединении
На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет.
Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов:
Падение напряжения при последовательном соединении
Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3.
Следовательно:
Разделив все выражение на Qобщ мы получим уравнение для общей емкости при последовательном соединении:
Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.
Например, общая емкость для трех конденсаторов:
Общая емкость для двух конденсаторов:
Зачем все это нужно?
Вполне справедливым может оказаться вопрос, для чего надо соединять конденсаторы последовательно, если общая емкость будет меньше? Скорее всего, первым что приходит в голову — это чтобы получить новый эквивалентный конденсатор с меньшей емкостью. Но в производстве микросхем вряд ли будут делать подобное, поскольку, во -первых, обычно нужно экономить место на печатной плате, а во-вторых, нет смысла тратить деньги на два компонента или больше, если можно купить один с требуемой емкостью.
Но если в параллельном или последовательном соединении конденсаторов еще есть хоть какая-то логика, то кому вообще нужно смешанное?
Дело в том, что емкостью, то есть способностью накапливать электрический заряд, обладает любое тело в природе, даже человеческое. Если мы говорим о электрической цепи, то все ее элементы на практике обладают емкостью, и их можно представить как конденсаторы. Часто такую емкость еще называют паразитической, потому как она создает разного рода помехи.
Например, у нас есть какая-то электронная цепь с множеством различных компонентов, которая принимает сигнал, обрабатывает его определенным образом и выдает на выход результат.
Известно, что время задержки сигнала, в основном, зависит от паразитической емкости электронных компонентов схемы. Поскольку должно пройти время зарядки паразитической емкости, прежде чем она начнет пропускать сигнал.
Если мы хотим узнать время задержки, нужно посчитать общую емкость всех компонентов, конвертировав их в цепь из конденсаторов.
Источник: http://hightolow.ru/capacitor3.php
Последовательное соединение конденсаторов
Конденсаторы, наряду с резисторами и диодами, входят в тройку наиболее распространённых электронных компонентов. Различные их соединения встречаются в подавляющем большинстве электробытовых приборов. Их можно встретить в персональных компьютерах, пылесосах, лампочках и даже смартфонах.
Как правильно соединять конденсаторы
Чтобы узнать, как подключить конденсатор правильно, нужно разобраться, к какому именно типу он относится. Данных электронных приборов существует огромное множество. Все конденсаторы подразделяются на две группы:
- полярные (электролитические) – подключая их, необходимо учитывать, где у детали плюсовой, а где минусовой контакт;
- неполярные (все остальные) – эти конденсаторы способны работать от переменного тока, у них не бывает положительных и отрицательных клемм.
Затем нужно учесть конструкцию электронного компонента. С этой точки зрения конденсаторы могут быть:
- Выводными. Подключаются к плате с помощью тонких медных ножек, покрытых (лужёных) для защиты слоем припоя.
- Для поверхностного монтажа (SMD). В основном применяются в компактной электронике. Очень миниатюрны, часто в поперечнике не превышают 1 мм.
Также важно принять во внимание рабочее напряжение конденсатора. Это особенно принципиально для электролитических приборов данного типа, ведь при превышении их номинального вольтажа они, вероятнее всего, взорвутся, разбрызгивая во все стороны кипящий электролит.
Важно! На крышке электролитического конденсатора имеются две насечки. Эти слабые места служат для мгновенной разгерметизации изделия в случае избыточного внутреннего давления. При ремонте и наладке оборудования следует избегать направленности насечек на лицо или одежду. При внештатной ситуации с их стороны может брызнуть горячий электролит.
Не менее критичен порог максимального напряжения и для прочих видов конденсаторов, особенно имеющих мелкие габариты и не способных длительно выдерживать перегрузки.
Последний, но не наименее важный фактор, который следует учесть при соединении конденсаторов, – это их ёмкость. Она измеряется в микрофарадах (в честь Майкла Фарадея). Это их главная характеристика, поэтому конденсаторы часто называют электрическими ёмкостями. В некоторых электронных устройствах этот параметр может существенно отклоняться как в меньшую, так и в большую сторону. В других – недопустимо погрешность и на 1 %.
