Виды электродвигателей и их особенности
Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.
Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели. Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее.
Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения. При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.
Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.
Электродвигатели постоянного тока
Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.
Электродвигатели переменного тока
Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста.
Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д.
В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.
Шаговые электродвигатели
Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.
Серводвигатели
Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.
Линейные электродвигатели
Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.
Синхронные двигатели
Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.
Асинхронные двигатели
Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора.
Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.
Электродвигатели незаменимы в современном мире.
Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.
Источник: https://mirprivoda.ru/articles/vidy-elektrodvigateley
Электродвигатель: понятие, типы
Электродвигатель — это электрическая машина, в которой электрическая энергия преобразуется в механическую. Существует несколько типов электродвигателей: синхронные, асинхронные и двигатели постоянного тока.
Синхронные двигатели
Синхронные двигатели имеют большую мощность (50-100кВт и более), по сравнению с другими двигателями, применяются на металлургических заводах, в шахтах и других предприятиях, служат для приведения в движения насосов, компрессоров, вентиляторов, двигательно-генераторных установок и др.
Особенностью синхронных электродвигателей определяющей их функциональные возможности и области применения, является постоянство средней частоты вращения при неизменной частоте, амплитуде напряжения питания и колебания момента нагрузки.
Следовательно, при снижении напряжения синхронный двигатель сохраняет большую перегрузочную способность, а возможность форсировки возбуждения увеличивает надежность работы при аварийных понижениях напряжения.
Большой воздушный зазор и применение постоянных магнитов делает КПД синхронных двигателей выше.
Синхронный двигатель состоит из неподвижного статора и вращающегося ротора. В пазах статора размещена обмотка переменного тока, получающая питание от сети, а в роторе – обмотка постоянного тока.
Электродвигатели вращают, ротор синхронно с магнитным полем питающего напряжения. Расположенная на роторе обмотка возбуждения получает питание от источника постоянного тока через контактные кольца. В основном применяются на приводах большой мощности.
Мощность такого электродвигателя достигает несколько десятков мегаватт.
Имея столько достоинств, синхронные двигатели имеют ограничение в применении — сложностью конструкций, наличием возбудителя, высокой ценой и сложностью пуска.
Асинхронные двигатели
Асинхронные двигатели подразделяются на двигатели с короткозамкнутым и фазным ротором. Электродвигатели мощностью больше 0,5 кВт обычно выполняются трехфазными, а при меньшей мощности однофазными.
Асинхронные электродвигатели применяются в станкостроении, сельском хозяйстве, деревообрабатывающей и металлообрабатывающей промышленности, строительной технике и др. Такие электродвигатели давно известны отечественному рынку. Эти электродвигатели имеют не высокую стоимость, неприхотливы в обслуживании и просты в конструкции.
При выборе асинхронного электродвигателя необходимо учитывать два фактора: КПД преобразования энергии и тип исполнения агрегата. Существует множество аналогов электродвигателей марки АИР (АИР марка электродвигателей, которая не привязана к определенному заводу), например новые современные электродвигателе 5АИ. В работе этого оборудования используются менее шумные подшипники, повышенная степень защиты: исполнение IP55, резьбовое отверстие в торце вала и др.
Принцип действия двигателя основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трехфазного переменного тока по обмоткам статора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля, при условии, что частота вращения ротора меньше частоты вращения поля. Асинхронные электродвигатели потребляют реактивную мощность из сети. Предел применения асинхронных электродвигателей с короткозамкнутым ротором определяется мощностью системы электроснабжения конкретного предприятия, так как большие пусковые токи при малой мощности системы создают большие понижения напряжения.
Двигатели постоянного тока
Принцип работы основан на электромагнитном преобразовании энергии. Широко применяются в промышленности, транспортных и других установках, где требуется плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).
Различаются двигатели с параллельным, независимым, последовательным и смешанным возбуждением.
- Двигатели постоянного тока с независимым или параллельным возбуждением, подключенные к сети с постоянным напряжением, может работать как в генераторном, так и в двигательном режиме и переходить из одного режима работы в другой. Двигатели с параллельным возбуждением имеют параллельное подключение обмотки возбуждения с обмоткой якоря к сети. Если в двигателе обмотка якоря и обмотка возбуждения подключены к источникам питания с различными напряжениями, то его называют двигателем с независимым возбуждением. Такие двигатели применяют в электрических приводах, у которых питание обмотки якоря осуществляется от генератора или полупроводникового преобразователя.
- Двигатели с последовательным возбуждением широко применяются в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.).
- Двигатель со смешанным возбуждением, благодаря магнитному потоку создает совместное действие двух обмоток возбуждения – параллельной и последовательной.
Источник: https://arve.ru/text-articles/elektrodvigatel-ponyatie-tipy-princip-raboty/
Асинхронные электродвигатели
Асинхронные двигатели с короткозамкнутым ротором составляют значительную часть семейства электрических двигателей переменного тока – преобразователей электромагнитной энергии от одно- или трехфазной сети в механическую энергию вращения вала двигателя.
Асинхронный электродвигатель с короткозамкнутым ротором содержит две основные части: неподвижную и вращающуюся. Неподвижная часть – статор – состоит из сердечника той или иной конфигурации, одной или нескольких обмоток, уложенных в пазы сердечника и конструктивных деталей: станины, крепежных деталей и т.п.
