В чем измеряется мощность трансформатора

ТСН‌ (трансформатор‌ собственных‌ нужд)‌ как‌ средство‌ жизнеобеспечения‌ электроустановки‌

В чем измеряется мощность трансформатора

ТСН‌ (трансформатор‌ собственных‌ нужд)‌ как‌ средство‌ жизнеобеспечения‌ электроустановки‌

Трансформаторы собственных нужд или ТСН предназначены для питания нагрузки подстанций, КРУН, КРУ для обеспечения своих потребностей. 

ТСН обеспечивает работу электроустановки и функциональность подключенных потребителей нагрузки. 

Количественный состав и тип нагрузки собственных нужд электроустановки зависят от вида, мощности силовых тр-ров, предусмотрены или нет синхронные компенсаторы и от класса подключенного электрооборудования.

Рис. №1. Размещение и внешний вид трансформаторов собственных нужд на ПС 

Потребители, которые питаются от собственных нужд электроустановки

К нагрузке ТСН относятся: обогреватели релейных шкафов, ячеек приводов силовых выключателей нагрузки, а при использовании постоянного тока зарядных устройств аварийного и действующего освещения. 

ТСН обеспечивает действие релейных защит, систем пожаротушения, средств оперативной связи и телемеханики. 

К ТСН ПС класса напряжения до 220 кВ с трансформаторами с возможностью к повышенной нагрузке подключена форсированная система охлаждения высоковольтных трансформаторов и потребителей, отвечающих за жизнеспособность электроустановки. 

Перечень нагрузки для собственных нужд электроустановок:

  1. Электродвигатели для системы обдува и охлаждения трансформатора.

  2. Обогрев ячеек масляных вакуумных выключателей и шкафов управления с электрическими аппаратами и приборами контроля и измерения.

  3. Системы пожаротушения.

  4. Устройства обогрева.

  5. Сеть освещения электроустановки. 

  6. Электропитание приводов коммутирующих устройств.

Таб. №1. Классификация электроприемников СН в зависимости от ответственности и продолжительности работы

Выбор трансформатора собственных нужд

Для выборе трансформаторов, от которых питаются потребители учитывают наличие различных режимов нагрузки подстанции и способность к перегрузке. ТСН выбирается с резервным запасом мощности. 

Для повышения надежности все двухтрансформаторные ПС35/750 кВ должны иметь два ТСН, по одному на каждую секцию. Один трансформатор СН возможен только на подстанциях 35/220 кВ с постоянным оперативным током в период монтажа и начала работы. Второй трансформатор присоединяется в процессе работы электроустановки. 

При выборе ТСН руководствуютсянормами «Технического проектирования подстанций переменного тока с высшим напряжением 35 – 750 кВ», Пункт № 6. 1. Собственные нужды. 

Условия расчета мощности ТСН

Мощность ТСН для питания внутренних потребителей рассчитывают в зависимости от подключенной нагрузки с учетом коэффициентов одновременности максимумов нагрузки и коэффициента загрузки по активной мощности:

  • номинальное напряжение, которое является первичным рабочим напряжением ТСН;
  • нагрузка во вторичной обмотке;
  • коэффициенты загрузки и одновременности максимумов нагрузки.

Формула ориентировочной нагрузки ТСН:

Где: 

Kc – коэффициент одновременности и загрузки, принимаемый как 0,8;

Рнагруз. – активная мощность;

Qустав – реактивная мощность.

Кзагр = Sзагр / nтр x Sтсн  коэффициент загрузки должен быть меньше 0,7, что означает возможное беспрепятственное подключение других дополнительных потребителей. 

Расчет мощности в зависимости от времени года и ремонтных работ 

Сейчас большинство подстанций работают без дежурных, поэтому важное значение в подборе ТСН играет степень загруженности в теплое и холодное время. Например, включение постоянно работающего обогрева. 

Значит, S расчет = S зим

На выбор ТСН также влияет подключение дополнительного электрического оборудования в периоды ремонтных работ. Это сварочные аппараты, компрессоры, воздуходувки и прочее дополнительное освещение.