Схема последовательного соединения
Последовательное и параллельное соединение аккумуляторов
Последовательное соединение конденсаторов подразумевает, что правая ножка каждой предстоящей ёмкости будет подключена к левому выводу последующей. Иными словами, детали объединяются в цепь, в которой они идут друг за другом, как люди в длинной очереди в магазине.
Если подключаются электролитические конденсаторы, то плюс одной детали соединяется с минусом другой, по тому же принципу, как и батарейки в различных портативных гаджетах.
Последовательное включение ёмкостей
В случае с распаянными на плате SMD деталями у каждой детали есть своё место, подключаются они тонкими медными проводниками – дорожками при помощи паяльника (редко) или термофена.
При последовательном соединении двух и более ёмкостей их рабочее напряжение суммируется. Нередко такой подход используется радиолюбителями, когда у них нет детали на нужный вольтаж. Формула для вычисления рабочего напряжения линейки из n конденсаторов выглядит следующим образом:
Uобщ.посл = U1 + U2 + + Un.
Здесь U1, U2 – максимальный вольтаж каждого отдельно взятого конденсатора.
С ёмкостью линейки последовательно включенных деталей всё обстоит иначе. Она наоборот снижается. Объясняется это конструктивными особенностями этих приборов, а именно виртуальным увеличением расстояния между их обкладками. При последовательном соединении общая ёмкость определяется следующим выражением:
1/Cобщ.посл = (1/С1) + (1/С2) + + (1/Сn).
Здесь C1, C2 – ёмкости отдельных конденсаторов.
Имеется более простой расчет этого параметра, но он пригоден только в том случае, если подключены два конденсатора, не более:
Cобщ.посл = С1*С2/(С1 + С2).
Параллельное и комбинированное соединение
Выделяются другие способы соединения, а именно комбинированное и параллельное подключение конденсаторов. Для них справедливы иные физические законы.
Параллельные конденсаторы
Напряжение всей группы при параллельном соединёнии конденсаторов равно вольтажу самого наименьшего из них. Т.е., если имеется цепь из трёх конденсаторов на 16, 25 и 50 В, то максимум, который на них можно подать, это 16 В. В такой схеме к каждой отдельной ёмкости будет приложено полное напряжение источника питания.
Ёмкость такой батареи складывается. Вызвано это виртуальным сложением площадей обкладок всех отдельных конденсаторов. На языке физики это выглядит так:
Cобщ.пар = С1 + С2 + + Сn.
Зачем нужно такое соединение? Оно используется для увеличения ёмкости конденсаторов, например, в высоковольтной части сварочных инверторов и многих мощных блоках питания.
Дополнительная информация. Параллельное соединение позволяет снизить общее внутреннее сопротивление сборки, следовательно, и её нагрев. Тем самым можно увеличить срок службы ёмкости.
Комбинированное (смешанное) соединение наиболее сложное. В нём встречаются как последовательные, так и параллельные элементы. Расчёт параметров таких схем даётся с опытом. Для простоты его принято изучать по треугольнику, разбивая на более простые части.
Из схемы очевидно, что конденсаторы C1 и C2 включены последовательно. Их общую ёмкость можно рассчитать по вышеописанной формуле – Cобщ.посл. Далее схема упрощается. Здесь уже имеются два параллельных конденсатора Cобщ.посл и C3.
Вычисляется по вышестоящей формуле Cобщ.пар. В итоге сложный для восприятия элемент цепи превращается в один эквивалентный конденсатор.
Данная методика описывает алгоритм упрощения, с помощью которого можно рассчитывать гораздо более сложные конденсаторные фигуры (квадрат, куб и т.п.).
Ток при последовательном соединении конденсаторов
Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.
Конденсатор и постоянный ток
Маркировка танталовых smd конденсаторов
Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги.
Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик.
В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.
Конденсатор и переменный ток
При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.
Важно! Конденсаторы способны накапливать и длительно удерживать заряд. При работе с ёмкостями, заряженными от сети 220 В, их всегда следует разряжать сопротивлением в 100-1000 ом. Несоблюдение правила однажды приведёт к неприятному удару током.
Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:
I = 2pfCU.
Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.
Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.
Падение напряженности и общая емкость
Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:
C = q/U.
Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.
Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:
C = E0ES/d,
где:
- E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
- E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
- S – их площадь пересечения,
- d – расстояние между обкладками.
Стандартная модель конденсатора имеет следующий вид.
Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.
От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения.
Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы.
В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.
При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.
Источник: https://amperof.ru/teoriya/posledovatelnoe-soedinenie-kondensatorov.html
Последовательное соединение конденсаторов: практические решения
Последовательное соединение конденсаторов обычно используют в двух случаях: чтобы получить конденсатор с высоким допустимым напряжением или чтобы получить конденсатор с нужной емкостью.
Подбираем сопротивление конденсатора
При подборе емкости конденсатора, конечно, проще использовать параллельное соединение, так как емкости всех конденсаторов просто суммируются.
Но если нужно получить значение емкости ниже чем у любых имеющихся конденсаторов, то последовательное соединение нас выручит.
Удивительно но формула расчета емкостей конденсаторов при последовательном включении, очень похожа на формулу для расчета параллельного сопротивления резисторов.
Cs=C1*C2/(C1+C2). Да, неудобная формула, проще воспользоваться калькулятором.
Высоковольтный конденсатор
Если необходимо получить конденсатор с высоким напряжением, можно использовать два или более конденсаторов на низкое напряжение. Объединять лучше всего конденсаторы с максимально похожими характеристиками.
Так как при последовательном включении конденсаторы заряжаются и разряжаются одним и тем же током, то из-за отличии в значениях емкости, конденсаторы могут заряжаться до разных значений напряжения и чем больше разница в емкостях, тем будет больше разбаланс напряжений.Еще проблемы при таком включении создает разброс токов утечки.
Чем больше ток утечки конденсатора, тем быстрее он будет разряжатся, при этом конденсаторе с меньшим током утечки напряжение будет расти и со временем, на первом конденсаторе напряжение станет равным нулю, а на втором полным напряжением. Получиться, что работает только один конденсатор.
Чтобы сбалансировать напряжение на конденсаторах, нужно параллельно каждому конденсатору в цепочке подключить резистор. Сопротивление резистора рассчитывается, таким образом чтобы через резистор тек ток раз в 10 больше чем разница между токами утечек последовательно включенных конденсаторов.
Из двух полярных конденсаторов один неполярный
Бывают ситуации, когда нужен неполярный конденсатор, а в наличии только полярные. Тогда можно взять два полярных конденсатора с емкостью в два раза выше, чем должен получиться требуемый конденсатор и объединить их встречно-последовательно, то есть между собой плюс с плюсом или минус с минусом. А оставшиеся два вывода запаять в схему.
Источник: http://hardelectronics.ru/posledovatelnoe-soedinenie-kondensatorov-prakticheskie-resheniya.html
Вычисление падений напряжения на конденсаторах
К примеру, имеются сеть переменного тока 12 В и две альтернативных электроцепи подсоединения последовательных конденсаторных элементов:
- первая – для подключения одного конденсатора С1 = 0,1 мкФ, другого С2 = 0,5 мкФ;
- вторая – С1 = С2 = 400 нФ.
Первый вариант
- Итоговая емкость электросхемы С = (С1 х С2)/(С1 + С2) = 0,1 х 0,5/(0,1 + 0,5) = 0,083 мкФ;
- Падение напряжения на одном конденсаторе: U1 = U x C/C1 = 12 x 0,083/0,1 = 9,9 В
- На втором конденсаторе: U2 = U x C/C2 = 12 х 0,083/0,5 = 1,992 В.
Второй вариант
- Результирующая емкость С = 400 х 400/(400 + 400) = 200 нФ;
- Падение напряжения U1 = U2 = 12 x 200/400 = 6 В.
Согласно расчетам, можно сделать выводы, что если подключаются конденсаторы равных емкостей, вольтаж делится поровну на обоих элементах, а когда емкостные значения различаются, то на конденсаторе с меньшей емкостной величиной напряжение увеличивается, и наоборот.
Особенности замены конденсаторов
К примеру, в наличии сеть переменного тока 12 В и две альтернативных группы последовательных конденсаторных элементов.