Подвижная часть – ротор – состоит из сердечника, короткозамкнутой обмотки, уложенной в его пазы, и конструктивных деталей, с помощью которых обеспечивается возможность вращения подвижной части относительно неподвижной: вала, опорных подшипников, крепежных деталей и т.п.
Конструкция таких двигателей наиболее проста из всех видов электрических машин.
Модельный ряд асинхронных электродвигателей
Сводная таблица основных характеристик серий однофазных и трехфазных асинхронных двигателей с короткозамкнутым ротором INNOVARI, INNORED:
Применение асинхронных двигателей
Предельная простота конструкции и дешевизна производства, а также появление гибких в программировании преобразователей частоты определили практически повсеместное применение асинхронных двигателей с короткозамкнутым ротором в промышленных электроприводах. Однофазные и трехфазные асинхронные двигатели находят применение:
- в металлургическом производстве: в автоматизированных приводах оборудования прокатных и волочильных станов, литейного производства;
- в металлообрабатывающем производстве: в автоматизированных приводах станков и обрабатывающих центров, подъёмно-крановом оборудовании, транспортерах и т.п.;
- в механосборочном производстве: в приводах манипуляторов, конвейеров, компрессорном оборудовании;
- в горнодобывающем производстве: в бурильном и экскаваторном оборудовании, транспортерах и др.;
- в насосном, вентиляционном, компрессорном оборудовании;
- в строительстве: в крановом оборудовании, оборудовании подготовки и транспортировки стройматериалов;
- в бытовой сфере: в ручном электроинструменте, прачечном, кухонном и офисном оборудовании.
Преимущества использования асинхронных двигателей
Привлекательными сторонами использования асинхронных двигателей с короткозамкнутым ротором являются:
- относительно высокие значения коэффициента мощности (cos φ) и коэффициента полезного действия (η);
- жесткая механическая характеристика (малы изменения скорости при колебаниях нагрузки);
- высокие значения пускового и максимально допустимого момента на валу двигателя.
При этом имеет место предельная простота конструкции и обусловленная этим надежность в эксплуатации. Основными элементами, определяющими отказы асинхронных короткозамкнутых двигателей, являются опорные подшипники вала двигателя и электрическая изоляция обмоток.
К основным факторам разрушения изоляции обмоток относится вибрация и перегрев обмоток, а также агрессивность внешней среды. Факторы разрушения подшипников: вибрации и перекос нагрузок, агрессивность внешней среды и паразитные токи через станину и вал двигателя, способствующие эрозии дорожек и тел качения.
Эти недостатки присущи всем видам электрических машин, но в случае асинхронных короткозамкнутых двигателей простота конструкции и обеспечение условий эксплуатации сводит их влияние к минимуму.
Принцип работы асинхронных электродвигателей с короткозамкнутым ротором
В пазах статора пространственно симметрично уложена трехфазная обмотка. Принцип работы асинхронного двигателя основан на свойстве таких обмоток, заключающемся в следующем: при питании фаз обмотки токами, сдвинутыми по времени на электрический угол, в градусах равный пространственному углу сдвига фаз обмотки, внутри статора возникает вращающееся магнитное поле. Частоту вращения такого поля принято называть синхронной.
За один период изменения тока частотой f поле поворачивается на электрический угол 360°, соответствующий двум полюсным делениям. Поэтому скорость вращения поля (синхронная скорость) nс = f/p (об/сек), где p – число пар полюсов обмотки. Вращающийся магнитный поток в пространстве статора пересекает витки обмотки ротора. При этом он индуцирует в обмотке ротора электродвижущую силу, под действием которой в обмотке начинает протекать ток.
Частота и сила тока зависит от разности скоростей синхронной nс и самого ротора n. Относительную разницу этих скоростей принято называть скольжением S=(nс–n)/nс. При номинальном режиме работы величина скольжения лежит в пределах 0,030,05. По мере увеличения нагрузки на валу двигателя скольжение возрастает, поскольку возрастает отставание ротора от магнитного потока.
Ток ротора так же создает свой вращающийся магнитный поток, который, векторно складываясь с потоком статора, создает внутреннее магнитное поле машины. В результате взаимодействия тока ротора с магнитным полем машины возникает вращающий электромагнитный момент, поддерживающий вращение ротора и приводящий в движение нагрузку электродвигателя.
При движении ротора с синхронной скоростью исчезнет индуцируемая электродвижущая сила и ток в обмотке ротора, исчезнет и вращающий момент. Таким образом, ротор всегда движется со скоростью, меньшей синхронной.
В однофазных асинхронных двигателях обмотка статора состоит из двух пространственно сдвинутых фаз и запитывается однофазным напряжением.
Для получения сдвига фаз токов в обмотках последовательно или параллельно одной из них включается фазосдвигающий элемент – чаще всего, конденсатор.
Однофазные асинхронные двигатели, как правило, имеют худшие по сравнению с трехфазными двигателями характеристики, однако, в ряде случаев, эти недостатки перекрываются преимуществами, возникающими при возможности питания от однофазной сети.
Обмотка, уложенная в пазах статора, может быть многополюсной. В этом случае переключение обмоток на разное число пар полюсов используется для дискретного регулирования скорости вращения электродвигателя.
Источник: https://rusautomation.ru/privodnaya-tehnika/asinhronnye-elektrodvigateli
Принцип действия электродвигателя
Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями.
Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла.
Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.