Мощность трансформатора без дежурных электриков и с одним тр-ром выбирают как Sm ≥Sрасч

В случае наличия двух трансформаторов и с постоянным обслуживающим персоналом принимается:

Источник: https://www.kesch.ru/info/articles/tsn-transformator-sobstvennykh-nuzhd-kak-sredstvo-zhizneobespecheniya-elektroustanovki-/

Номинальная мощность трансформатора: понятие, в чем указывается и измеряется, шкала

В чем измеряется мощность трансформатора

Для установки трансформатора необходимо рассчитывать его номинальную мощность. Выбор агрегата по данному показателю зависит от планируемых режимов работы, уровня нагрузки, условий и типа охлаждения прибора. При расчетах учитываются особенности измерения мощности трансформатора распределение нагрузки на составные части цепи при аварийной и стандартной работе прибора.

Понятие номинальной мощности трансформатора

Номинальная мощность трансформатора – это полная мощность, на которую рассчитан прибор его изготовителем. То есть, напряжение, которое в течение всего срока эксплуатации трансформатор выдерживает без перерыва.

Заводы дают гарантию службы от 20 до 25 лет.

Данный показатель всегда связан с температурным режимом работы: насколько допускается нагрев обмоток и при каких условиях охлаждается агрегат. При разных мощностях обмоток трансформатора номинальной считают наибольшую. В основном, в трансформаторах установлено масляное охлаждение, которое напрямую зависит от температуры окружающей среды.

Поскольку погодные условия постоянно изменяются, наибольший нагрев обмоток при максимальной теплоте воздуха считается верхним пределом среднего показателя сопротивления температуры, возможной для соблюдения безопасности.

У приборов с другим типом охлаждения в паспорте от производителя прописываются номинальные температурные условия.

Помимо номинальной, есть типовая мощность трансформатора, которая считается, как сумма величин нагрузки на все обмотки, поделенная на два. А максимальная нагрузка на обмотки рассчитывается, как произведение наибольшей величины тока на максимально разрешенное напряжение данной части цепи.

В чем измеряется и указывается

Номинальную мощность трансформаторов измеряют в кВА (киловольт-амперах), а не в кВТ (киловаттах). Эти два показателя отличаются друг от друга и не тождественны. Первый – это полная (номинальная) мощность, второй – активная. Номинальная потребляется в работу не в полном объеме, поскольку часть ее распространяется на электромагнитные поля цепи, и только оставшаяся часть – это активная мощность – действует по назначению.

Нагрузка на трансформатор обуславливается потребляемым током, а не энергией, которая используется фактически. То есть, полная мощность представляет собой все напряжение, налагаемое во время работы прибора на все составляющие электрической цепочки. Поэтому данную номинальную величину указывают в единицах вольт-ампер.

В работе электроприборов также учитывают коэффициент, который выражается в отношении активной к номинальной (cos фи). Данный коэффициент отражает величину сдвижения переменного тока по фазе относительно нагрузки, приложенной к ней.



Шкала стандартных мощностей силовых трансформаторов

На территории России используется единая шкала стандартных мощностей. Она разделяется на два шага: 1,35 и 1,6, каждый включает ряд величин, представленных в таблице ниже.

Шаг 1,35. В кВА Шаг 1,6. В кВА
100 100
135 160
180 250
240 400
320 630
420 1000
560 1600

В настоящее время заводы выпускают трансформаторные подстанции (ТП), применяя мощности шага 1,6. Шкала шага 1,35 уже не используется на производствах, но старые установки, выпущенные в советское время, проектировались именно по этой шкале. При этом, исследования определили старые приборы как более выгодные, поскольку они могут работать в полную силу, в отличие от современных агрегатов.

При выборе разных видов приборов, учитывается, что они должны быть максимально близкими по наибольшему показателю нагрузки в обычном режиме и предельному напряжению в аварийном.

При выборе трансформаторов для промышленных производств важно учитывать их количество для рационального распределения электроэнергии и их типовые мощности при определенной номинальной нагрузке.

Пример выбора трансформатора

Выбрать трансформатор можно исходя из их конструктивного исполнения, ориентируясь на необходимые характеристики, или по номинальной нагрузке.

Выбор по конструктивному исполнению

Силовые трансформаторы бывают нескольких видов:

  • масляные – устанавливаются внутри или снаружи зданий, где нет опасности возгорания или взрыва веществ;
  • сухие – находятся в пожароопасных помещениях;
  • с негорючим жидким диэлектриком – устанавливаются внутри строений, отличающихся высокой взрыво- и пожароопасностью.