Конденсаторы подсоединяются в последовательный контур для увеличения напряжения, под которым они остаются работоспособными, но их общая емкость падает в соответствии с формулой для ее расчета.
Часто применяется смешанное соединение конденсаторов, чтобы создать нужную емкостную величину и увеличить напряжение, которое детали способны выдержать.
Можно привести вариант, как соединить несколько компонентов, чтобы выйти на нужные параметры. Если требуется конденсаторный элемент 80 мкФ при напряжении 50 В, но есть только конденсаторы 40 мкФ на 25 В, необходимо образовать следующую комбинацию:
- Два конденсатора 40 мкФ/25 В подсоединить последовательно, что позволит иметь в общей сложности 20 мкФ /50 В;
- Теперь вступает в действие параллельное включение конденсаторов. Пара конденсаторных групп, включенных последовательно, созданных на первом этапе, соединяются параллельно, получится 40 мкФ / 50 В;
- Две собранные в итоге группы соединить параллельно, в результате получим 80 мкФ/50 В.
Важно! Для того чтобы усилить конденсаторы по напряжению, возможно их объединить в последовательную электросхему. Увеличение общей емкостной величины достигается параллельным подключением.
Что необходимо учитывать при создании последовательной цепи:
- При соединениях конденсаторов оптимальный вариант – брать элементы с мало различающимися или с одинаковыми параметрами, вследствие большой разницы в напряжениях разряда;
- Для баланса токов утечки на каждый конденсаторный элемент (в параллель) включается уравнительное сопротивление.
Получение неполярного конденсатора
Включение в последовательную цепь всегда должно происходить с соблюдением «плюса» и «минуса» конденсаторов. Если их соединить одноименными полюсами, то такое сочетание уже теряет поляризованность. При этом емкость созданной группы будет равна половине от емкостного значения одной из деталей. Такие конденсаторы возможно применять в качестве пусковых на электромоторах.
Маркировка танталовых smd конденсаторов
Источник: https://elquanta.ru/teoriya/posledovatelnoe-soedinenie-kondensatorov.html
Соединение конденсаторов для увеличения емкости
Умельцы, собирая прибор, часто задумываются, как соединить конденсаторы параллельным или последовательным соединением. Далеко не любой номинал выпускается промышленностью, задача обеспечить конструкцию связкой ёмкостей встречается повсеместно.
При параллельном включении номиналы складываются, а при последовательном используется более сложная формула. Вдобавок конденсаторы бывают подстроечными, подобные совершенно точно включаются в цепи, где требуется обеспечить нужные резонансные характеристики.
И тоже требуется решить указанную выше задачу.
Последовательные и параллельные соединения конденсаторов
При параллельном соединении конденсаторов их ёмкости складываются. Несложно посчитать нужный номинал. Допустим, требуется 7 мкФ, но промышленность подобные конденсаторов не выпускает. Зато присутствуют на 6,8 мкФ и 200 нФ. Их сложением образуется связка в искомые 7 мкФ. Заводские номиналы специально выбраны так, чтобы создать любые значения.
Когда применяется последовательное соединение конденсаторов, результирующее значение номинала определяется как произведение ёмкостей, делённое на их сумму.
К примеру, если поставить друг за другом две одинаковые ёмкости, суммарный конденсатор заработает номинал, равный половине исходных. Когда складываются различные конденсаторы, больший вклад вносит именно меньший.
Бессмысленно последовательно соединять мощные ёмкости со слабыми. Конденсаторы, идущие друг за другом, по номиналу выбираются приблизительно равноценные.
Детали соединения
Возникает вопрос – зачем использовать последовательное соединение. В физике часто рассматривается тема, но не говорится, зачем уменьшать ёмкость конденсаторов. Ведь цена конструкции от этого увеличивается, массу сложностей представляет расчёт режима. Причина в практической стороне. В обзорах уже писали, что рабочее напряжение конденсатора сильно зависит от типа диэлектрика и толщины его слоя. Повысить указанный параметр проблематично.