Принцип работы электродвигателя — основные функциональные элементы
Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором.
Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой.
Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.
Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа.
Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.
Принцип работы электродвигателя — разновидности и типы
На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.
Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.
Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.
Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%.
Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом, они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ.
К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.
Источник: https://promplace.ru/printcip-dejstviya-elektrodvigatelya-506.htm
Асинхронный электродвигатель постоянного тока 220В и 380В
Электродвигатель – машина, преобразовывающая энергию электромагнитного поля во вращательное движение (электрический двигатель). Это, пожалуй, наиболее гениальное изобретение, позволившее Человечеству сделать цивилизационный скачок в индустриальное общество. Коэффициент его полезного действия составляет 95-98 процентов. Ни один из механизмов на планете Земля таковым больше не обладает.
Основа принципа действия
В основе принципа действия любого электрического двигателя лежит феномен электромагнитной индукции. Если скрутить любой проводник в кольцо и через него протащить магнит, то в нем возникнет электрический ток, направление течения которого будет противоположно движению магнита. Верно и обратное: прохождение электричества через проводник вызывает индуцирование ЭДС в металлическом стержне.
Этот эффект был открыт в 1832 году английским физиком Майклом Фарадеем, создавшим прибор, состоящий из постоянного магнита и бронзового диска, помещенного между его полюсами.
При вращении диска с подключенных к нему проводов снималось небольшое напряжение и переменный ток большой силы. Поэтому диск Фарадея называют еще и униполярным генератором, который при всей архаичности конструкции до сих пор используется.
Например, в установках ТОКАМАК для разогрева плазмы и рельсотронах – разновидности оружия.
Электрический двигательпостоянного тока
Если к диску Фарадея подключить гальваническую батарею, то он совершит один оборот – до того момента, как совпадут разноименные полюса – ее и магнита. Электродвигатель постоянного тока в своей работе использует эффект отталкивания одноименных полюсов магнита. Чтобы вращение стало непрерывным, на его роторе закреплено особое устройство (коллектор) – кольцо из металла, поделенное на сектора диэлектриком.
Питающее напряжение подводится к коллектору посредством скользящих контактов – щеток. Когда вал машины поворачивается, сектора коллектора меняются местами и полюса остаются разноименными. Поэтому вращение продолжается. Скорость вращения ротора машин постоянного тока зависит от количества обмоток на нем. Каждая из них представляет собой своеобразный диск Фарадея и подключена к своей паре пластин коллектора.
Если ее мощность электрической машины невелика, то статорные магниты делают из природного металла с соответствующими свойствами. В промышленных машинах постоянного тока используются электромагниты – катушки из проводников. Они питаются тем же напряжением, что и катушки ротора.
Двигатели переменного тока
Конструкция электродвигателя переменного потом электроэнергии выглядит как бы вывернутой наизнанку по отношению к машинам постоянного тока. Питающее напряжение в нем подводится к статорным обмоткам, а принцип действия основан не на отталкивании одноименных полюсов магнита, а на притягивании имеющих противоположный знак.
Магнитное поле статора машины переменного тока вращается.
Этот феномен возникает в результате сложения векторов магнитной индукции нескольких переменных токов, фазы синусоид которых сдвинуты друг относительно друга на некоторый угол – 900, если питание двухфазное, и 600 при трехфазном напряжении.
Величины углов объясняются просто: отдельная обмотка генератора переменного тока состоит из двух катушек, а на статоре они расположены диаметрально противоположно. Если поделить 3600 на четыре (две обмотки) или на шесть (три обмотки), то получим исходные значения.
Магнитное поле ротора индуцируется энергией в статорных обмотках и имеет два свойства:
- Оно противоположно статорному по знаку.
- Отстает от статорного, поскольку на его индукцию требуется некоторое время, а сам ротор имеет физический вес и по этой причине обладает моментом инерции.
Полюса магнитного поля ротора стремятся притянуться к противоположным полюсам статорного, но эта своеобразная погоня никогда не может закончиться по двум причинам:
- линейная скорость ротора ниже из-за разницы в размерах.
- Существуют потери энергии в воздушном зазоре между деталями машины.
Угол рассогласования между ротором и статором достигает 180, из-за его наличия электродвигатели переменного электричества называют асинхронными.
Наиболее распространенной конструкцией является электрическая машина, обмотка ротора которой состоит из нескольких проводников, замкнутых двумя металлическими кольцами. По форме она похожа на так называемое беличье колесо. Таковы все общепромышленные электродвигатели. Они просты, но имеют неустранимый недостаток: большие пусковые токи, которые приводят к перегрузкам в сети и авариям.
Двигатели с фазным ротором запускаются плавно, без перегрузок, но они сложны и дороги. Применяются для обеспечения больших тяговых усилий. Например, в крановом оборудовании или на электротранспорте.
как работает Электродвигатель:
Как правильно эксплуатировать электродвигатель
Асинхронный электродвигатель на сегодня является наиболее широко используемым двигателем в промышленности и строительстве. Чтобы устройство было всегда в форме и не пришлось его отправлять на свалку в результате преждевременного износа, хорошие хозяева проявляют заботу о нём и эксплуатируют правильно. В этой статье мы обсудим, как правильно эксплуатировать электродвигатель во избежание возникновения неполадок при его работе.