Масляные лучше остальных отводят тепло от сердечника и обмоток, составные части хорошо защищены от внешних воздействий. Также, данные трансформаторы меньше других по стоимости. К недостаткам относится необходимость установки в специальных помещениях или снаружи строений, из-за высокой вероятности возгорания или взрыва при поврежденной защите активных частей.

Сухие трансформаторы устанавливают в тех помещениях, где высокая вероятность возгорания и большое электрическое напряжение. Такие установки обладают повышенными огнеупорными свойствами благодаря жаропрочным изоляционным материалам. Но условия охлаждения уступают масляным, из-за чего плотность тока в обмотках меньше.

Агрегаты с негорючим диэлектриком обладают схожими огнеупорными свойствами с сухими, не наносят вред окружающей среде, за счет характеристик охлаждающей жидкостей и считаются более долговечными.

Выбор по мощности

Агрегаты для главных понизительных подстанций (ГПП) и цеховых трансформаторных подстанций выбирают по среднему напряжению за максимально загруженный период работы с контролем удельного расхода электроэнергии.

Фактор, которым характеризуется необходимая полная мощность трансформатора – это допустимое значение относительной аварийной нагрузки. Этот показатель регламентируется ГОСТом и определяется, как возможный тепловой износ изоляции агрегата за аварийный период с учетом температуры охлаждения, типа прибора и графика режима аварийной работы.

При определении необходимой номинальной нагрузки трансформатора используют два подхода, зависящие от наличия исходных данных:

  1. По заранее определенному суточному плану нагрузки производства за типичные сутки года в режиме аварийной и стандартной работы.
  2. По расчетной нагрузке в этих же режимах. По Государственному стандарту, цеховые ТП имеют мощности, указанные в таблице выше.

Источник: https://otransformatore.ru/silovoj/ponyatie-nominalnoj-moshhnosti-transformatora-v-chem-ukazyvaetsya-i-izmeryaetsya/

Мощность трансформатора

В чем измеряется мощность трансформатора

Электрическая сеть в своём начале имеет всего лишь несколько генераторов. Они установлены на электростанции, которая проектируется как одно целое. На много лет вперёд в ней всё остаётся без изменений вплоть до завершения сроков службы турбин, генераторов и трансформаторов.

Но в электросети, питаемой этой электростанцией, как говорится «всё течёт, всё изменяется». Предприятия имеют тенденции к развитию и росту на основе получаемой электрической энергии.

Её источником является заводская трансформаторная подстанция и трансформаторы, которые на ней установлены.

Поэтому на этапе проектирования важно правильно выбрать каждый трансформатор в основном по мощности с учётом местных условий его эксплуатации. На них будут оказывать влияние

  • занимаемое предприятием место в схеме электроснабжения,
  • оборудование, работающее на предприятии,
  • ход процесса его развития.

Мощность трансформатора должна обеспечить внутренние потребности предприятия на весь период его эксплуатации, который составляет не один десяток лет. Если на этапе проектирования выбран менее мощный трансформатор, так же как и излишне мощный это лишние расходы которые всегда весьма нежелательны.

Замена трансформатора на новую более мощную модель это весьма дорогостоящая процедура. А поскольку на подстанции для надёжности всегда работают, как минимум два одинаковых трансформатора расходы удвоятся.

Но и неиспользуемая мощность трансформатора это также «деньги на ветер». Сеть электроснабжения разветвляется на шести уровнях с использованием на каждом из них трансформаторов обычно на 6 и 10 кВ на главных понижающих подстанциях, сокращённо «ГПП».

Самые мощные из них относятся к пятому уровню.

Мощность трансформаторов измеряется в мегавольт – Амперах (МВ*А) и, как правило, соответствует одному из значений ряда

Высокая сторона напряжения трансформатора ГПП обычно равна одному из значений ряда

Подавляющее большинство видов электрооборудования работающих на предприятиях подключены к электросети предприятия с напряжением 220, 380, 500 или 600 В от цеховых трансформаторных подстанций с напряжениями 3, 6, 10 или 20 кВ на высокой стороне.

В этих подстанциях используются трансформаторы со стандартными значениями мощности:

Номинал 2500 кВА мощности трансформатора в цеховых подстанциях распространён не так широко как другие номиналы мощностей. При авариях связанных с короткими замыканиями в электрических цепях вторичной обмотки величина тока получается слишком большой и требует дорогостоящих коммутаторов. По этой причине цеховые подстанции с трансформаторами 2500 кВА это специальные проекты.