Тогда требуется составить последовательное соединение конденсаторов, при котором напряжение между ними разделится пропорционально номиналам ёмкостей: чем меньше фарад, тем больше приложится. Импеданс элементов находится по формуле R =j 1/W C, где W – круговая частота цепи (f х 2 П; 6,28 f). Литера j означает, что сопротивление ёмкости переменному току носит мнимый характер (хотя, в отличие от идеала, считается комплексным числом из-за потерь на обкладках и прочих явлений).
Рассмотрим, как проявится конденсатор в цепи постоянного тока. Ёмкости заполнятся зарядами, а напряжение поделится между элементами, обратно пропорционально ёмкостям составляющих цепь элементов. Представьте ситуацию, когда разница потенциалов в цепи явно превышает рабочую. Потребуется набрать последовательную цепь из конденсаторов с пониженным рабочим напряжением, пожертвовав величиной ёмкости.
Порой выгодным оказывается смешанное соединение конденсаторов. Допустим, часть номинала набрать параллельным включением, а остальные элементы предназначены для работы с более низким напряжением. Тогда пробуем набрать из последних последовательную ветку нужного размера в фарадах.
Ряды номиналов ёмкостей конденсаторов
Известны ряды стандартных номиналов конденсаторов: Е3, Е6, Е12, Е24. После войны 45-го года, когда страны сели за стол переговоров, выяснилось, что у собеседников присутствует два основных стандарта на ряду ёмкостей. Смысл заключался в возможности набрать любой номинал из составляющих путём параллельного соединения.
Оказалось, что это делается двумя способами:
- Взять ряды, где любое значение равняется корню десятой степени из возведённой в некоторую степень десятки. Такой ряд пропорционален единому значению: корню десятой степени из десятки.
- Второй ряд использовал аналогичные соотношения, но корень брался в двенадцатой степени. Поясним с точки зрения математики. Стандартно обращаемся к квадратному корню. Что соответствует степени 2. К примеру, корень из 9 равняется 3. Кубический корень — число, возводимое в третью степень, чтобы вышло подкоренное выражение. К примеру, кубический корень из 27 также равняется 3.
Теперь читатели понимают, что ряды стандартных номиналов конденсаторов сложны. Итак, выяснилось, что часть стран уже использует вторую методику, но теоретически большую выгоду несёт первая. В угоду неким условиям решили применять именно корень двенадцатой степени. Туда входит ряд конденсаторов Е12. Все его значения пропорциональны степеням десятки, над которыми произведена указанная математическая операция. На практике это выглядит, как 1, 1,2, 1,5, 1,8 и пр.
Прочие ряды кратны этому. Там корень берётся, соответственно, третьей, шестой, двадцать четвертой, сорок восьмой, девяносто шестой и даже сто девяносто второй степеней. В результате образуются стандартные ряды. Установлены собственные допуски номиналов конденсаторов. К примеру, для:
- Е12 плюс минус 10%.
- Е24 плюс минус 5%.
- Для допусков жёстче 5% применяются ряды Е48 и выше.
Соединение конденсаторов
Со снижением степени корня растёт расстояние между номиналами. Поэтому для перекрытия всего диапазона и допуски следует взять менее жёсткие. На практике, как говорили ранее в обзорах, номинал постепенно выходит за указанные рамки.
Люди измеряют реальное значение тестером и продолжают пользоваться изделием на собственный страх и риск.
Стоит заметить, что в рядах Е48 и Е96 исключены чётные члены (чётные степени числа десять под корнем), а в Е192 впервые появляются отрицательные значения (к примеру, 10 в степени минус один).
Приведённая информация позволит читателям лучше понять смысл маркировки конденсаторов, чтобы правильно набрать нужные последовательные и параллельные цепочки. Вдобавок ясно, какие номиналы искать с тем либо иным допуском, либо таковых нет в природе.
Со времени съезда 1948 года в Стокгольме в большинстве стран номиналы конденсаторов унифицированы. Поэтому американские ёмкости полностью годятся для российских условий.
Лишь сетевое напряжение за океаном показывает иной номинал, предлагается проявлять осторожность.