Условия работы электрического двигателя
Электрический двигатель будет в полной мере соответствовать характеристикам, указанным в паспорте, если его, прежде всего, правильно установить и использовать. Условия обеспечения номинальных параметров двигателем следующие:
- колебания напряжения питающей сети электрического тока, к которой подключен агрегат, не должны превышать 5% от номинала;
- максимально допустимая температура воздуха, окружающего конструкцию, должна быть не более +350 С;
- во избежание перегрузки мотора необходимо следить за показаниями амперметра, не допуская увеличения силы тока более 5% от номинала;
- корпус устройства надежно следует заземлить и регулярно проверять сопротивления заземления;
- конструктивные элементы, изготовленные из коррозируемых материалов, необходимо покрыть краской. Коррозия всегда начинается на поверхности металла, а затем распространяется вглубь, ухудшая механические свойства материала;
- кабельные сети, по которым поступает питающее напряжение, следует надёжно изолировать и защитить от случайных механических повреждений. Подключение выполнить напрямую к контактным зажимам двигателя, находящимся в коробке.
Элементарные правила эксплуатации в отношении своего двигателя
Правильная эксплуатация электродвигателя обеспечивает его надёжную работу в течение всего установленного ресурса. До включения устройства в работу обязательно проверить:
— чистоту и отсутствие ненужных предметов на корпусе и рядом;
— состояние заземления;
— качество крепления статора.
Первый запуск электродвигателя лучше доверить специалисту, который будет обслуживать все движущиеся механизмы.
Рекомендации по эксплуатации асинхронных электродвигателей:
-
У работающего двигателя основные электрические и механические показатели должны быть следующими:
— температура нагрева статора не более 900 С;
— вибрация в пределах нормы, а именно в соответствии с количеством оборотов двигателя;
— вращение ротора бесшумное, без скачков;
— установленная заводом-изготовителем величина нагрузки;
— отсутствие искрения щёток у коллекторных двигателей.
-
Защита электрических цепей осуществляется плавкими вставками. Значение тока по номиналу пишется на вставке.
-
Аварийное отключение электродвигателя производится в следующих случаях:
— появился сильный запах горения, дым, искры, огонь;
— повышенный уровень вибрации, из-за которого возможно разрушение двигателя;
— выход из строя электропривода;
— резкое снижение оборотов и повышенный нагрев.
Владелец также обязан планировать профилактические ремонты, которые повышают надёжность оборудования.
Некоторые двигатели используются крайне редко. Как поступать в этом случае? Рекомендуется постоянно осматривать, проверять сопротивление изоляции и запускать устройства, что позволит при необходимости без промедления их использовать.
Вывод
Конструкция асинхронного электродвигателя простая и надёжная. И, если соблюдать правила эксплуатации, в том числе не превышать основные электрические и механические параметры, установленные изготовителем, то срок его службы можно будет увеличить.
Остались вопросы? Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)
Источник: https://epusk.ru/articles/elektrodvigateli/elektricheskiy-dvigatel/
Устройство, принцип действия и конструкция синхронного генератора, режимы работы
Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.
Основные конструктивные элементы
Основные части синхронного генератора: неподвижная — статор, вращающаяся — ротор, представляющая собой электромагнит, и две основные обмотки.
- Одна обмотка статора («обмотка возбуждения») запитывается от источника постоянного тока, функцию которого выполняет электронный регулятор напряжения. Регулятор используется в генераторах с самовозбуждением.
Принцип самовозбуждения основан на том, что первоначальное возбуждение осуществляется с использованием остаточного магнетизма магнитопровода СГ. При этом энергия переменного тока поступает от обмотки статора СГ. Комплекс из понижающего трансформатора и полупроводникового выпрямителя-преобразователя трансформирует ее в энергию постоянного тока.
- Ток, протекающий в обмотке возбуждения статора, наводит ЭДС на обмотке возбуждения якоря генератора. Статор возбудителя, как конструкционный элемент может отсутствовать, и тогда его функции выполняют постоянные магниты.
- Обмотка ротора, в которой индуцируется ЭДС, называется обмоткой возбуждения якоря, или якорем возбудителя.
- Переменное напряжение, возникающее на обмотке якоря возбудителя, выпрямляется в блоке вращающихся диодов, которые так же называются словосочетанием «диодный мост», и превращает силовую обмотку ротора во вращающийся электромагнит, который наводит ЭДС в силовой обмотке статора СГ.
- Силовые обмотки и обмотки возбуждения монтируются в пазы якоря и ротора.
- Генераторы по типу выходного напряжения делятся на одно-, или трехфазные. Основное распространение в промышленности имеют трехфазные синхронные генераторы, а в быту — однофазные.
В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы.
На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.
Роторы изготавливаются явнополюсными или неявнополюсными.
- Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
- Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».
Определение скорости вращения
Понятие «синхронный» означает, что число оборотов находится в прямой математической зависимости от частоты тока. Эта зависимость определяется по формуле n = 60*f/p, где:
- n — скорость вращения, об/мин;
- f — частота, в бытовой электрической сети она равна 50 Гц;
- p — количество пар полюсов.
Принцип работы СГ
Принцип действия машины в режиме синхронного генератора:
- При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
- При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
- Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.
В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме.
При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу.
Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.
Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.
Источник: https://www.litenergo.ru/pomoshch-pokupatelyu/ustrojstvo-sinhronnogo-generatora/
Принцип действия и устройство электродвигателя постоянного тока
Сейчас невозможно представить нашу жизнь без электродвигателей.
Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне.
Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.
Краткая история создания
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается.
Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом.
Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Принцип действия электродвигателя постоянного тока
На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию.
Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю.
Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.
Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.
Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).
Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников.
Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно.
Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).
Устройство электродвигателя постоянного тока
Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.
Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.
В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.
Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.
Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.
Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.
Особенности и характеристики электродвигателя постоянного тока
Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.
Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:
- Их себестоимость, следовательно, и цена достаточно высока.
- Для подключения к сети необходим выпрямитель тока.
- Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
- При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.
Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.
Источник: https://www.szemo.ru/press-tsentr/article/printsip-deystviya-i-ustroystvo-elektrodvigatelya-postoyannogo-toka/
Электродвигатели и генераторы
Принцип работы электрических машин основан на использовании закона электромагнитной индукции и закона взаимодействия проводника с током и магнитного поля.
Согласно закону электромагнитной индукции при перемещении проводника между полюсами магнита в нем возникает электродвижущая сила (эдс) (рис. 10.1). Если проводник замкнуть, то под действием эдс в нем появится ток. На этом законе основана работа генератора, осуществляющего преобразование механической энергии в электрическую.
Рекламные предложения на основе ваших интересов:
Рис. 10.1. Принципиальная схема генератора
Рис. 10.2. Принципиальная схема электродвигателя.
Если в магнитное поле поместить проводник с током в виде замкнутой рамки (рис. 10.2), то под действием сил, приложенных к сторонам рамки, она придет во вращение. Таким образом, проводник с током в магнитном поле можно рассматривать как элементарный электрический двигатель.
У большинства электрических машин магнитное поле создается не постоянным .магнитом, а электрическим током, протекающим по специальным катушкам машины. Эти катушки называют обмотками возбуждения.
Электрическая схема электрических машин состоит из неподвижных и подвижных обмоток.
Электрические машины являются машинами вращательного действия. Основными частями их являются: неподвижный статор и вращающийся ротор, разделенные зазором (рис. 10.3).
Статор и ротор имеют стальные сердечники. Сердечник набран из изолированных друг от друга листов электротехнической стали.
На внутренней стороне сердечника статора и на наружной стороне сердечника ротора имеются параллельные продольные пазы, в которые укладываются обмотки. Ротор закрепляется на валу, который вращается в подшипниках.
Подшипники встроены в торцовые крышки, которые болтами крепятся к станине. На валу ротора устанавливается также вентилятор, служащий для охлаждения обмоток и сердечников.
Станина имеет лапы для крепления машины к фундаменту или специальный фланец с отверстиями под крепления.
Рис. 10.3. Конструктивная схема электрических машин.
Асинхронные двигатели. Асинхронные двигатели состоят из двух основных частей: статора и ротора. На статоре располагается трехфазная обмотка (у трехфазных двигателей). Концы обмоток присоединяют к питающей сети.
Обмотка имеет шесть выводных концов с металлическими бирками, расположенных в коробке и имеющих обозначение начал трехфазной обмотки С1, С2, СЗ и концов С4, С5, Сб. Ротор также имеет обмотку.
В зависимости от типа обмотки асинхронные электродвигатели бывают с короткозамкнутым и с фазным ротором.
В короткозамкнутом роторе обмотка представляет собой цилиндрическую клетку, образованную отдельными стержнями, уложенными в пазы ротора и соединенными с торцовых сторон кольцами («беличье колесо»).
Обмотка фазного ротора выполнена изолированным проводом и уложена в пазы ротора. Как и обмотка статора, она состоит из трех (или группы) катушек. Начала катушек соединены в звезду, а концы подведены к контактным кольцам на валу ротора. По кольцам скользят щетки, закрепленные в неподвижных щеткодержателях. Щетки соединяют обмотку ротора с реостатом, находящимся вне двигателя и служащим для уменьшения пусковых токов или регулирования скорости вращения.
Электродвигатели с короткозамкнутым ротором применяют в электроприводе, не требующем регулирования скорости. Основным недостатком их является большая сила тока в момент пуска двигателя, превышающая в 57 раз ток при установившихся оборотах.
Двигатели с фазным ротором позволяют регулировать скорость вращения. Кроме того, включение в цепь ротора пускорегулирующе- го реостата позволяет уменьшить силу пускового тока и увеличить пусковой момент.
Каждый двигатель снабжается паспортом — металлической табличкой, закрепляемой на корпусе двигателя, на которой указывается завод-изготовитель, марка двигателя и основная характера стика двигателя.
Если в паспорте указано напряжение 220/380 В, то электродвигатель можно включать в сеть напряжением 220 и 380 В.
При напряжении 220 В обмотки статора соединяют треугольником (рис. 10.4, а) —начало первой обмотки С1 соединяют с концом третьей С6, начало второй С2 с концом первой С4, а конец второй С5 с началом третьей СЗ. Соединенные концы подводят к трем фазам сети.
Рис. 10.4. Схемы соединения обмоток статора трехфазного двигателя.
При напряжении 380 В обмотки соединяют звездой (рис. 10.4, б, в) — все начала или все концы обмоток соединяют вместе, а свободные концы включают в трехфазную сеть.
Двигатели постоянного тока применяют в тех случаях, когда требуется плавное и глубокое регулирование скорости вращения.