Но не всегда трансформатор является пограничным устройством, объединяющим высоковольтную и низковольтную электросети которое своей мощностью определяет работу потребителей на низкой стороне напряжения. Среди потребителей электроэнергии есть и трансформаторы. Они являются частью электропечей, выпрямителей преобразователей, сварочного оборудования. Мощность этих трансформаторов выбирается исходя из специфики выполняемых ими функций.

При выборе мощности трансформатора, а также схемы, соответственно которой он присоединён в связи с особенностями питающих линий электропередачи, имеет значение схема ближайшей энергетической системы района и характеристики её источников питания. Поэтому для трансформаторных подстанций 3-го уровня с мощностями от 100 до 2500 кВА на этапе проектирования существенное значение имеют такие параметры как:

  • напряжение ЛЭП, насколько она протяжённа, сколько в ней проводов и какого они сечения,
  • используются ли компенсаторы реактивной мощности,
  • какие значения номинальных напряжений будут на подстанции и у скольких трансформаторов.

Чтобы мощность трансформатора получилась оптимальной для электропитания потребителей лучше всего основываться на распределении нагрузок в течение суток. Если таковых данных или графиков нет, путём суммирования активных нагрузок — потребителей вычисляется максимальная величина активной нагрузки.

Особенности конструкции и потери

Наиболее эффективным решением по суммарным издержкам является выбор такой мощности трансформатора, когда он в часы «пик» перегружен, но его номинальная мощность несколько меньше продолжительной максимальной нагрузки.

При этом необходимо учитывать теплообмен его с окружающей средой, который зависит от её температуры и конструкции трансформатора. Технические решения с погружением магнитопровода с обмотками в масло способны лучше переносить перегрузки, чем трансформаторы с воздушным охлаждением. Нагрев и потери мощности происходят в результате больших токов в обмотках и нагрева магнитопровода. Нагрев от большой силы тока имеет две составляющие:

  • постоянную, которая определяется активным сопротивление провода обмотки;
  • переменную, которая увеличивается из-за вытеснения тока по мере возрастания его силы к наружной части провода.

Ток вторичной обмотки трансформатора в номинальном режиме достигает нескольких тысяч ампер. Например, при мощности 2500 кВА во вторичной обмотке с фазным напряжением 400 В номинальный ток будет более 2000 Ампер в каждой фазе.

При таком токе сопротивление обмотки даже в доли Ома приводит к нагреву. Другим источником потерь являются вихревые токи в магнитопроводе.

Несмотря на применение сборки его из тонких стальных пластин трансформаторной стали потери существенно уменьшаются, но полностью не устраняются.

Индуктивность рассеяния ещё один важный параметр конструкции обмоток и магнитопровода. Она, по сути, является дросселем, который соединён последовательно с обмоткой и приводит к падению напряжения на выводах обмотки и нагрузке.

Поскольку на этот вредный параметр можно повлиять только конструкцией магнитопровода и обмоток, а вариантов для них совсем немного, индуктивность рассеяния всегда значительна во всех трёхфазных трансформаторах. Причина заключается в их Ш – образных магнитопроводах.

Минимальная индуктивность рассеяния у магнитопровода в форме тора, в котором обмотка равномерно распределена по нему. Однако сложность формирования обмоток определила магнитопроводу в форме тора место только среди маломощных трансформаторов.

Мощность трансформатора определяет его конструкцию. Она получается довольно таки сложной несмотря на то, что в трансформаторе всего лишь несколько обмоток на одном общем для них магнитопроводе. Его конструкция определяется теми процессами, которые происходят как при нормальной работе, так и при аварийных режимах.

Но более детальное рассмотрение этого потребует отдельной большой статьи, а возможно и книги.

Источник: http://podvi.ru/elektrotexnika/moshhnost-transformatora.html

Безопасность. Орловская область

Часто возникают ситуации, когда необходимо преобразовать некоторые электрические величины для получения возможности моделировать необходимые процессы в электроустановках, либо обезопасить процесс измерений. Для решения этих вопросов применяется трансформатор тока. Он способен трансформировать определенную величину в пониженное пропорциональное значение. 

ЭТО ИНТЕРЕСНО:  Как заряжать аккумулятор в домашних условиях

Прежде, чем совершать покупку, необходимо определиться, как правильно выбрать трансформатор тока для корректной работы. Много фирм предлагают свои услуги по решению этого вопроса, например, http://elektrovrn.ru/produkciya/transformatory_toka/ Мы рассмотрим основные моменты выбора этого прибора.