Ряд рабочих напряжений также прописан в ГОСТ 28884, как и номиналы. Причём учтены интересы всех стран. Допустим, для сетевых фильтров в Российской Федерации подойдут конденсаторы на 250 В, для Соединённых Штатов Америки уместны изделия с номиналов на 127 В. Ряды постоянных напряжений изолированы.
Распределение токов при параллельном соединении проводников
В блоках питания, к примеру, значение зависит от типа выпрямителя (однополупериодный, двухполупериродный и пр.).
Нужно учитывать, что большинство конденсаторов в подобных цепях находится под удвоенной нагрузкой (к примеру, в блоке питания персонального компьютера напряжение на обкладках достигает 600 В).
Как физически соединить конденсаторы последовательными или параллельными цепочками
Типы клемм
Часто при сборке прибор до тестирования не имеет чётких рамок. Приходится добавлять или убирать различные элементы. Чаще применяют скрутки. Наравне с пожароопасностью это создаёт угрозу поражения током. Вдобавок скрутки сложно выполнить для большого количества присоединяемых проводов. А паять не вариант.
Здесь порекомендуем использовать групповые клеммы (клеммник, шина) в особо проблемных узлах. Во-первых, купить шину (по типу заземления) в ближайшем хозяйственном магазине. Продаются вместе с изолирующим основанием, которое без труда крепится саморезами на деревянное основание.
В результате получается надёжный мост, причём в любое гнездо возможно завести по несколько жил. Сложности предвидятся, если проводки тонкие (высокочастотная часть).
Но связки конденсаторов как раз часто набирают для силовых цепей, не видим большой беды в использовании прямо предназначенных для таких случаев колодок. Цена 50 рублей за штуку.
Плюс: клеммы допустимо использовать при отладке регулярно. Но, допустим, размеры корпуса малы и не позволяют внутри разместить колодку. Как объединить множество параллельных проводов после тестирования? Методик на этот счёт не предусматривается.
Либо выполняется разводка на печатной плате (допустимо специально протравить небольшой отрезок нужным образом), либо воспользуйтесь одиночными клеммами.
Подобные обжимаются вокруг жилы, потом допустимо целыми связками объединять при помощи резьбовых соединений.
К примеру, закрепить на планке из дерева болт резьбой вверх, установить на прочное деревянное основание. Описанное допускается на период тестирования. В случае прямого соединения аппаратуры или электрики (допустим, в тесной распаечной коробке) возможно применить обычный болт.
Читатели скажут, что параллельное соединение конденсаторов удобнее набрать, прокладывая разделительные шайбы между витками проводки, а не применением индивидуальных клемм. Ответим – попробуйте сделать, особенно с жилой высокого класса гибкости (состоящей из множества тончайших проволочек), разницу почувствуете немедленно.
Особенно если часто придётся выполнять перекоммутацию.
Конденсатор в цепи переменного тока обычно стоит под низким напряжением, следовательно, все жилы тонкие, покажется, что клемму сложно обжать. Рекомендуем на этапе тестирования под общее кольцо заделывать ряд жил одновременно — те, что не изменятся. А прочие допустимо скруткой сделать. Помните, последовательное и параллельное соединения принципиально отличаются числом входящих и исходящих проводов. Отсюда способы коммутации различны.
Как проверить качество соединения конденсаторов в цепи
Идеальный случай, когда берём соответствующего типа вольтметр. Стоит в пределах тысячи рублей, учитывая, что получаем прибор для измерения сопротивлений, постоянного и переменного напряжения, токов. Гнездо под измерение конденсатором (см. фото) представляет собой две узкие щели, куда вставляются ножки. По наблюдениям авторов нет разницы, какой стороной вставлять электролитический конденсатор. Лучше руководствоваться инструкцией по эксплуатации.
Гнездо для измерения конденсатора
Рекомендуется до начала работ измерить номиналы, промаркировать их либо разложить по нарисованной на бумаге схеме, где уже проставлять цифры (кстати, так делается в китайской технике). Потом вычислить по формулам, какое значение получится и проверить тестером. Не получается? Значит, качество контактов плохое – меньше применяйте скруток.
Источник: https://1000eletric.com/soedinenie-kondensatorov-dlya-uvelicheniya-emkosti/