Двигатель постоянного тока (рис. 10.5) состоит из неподвижной станины, вращающегося якоря с коллектором и щеток со щеткодержателями. Внутри станины укрепляют главные полюсы с обмотками возбуждения, которые создают магнитный поток. Стержни обмотки якоря соединены по определенной схеме с пластинами коллектора. Щетки, скользящие по пластинам коллектора, соединяют обмотку якоря с внешней сетью. С внешней сетью соединяется также обмотка возбуждения;
Для уменьшения искрения на коллекторе на станине установлены дополнительные полюса.
Регулирование частоты вращения ротора достигается изменением силы тока обмотки возбуждения. Обмотки возбуждения двигателей постоянного тока питаются постоянным током. Различают двигатели с независимым возбуждением и с самовозбуждением. В двигателях с независимым возбуждением обмотка возбуждения питается от постороннего источника.
В машинах же с самовозбуждением она питается от якорной обмотки этого же двигателя. Возбуждение при этом может осуществляться при параллельном, последовательном или смешанном соединениях, когда одна обмотка возбуждения соединена с якорной параллельно, а другая — последовательно.
Соответственно этому электродвигатели называются шунтовые, сериесные и ком- паундные.
Все электрические машины характеризуются обратимостью, т. е. возможностью работать как в качестве электродвигателя, так и в качестве генератора.
Рис. 10.5. Электродвигатель постоянного тока:
1 — коллектор; 2 — щеткодержатель; 3 — якорь; 4 — главный полюс; 5 — обмотка возбуждения; 6 — станина; 7 — подшипниковый щит; 8 — вентилятор; 9 — обмотка якоря.
Генератор устроен принципиально так же, как и электродвигатель. В отличие от него в генераторе принудительно вращается ротор (якорь). С помощью генератора механическая энергия вращающегося якоря превращается в электрическую. Подобно электродвигателям, генераторы бывают переменного и постоянного тока. Генераторы постоянного тока бывают шунтовые, сериесные и компаундные.
Рекламные предложения:
Читать далее: Трансформаторы. Выпрямители. Преобразователи
Категория: — Строительная техника и оборудование 4
→ Справочник → Статьи → Форум
Источник: http://stroy-technics.ru/article/elektrodvigateli-i-generatory
Новый прорыв в создании двигателей для электромобилей
В связи с популярностью и экологичностью электромобилей, электроскутеров, промышленных квадрокоптеров и других электрических машин рынок электродвигателей в двадцать первом веке быстро растет. На конец 2019 года только на внутреннем рынке Китая насчитывается больше 400 производителей электромобилей. На рынок приходят новые технологии производства электродвигателей и аккумуляторных батарей – такой прорыв делает электротранспорт всё более доступным.
Класcика
Казалось бы, что можно придумать новое, отличное от существующего? Ведь работа современного электродвигателя основана на известном принципе электромагнитной индукции, в основе которого лежит получение электродвижущей силы в замкнутом контуре с изменением магнитного потока. Традиционно агрегат состоит из недвижимого элемента – статора, и вращающегося – ротора.
Статор имеет ряд обмоток, на которые поступает электрический ток, что приводит к появлению магнитного поля, за счет которого и вращается ротор. Скоростные показатели ротора определяются частотой, с которой происходит переключение тока с одной обмотки статора на другую.
Технология не нова, однако современные достижения науки и техники позволили развить ее до невероятных высот
Анализ существующих отечественных и зарубежных разработок
Анализ существующих отечественных и зарубежных разработок показал, что практическое применение в электромобилях получили электроприводы следующих типов: вентильные электродвигатели, асинхронные частотно-управляемые, электродвигатели постоянного тока с независимым возбуждением и электродвигатели постоянного тока с последовательным возбуждением. Сопоставление достоинств и недостатков этих двигателей с учетом эксплуатационных требований дает следующие результаты.
Наиболее высокий КПД имеют вентильные электродвигатели.
КПД электродвигателей постоянного тока и асинхронных электродвигателей примерно равны, однако в последнее время асинхронные частотно-управляемые двигатели, имеющие электрические машины с малым скольжением и более точное электронное управление на основе специализированных быстродействующих микроконтроллеров с набором соответствующих датчиков (векторное управление), достигают КПД, сравнимый с КПД вентильных электродвигателей.
Что имеем
На сегодняшний день наиболее популярным из существующих электродвигателей для электромобилей остается асинхронный двигатель, созданный ещё в XIX веке.
Его конструкция оказалась гениально простой и настолько удачной, что все дальнейшие преобразования не касались принципа действия, затрагивая лишь технологию изготовления тех или иных деталей.
Например, модифицироваться могли подшипники, на которых крепился вал двигателя, менялась форма обмоток ротора и статора, однако принцип работы асинхронного двигателя оставался прежним.
К преимуществам двигателей такого типа относятся простота обслуживания и отсутствие подвижных контактов. Здесь нет щеток и контактных колец, питание подается только на неподвижную трехфазную обмотку статора, что и делает этот двигатель весьма удобным для самых разных сфер применения, практически универсальным. Такой двигатель прост в изготовлении и сравнительно дешев, затраты при эксплуатации минимальны, а надежность высока.
Если говорить о недостатках асинхронных двигателей с короткозамкнутым ротором, то их несколько. При включении двигателя в сеть пусковой ток довольно велик, при этом пусковой момент значительно меньше номинального.