Основные паспортные характеристики 

Выбирая подходящее устройство, необходимо первым делом ознакомиться с его рабочими параметрами. 

Трансформаторы тока — характеристики, которые необходимо учитывать:

  • Номинальное напряжение прибора (можно посмотреть в паспорте трансформатора). Этот параметр характеризует уровень напряжения, при котором прибор будет устойчиво работать. 
  • Величина номинального тока, проходящего в первичной цепи (обмотке) устройства. Указан в паспорте как I1н.
  • Номинальный вторичный ток (который протекает по второй обмотке трансформатора). Этот показатель имеет одно из двух значений: либо 1 А, либо 5 А. При необходимости по индивидуальному заказу изготавливают трансформаторы с показателем 2 А или 2,5А. Обозначается I2н. На самом трансформаторе номинальный ток первичной и вторичной цепи указывается через косую линию, например, 600/5.
  • Вторичная нагрузка. Этот параметр характеризует способность к полному сопротивлению всем элементам внешней вторичной сети. Обозначается Z2н и измеряется в Омах, либо в вольт-амперах (в случае, когда она выражается через полную мощность, обозначается S2н.ном). Если значение дано в вольт-амперах, и его необходимо перевести в Омы, можно воспользоваться формулой, по которой полное сопротивление всех элементов вторичной сети равна частному полной потребляемой мощности и квадрату номинального вторичного тока.
  • Величина электродинамической стойкости (Iд) – максимально возможная величина амплитуды тока короткого замыкания, которую может выдержать данный трансформатор тока без повреждений.
  • Коэффициент трансформации характеризуется величиной отношения первичного тока к показателю вторичного тока. Выделяют действительный и номинальный показатель коэффициента. 
  • Величина термической стойкости (ItТ) – показывает, на сколько токоведущие части трансформатора могут противостоять нагреву, осуществляемому током короткого замыкания в определённый промежуток времени. Температура медных токоведущих частей не должна подниматься выше 250 градусов, а алюминиевых – выше 200 градусов.

Как выбрать трансформатор тока по его типу

Выбирая трансформатор, для начала стоит определиться с существующими разновидностями этого прибора. Выделяют несколько классификаций.

Трансформаторы могут предназначаться:

  • для проведения измерений (тут можно отдельно выделить подгруппу трансформаторов, которые используются для измерений показаний в различных режимах);
  • в целях применения в устройствах защиты;
  • комбинированные.

В зависимости от своего применения, могут работать:

  • внутри помещений;
  • на улице;
  • они могут встраиваться в полости электрооборудования;
  • могут использоваться в специальных установках.

Также необходимо определиться, куда Вам необходимо установить трансформатор, он может быть:

  • встраиваемым (встраивается в полости электрооборудования);
  • проходным;
  • опорным (устанавливается на опорную плоскость);
  • разъемные – могут быстро устанавливаться на шинах либо кабелях, не требуют отключения токовой цепи.

Выбор трансформатора по классу точности

Выбирая трансформатор тока, обязательно необходимо учитывать его класс точности. Необходимый класс зависит от области применения трансформатора:

  • 1 – если к трансформатору будут подключаться лишь измерительные приборы;
  • 0,5 – если к нему необходимо подключить счётчик электроэнергии.

Как правило, для измерений показаний на коммерческих предприятиях необходимо использовать трансформаторы, имеющие высокий класс точности.

На этот показатель существенное влияние оказывает материал магнитопровода. В трансформаторах для коммерческих измерений, как правило, используется магнитопровод из аморфных (нанокристаллических) сплавов.

Выбор трансформатора тока по его характеристикам

При выборе, необходимо знать такие параметры:

  • напряжение сети;
  • показатель номинального первичного тока; 
  • уровень мощности вторичной цепи (он зависит от показателей потребляемых нагрузок);
  • коэффициент трансформации.

Для корректного выбора используется ряд правил.

  • Напряжение сети
  • Величина номинального напряжения трансформатора не должна быть меньшей максимального рабочего напряжения.
  • Выбор трансформатора по току

Иногда возникает вопрос, по какому току выбирать трансформатор тока. Все подобные аппараты выбираются исходя из показателей номинального тока. Он должен быть равен или превышать максимальный рабочий ток установки. При этом должны быть учтены показатели электродинамической и термической стойкости.

Говоря про ток, стоит учесть ещё один момент. Трансформатор переменного тока нельзя подключать к источнику постоянного тока. Во-первых, в этом случае количество выделяемого тепла может резко увеличиться, и прибор может сгореть. Во-вторых, такое подключение не даст никакого результата, так как не будет возникать переменное электромагнитное поле в сердечнике, и во вторичной обмотке не появится напряжение. Для работы в сетях постоянного тока необходимо выбрать трансформатор постоянного тока.

Оценка нагрузки на трансформатор

Следующим шагом необходимо рассчитать предполагаемую нагрузку на прибор. Нагрузка вторичной цепи не должна превышать номинальную нагрузку трансформатора. 

Вторичная нагрузка рассчитывается путём сложения суммарного сопротивления всех приборов, величины сопротивления соединительных проводов и величины переходного сопротивления контактов.

Как правило, нам известна суммарная мощность, которая потребляется приборами. Для того, чтобы определиться, как выбрать трансформатор тока по мощности, потребляемой приборами, необходимо рассчитать сопротивление всех приборов, используя этот показатель и провести оценку нагрузки на прибор. 

Таким образом, суммарное сопротивление будет результатом деления суммарной мощности на квадрат номинального тока по вторичной обмотке.

Также, выбирая трансформатор тока, нельзя забывать о необходимом в Вашем случае коэффициенте трансформации. Существуют приборы, которые имеют несколько коэффициентов трансформации.

Выбирая производителя, стоит обратить свое внимание на наличие всей технической документации. Помимо этого, заслуживающие доверия производители предоставляют на свой товар услуги по гарантийному и сервисному обслуживанию, что может оказаться немаловажным фактором в процессе эксплуатации прибора.

Для того, чтобы найти подходящий трансформатор, можно воспользоваться поисковыми системами, которые показывают огромное количество предложений самых различных моделей. Учитывая приведённые выше рекомендации, Вы сможете сделать правильный выбор.

Источник: https://mchs-orel.ru/kak-vybrat-transformator-toka/

Почему мощность трансформатора измеряют в ква, а не в квт ?

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы — нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах.

Индуктивная

Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной.

Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные. 

Ёмкостная

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.

Смешанная

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА — киловольт-амперах. Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:

S(полная мощность)=P(активная мощность)/k(коэффициент мощности)

Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт — это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/197-pochemu-moshchnost-transformatora-izmeryayut-v-kva-a-ne-v-kvt

Выбор коэффициента трансформации измерительных трансформаторов тока 6-10 кВ

Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО — везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.

Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.

Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Как выбрать трансформатор тока

Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.

Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5.

Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.

Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.

А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.

Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.

Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика — в «Правилах устройсва электроустановок» (ПУЭ).

Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют «трансформаторами с завышенным коэффициентом трансформации» и ограничивают их использование следующим образом.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:

Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.

Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети.

Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции.

Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Например, минимальный коэффициент трансформации — 15/5, расчетный уровень рабочего тока — 25% от максимального, ток во вторичной обмотке трансформатора — 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ — 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение — 30/5.

ЭТО ИНТЕРЕСНО:  Как соединить конденсаторы чтобы увеличить вольтаж

Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов

Источник: https://tmtrade.ru/vybor-transformatorov-toka

Что такое кВАр?

Основной единицей измерения мощности применительно к электрооборудованию является кВт (киловатт). Но существует и другая единица мощности, о которой знают далеко не все – кВАр.

кВАр (киловар) – единица измерения реактивной мощности (вольт-ампер реактивный – вар, киловольт-ампер реактивный – кВАр). В соответствии с требованиями Международного стандарта единиц систем измерения СИ, единица измерения реактивной мощности записывается «вар» (и, соответственно, «квар»).

Однако широкораспространенным является обозначение «кВАр». Такое обозначение обусловленно тем, что единицей измерения полной мощности по СИ является ВА. В зарубежной литературе общепринятым обозначением единицы измерения реактивной мощности является «kvar«.

Единица измерения реактивной мощности приравнивается к внесистемным единицам, допустимым к применению наравне с единицами СИ.

Приемники энергии переменного тока потребляют как активную, так и реактивную мощность. Соотношение мощностей цепи переменного тока можно представить в виде треугольника мощностей.

На треугольнике мощностей буквами P, Q и S обозначены активная, реактивная и полная мощности соответственно, φ – сдвиг фаз между током (I) и напряжением (U).