В основном этот недостаток как и проблема регулировки оборотов, преодолевается применением частотного преобразователя, позволяющего плавно повышать обороты, и таким образом обеспечить достаточно высокий пусковой момент. Это достигается тем, что скорость вращения такого электродвигателя зависит от частоты переменного тока, т. е.
изменив частоту тока, можно изменить скорость вращения ведущих колёс, что позволяет легко контролировать скорость электромобиля.
Еще одним недостатком асинхронных двигателей с короткозамкнутым ротором является их низкий коэффициент мощности, особенно при малой нагрузке и на холостом ходу, что снижает эффективность данной электрической системы в целом.
Сам электродвигатель — это достаточно совершенное устройство, но, поскольку стремительное развитие отрасли экоавтомобилей только входит в начальную стадию, кардинального изменения принципа работы, улучшение показателей (удельной мощности и экономичности) и его устройства можно ожидать уже в ближайшее время.
Традиционно электродвигатели для автомобилей должны отвечать следующим требованиям:
- иметь безопасное и удобное для эксплуатации устройство;
- обладать высокой удельной мощностью и экономичностью;
- обладать высокой надежностью и безопасностью при длительной эксплуатации;
- иметь компактные габариты;
- работать в широком диапазоне частот вращения с высокими показателями, что позволит электромобилю обходиться без коробки передач.
Новый прорыв
Для электромобиля важна надёжность конструкции и ещё более – высокий кпд электродвигателя. От эффективности работы электродвигателя зависит величина расстояния пробега электромобиля от одной зарядки аккумуляторов, поэтому: чем выше кпд, — тем лучше.
Мировой рынок сбыта электродвигателей стремительно развивается. Согласно новому отчету Grand View Research, Inc. к 2025 году, как ожидается, он достигнет 214,5 млрд. долларов США. Именно быстрые технологические достижения являются основным драйвером роста рынка.
С целью достижения высоких технико-экономических показателей электродвигателя, прежде всего получения максимальной мощности и крутящего момента, при минимальном потреблении энергии необходимо уменьшить ее внутренние потери.
В России запатентован высокопроизводительный оригинальный электродвигатель американской компании Buddha Energy Inc. Примечателен тот факт, что автор электродвигателя является россиянином. В США электродвигатели продаются под торговой маркой HELV Motors. Компания Buddha Energy Inc.
занимается разработкой инновационных электронных контроллеров и электродвигателей. Компания имеет патенты на разработку в крупнейших индустриальных странах. Их разработки ориентированы на зеленые технологии и охрану окружающей среды, сокращение использования природных ресурсов.
Особенностью электродвигателя HELV является его форма. Он спроектирован в виде шара таким образом, что полная площадь магнитного поля статора взаимодействует с полной площадью магнитного ротора при минимальном рассеивании магнитного поля, что дает высокий крутящий момент при небольшом размере двигателя.
В ходе стендовых испытаний, сила на валу тестового двигателя массой 2,8 кг и диаметром 119 мм составила 80 Нм. Примечательно, что сам двигатель может развить и большую мощность, но на текущий момент контроллер для его управления рассчитан только на 6 кВт.
Таким образом при напряжении в 60 вольт и токе 100 ампер, двигатель показал статический крутящий момент в 80 Ньютон метров при оборотах 3900 об/м. Максимальная мощность двигателя может быть увеличена в несколько раз.
Компания работает над созданием контроллера на 22 кВт.
Обычно с целью уменьшения воздействия токов Фуко на металл электродвигателя, а, соответственно, уменьшения потерь на нагрев, статоры синхронных и асинхронных электрических машин изготовлены из набора изолированных между собой пластин из тонкого железа.
На электродвигателях марки «HELV Motors» компании Buddha Energy Inc. корпус статора выполнен из композитов, что позволило уменьшить его вес и максимально сократить потери от эффекта токов Фуко.
В двигателях HELV не используются металлические сердечники, это позволяет значительно снизить вес двигателя без потери мощности. Особенно это важно для квадрокоптеров и вертолетов.
Благодаря специальному корпусу (крышке) диамагнитного статора все магнитные поля ротора и катушек концентрируются на небольшой площади и не выходят за пределы двигателя, что позволяет создавать высокую мощность при низком потреблении электроэнергии.
Композит статора дает возможность легко придавать ему нужную форму без использования дорогостоящего оборудования для обработки металла. Это позволит дополнительно снизить стоимость готовых электродвигателей.
Статор изготовлен таким образом, что двигатель может быть установлен как вертикально, так и горизонтально.
К преимуществам электродвигателя HELV следует также отнести:
- небольшие габариты и малый вес;
- максимальный крутящий момент, который доступен с момента включения (при нулевых оборотах) двигателя;
- возможность получения рекуперативной энергии;
- экологически чистая работа;
- минимум движущихся деталей, требующих замены или ремонта;
- отсутствие необходимости в коробке передач автомобиля.
Компания Buddha Energy Inc. предлагает ряд высокоэффективных низковольтных электродвигателей нового поколения на основе оригинально расположенных магнитных полей под торговой маркой «HELV Motors» мощностью от 5,6 кВт до 75 кВт
Так электродвигатель HELV мощностью 5,6 кВт при макс. 5600 об / мин, требует напряжения 75 В и потребляет ток до 100 А, в зависимости от нагрузки. В зависимости от модели двигателя обороты составляют от 65 до 75 оборотов на Вольт.