Значение реактивной мощности Q (кВАр) используется для определения полной мощности установки S (кВА), что на практике требуется, например, при расчете полной мощности трансформатора, питающего оборудование. Если более подробно рассмотреть треугольник мощностей, то очевидно, что компенсировав реактивную мощность, мы снизим и потребление полной мощности.

Потреблять реактивную мощность из снабжающей сети предприятиям крайне не выгодно, так как это требует увеличения сечений подводящих кабелей, повышения мощности генераторов и трансформаторов. Есть способы позволяющие получать (генерировать) её непосредственно у потребителя.

Самым распространенным и эффективным способом является использование конденсаторных установок.

Поскольку основной функцией, выполняемой конденсаторными установками является компенсация реактивной мощности, то и общепринятой единицей их мощности является кВАр, а не кВт как для всего остального электротехнического оборудования.

В зависимости от характера нагрузки на предприятиях могут применяться как не регулируемые конденсаторные установки, так и установки с автоматическим регулированием. В сетях с резко переменной нагрузкой используются установки с тиристорным управлением, которые позволяют подключать и отключать конденсаторы практически мгновенно.

Рабочим элементом любой конденсаторной установки является фазовый (косинусный) конденсатор. Основной характеристикой таких конденсаторов является мощность (кВАр), а не емкость(мкФ), как для остальных типов конденсаторов. Однако в основу функционирования как косинусных, так и обычных конденсаторов, заложены одни и те же физические принципы.

Поэтому мощность косинусных конденсаторов, выраженную в кВАр, можно пересчитать в емкость, и наоборот, по таблицам соответствия или формулам пересчета. Мощность в кВАр прямо пропорциональна емкости конденсатора (мкФ), частоте (Гц) и квадрату напряжения (В) питающей сети.

Стандартный ряд номиналов мощности конденсаторов для класса 0,4 кВ составляет от 1,5 до 50 кВАр, а для класса 6-10 кВ от 50 до 600 кВАр.

Важным показателем эффективности энергопотребления является экономический эквивалент реактивной мощности кэ (кВт/кВАр). Он определяется как снижение потерь активной мощности к уменьшению потребления реактивной мощности.

Значения экономического эквивалента реактивной мощности

Характеристика трансформаторов и системы электроснабженияПри максимальной нагрузке системы (кВт/кВАр)При минимальной нагрузке системы (кВт/кВАр)
Трансформаторы, питающиеся непосредственно от шин станций на генераторном напряжении 0,02 0,02
Сетевые трансформаторы, питающиеся от электростанции на генераторном напряжении (например, трансформаторы промышленных предприятий, питающиеся от заводских или городских электростанций) 0,07 0,04
Понижающие трансформаторы 110-35 кВ, питающиеся от районных сетей 0,1 0,06
Понижающие трансформаторы 6-10 кВ, питающиеся от районных сетей 0,15 0,1
Понижающие трансформаторы, питающиеся от районных сетей, реактивная нагрузка которых покрывается синхронными компенсаторами 0,05 0,03

Существуют и более «крупные» единицы измерения реактивной мощности, например мегавар (Мвар). 1 Мвар равен 1000 кВАр. В мегаварах как правило измеряется мощность специальных высоковольтных систем компенсации реактивной мощности – батарей статических конденсаторов (БСК).

Источник: http://www.matic.ru/clients/articles/what-is-kvar-02-04-11/

Расчет и выбор силового трансформатора по мощности и количеству

Расчетный срок службы трансформатора обеспечивается при соблюдений условий:

При проектировании, строительстве, пуске и эксплуатации эти условия никогда не выполняются (что и определяет ценологическаятеория).

Определение номинальной мощности трансформатора

Для правильного выбора номинальной мощности трансформатора (автотрансформатора) необходимо располагать суточным графиком нагрузки, из которого известна как максимальная, так и среднесуточная активная нагрузки данной подстанции, а также продолжительность максимума нагрузки.

График позволяет судить, соответствуют ли эксплуатационные условия загрузки теоретическому сроку службы (обычно 2025 лет), определяемому заводом изготовителем.

Для относительного срока службы изоляции и (или) для относительного износа изоляции пользуются выражением, определяющим экспоненциальные зависимости от температуры. Относительный износ L показывает, во сколько раз износ изоляции при данной температуре больше или меньше износа при номинальной температуре. Износ изоляции за время оценивают по числу отжитых часов или суток: Н=Li.