В целом к преимуществам электродвигателей компании «HELV Motors» следует отнести: малый вес и компактный размер, низкое потребление напряжения, умеренный нагрев при работе и большой крутящий момент вала в сравнении с низким энергопотреблением. Сферические катушки статора имеют низкое сопротивление, что позволяет создавать сильные магнитные поля внутри катушек при низком напряжении.
По имеющейся информации можно предположить, что авторы разработки изобрели нечто уникальное, которое может осуществить новый виток в энергетике, в понимании использования сил природы на благо человечества.
В целом изобретателям удалось решить сложную техническую задачу — смоделировать точное взаимодействие магнитных полей в пространстве, в том числе внутри композитов. Они также проверили магнитные взаимодействия полей на практике.
С этой целью на 3D принтере был напечатан лабораторный стенд для проверки взаимодействия магнитных полей ротора и статора. После проверки нескольких десятков вариантов обмоток статора был найден вариант, при котором взаимодействие полей статора и ротора происходило наилучшим образом.
Всё остальное было делом техники. На этом же принципе сконструирован шарообразный электродвигатель HELV.
Как утверждают авторы разработки, моторы HELV с их соотношением размеров и мощности — это нечто фантастическое.
Реализация данного изобретения стала возможной благодаря новым доступным материалам и новым идеям, которые стали ключевым фактором успеха прорывного эксперимента — изобрести что-то новое, что-то важное.
При доводке конструкции синхронизировать контроллер с электродвигателем HELV было достаточно непросто. Контролировать его на высоких нагрузках еще сложнее. Но на сегодняшний день изделие почти готово к массовому производству.
Компания утверждает, что двигатель рассчитанный на мощность 40 кВт будет весить не больше 9,7 кг, а диаметр будет не больше 22 сантиметров. Такие характеристики дадут возможность устанавливать данный двигатель на электрические автомобили, лодки, электромотоциклы и квадрокоптеры.
В 2019 году компания заявила, что скорость вращения топовой модификации двигателя составляет 30 000 оборотов в минуту при напряжении в 400 вольт, а пиковая мощность электродвигателя в линейке продукции составляет 95 кВт. Данная модель еще не представлена в линейке продукции компании.
Таким образом, произведен прорыв в создание самых современных и эффективных электродвигателей. Остаётся только правильно подобрать его мощность для достижения заданных технических характеристик автомобиля. Требуемая мощность, во многом зависит от типа трансмиссии. Если электродвигатель будет подключен к колёсам через коробку передач, — то достаточно и небольшой мощности, а если напрямую к дифференциалу, – тогда потребуется двигатель более мощный.
Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
Источник: https://naukatehnika.com/novyij-dvigatelej-dlya-elektromobilej.html
Виды и типы электродвигателей
- 3 августа 2016 г. в 13:52
- 2994
Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:
- Неподвижную часть (статор или индуктор).
- Подвижную часть (ротор или якорь).
В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.
Двигатели постоянного тока
Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:
- Коллекторные.
- Бесколлекторные.
В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:
- Самовозбуждающиеся.
- С возбуждением от электромагнитов постоянного действия.
Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:
- Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
- Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
- Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.
Двигатели переменного тока
Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.
Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью.
Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора.
При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.
Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.
В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:
- 1-нофазные;
- 2-хфазные;
- 3-хфазные;
- многофазные.
Категория размещения и климатическое исполнение
Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:
- Для помещений с высоким уровнем влажности.
- Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
- В условиях открытого пространства.
- Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
- Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.
В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:
- Все возможные макроклиматические районы (В).
- Холодный (ХЛ).
- Все морские районы (ОМ).
- Сухой тропический (ТС).
- Общий (О).
- Умеренный (У).
- Умеренный морской (М).
- Влажный тропический (ТВ).
Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.
Степень защиты корпуса
Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:
- Высокий уровень защиты от пыли — IP65, IP66.
- Защищенные — не ниже IP21, IP22.
- С защитой от влаги — IP55, IP5.
- С защитой от брызг и капель — IP23, IP24.
- Закрытое исполнение — IP44 — IP54.
- Герметичные — IP67, IP68.
При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.
Общие требования безопасности при монтаже и эксплуатации
При монтаже электрического двигателя необходимо придерживаться следующих требований:
- Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
- Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
- При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
- Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
- Строго запрещен монтаж электропривода под напряжением.
В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:
- Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
- Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
- При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
- Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
- Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.
Крановые электродвигатели
Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.
В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:
- Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
- Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
- Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
- Класс нагревостойкости изоляционных материалов не менее F.
- У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
- С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
- Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.
Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:
- Частые пуски, реверсы и торможения.
- Регулирование частоты вращения в широком диапазоне значений.
- Повышенная вибрация и тряски.
- Повторно-кратковременный режим работы.
- Воздействие высокой температуры, газа, пыли и пара.
- Значительная перегрузка во время работы.
Общепромышленные электрические двигатели
Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам.
Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором.
Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:
- Простая конструкция с отсутствием подвижных контактов.
- Низкая стоимость в сравнении с электрическими машинами других типов.
- Высокая ремонтопригодность всех главных узлов и рабочих элементов.
- Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
- Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.
Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др.
Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала.
В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.
Электрические двигатели с электромагнитным тормозом
Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время.
К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя.
Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.
Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:
- Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
- Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
- При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
- После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.
В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:
- С горизонтальным валом.
- С вертикальным валом.
Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.
Источник: https://www.elec.ru/articles/o-elektrodvigateljakh/