В общем случае, когда температура изоляции не остается постоянной во времени, износ изоляции определяется интегралом:

В частности, среднесуточный износ изоляции:

Влияние температуры изоляции определяет, сколько часов с данной температурой может работать изоляция при условии, что ееизнос будет равен нормированному износу за сутки:

При температуре меньше 80°С износ изоляции ничтожен и им можно пренебречь. Температура охлаждающей среды, как правило, не равна номинальной температуре и, кроме того, изменяется во времени.

В связи с этим для упрощения расчетов используют эквивалентную температуру охлаждающей среды, под которой понимают такую неизменную за расчетный период температуру, при которой износ изоляции трансформатора будет таким же, как и при изменяющейся температуре охлаждающей среды в тот же период.

Допускается принимать эквивалентную температуру за несколько месяцев или год равной среднемесячным температурам или определять эквивалентные температуры по специальным графикам зависимости эквивалентных месячных температур от среднемесячных и среднегодовых, эквивалентных летних (апрель—август), осенне-зимних (сентябрь—март) и годовых температур от среднегодовых.

Если при выборе номинальной мощности трансформатора на однотрансформаторной подстанции исходить из условия

(где Рмах — максимальная активная нагрузка пятого года эксплуатации; Рр — проектная расчетная мощность подстанции), то при графике с кратковременным пиком нагрузки (0,5 1,0 ч) трансформатор будет длительное время работать с недогрузкой. При этом неизбежно завышение номинальной мощности трансформатора и, следовательно, завышение установленной мощности подстанции.

В ряде случаев выгоднее выбирать номинальную мощность трансформатора близкой к максимальной нагрузке достаточной продолжительности с полным использованием его перегрузочной способности с учетом систематических перегрузок в нормальном режиме.

Режимы работы трансформатора

Наиболее экономичной работа трансформатора по ежегодным издержкам и потерям будет в случае, когда в часы максимума он работает с перегрузкой (эксплуатация же стремится работать в режимах, когда в часы максимума загрузки данного трансформатора он не превышает свою номинальную мощность). В реальных условиях значение допустимой нагрузки выбирается в соответствии с графиком нагрузки и коэффициентом начальной нагрузки и зависит также от температуры окружающей среды, при которой работает трансформатор.

Коэффициент нагрузки, или коэффициент заполнения суточного графика нагрузки, практически всегда меньше единицы:

В зависимости от характера суточного графика нагрузки (коэффициента начальной загрузки и длительности максимума), эквивалентной температуры окружающей среды, постоянной времени трансформатора и вида его охлаждения согласно ГОСТ допускаются систематические перегрузки трансформаторов.

Перегрузки силовых трансформаторов

Перегрузки определяются преобразованием заданного графика нагрузки в эквивалентный в тепловом отношении (рис. 3.5). Допустимая нагрузка трансформатора зависит от начальной нагрузки, максимума нагрузки и его продолжительности и характеризуется коэффициентом превышения нагрузки:

Допустимые систематические перегрузки трансформаторов определяются из графиков нагрузочной способности трансформаторов, задаваемых таблично или графически. Коэффициент перегрузки передается в зависимости от среднегодовой температуры воздуха /сп вида охлаждения и мощности трансформаторов, коэффициента начальной нагрузки кн н и продолжительности двухчасового эквивалентного максимума нагрузки tmах.

Для других значений tmax допустимый можно определить по кривым нагрузочной способности трансформатора.

Если максимум графика нагрузки в летнее время меньше номинальной мощности трансформатора, то в зимнее время допускается длительная 1%я перегрузка трансформатора на каждый процент недогрузки летом, но не более чем на 15 %.

Суммарная систематическая перегрузка трансформатора не должна превышать 150 %.

При отсутствии систематических перегрузок допускается длительная нагрузка трансформаторов током на 5 % выше номинального при условии, что напряжение каждой из обмоток не будет превышать номинальное.

На трансформаторах допускается повышение напряжения сверх номинального: длительно — на 5 % при нагрузке не выше номинальной и на 10% при нагрузке не выше 0,25 номинальной; кратковременно (до 6 ч в сутки) — на 10 % при нагрузке не выше номинальной.

 Дополнительные перегрузки одной ветви за счет длительной недогрузки другой допускаются в соответствии с указаниями заводом — изготовителя. Так, трехфазные трансформаторы с расщепленной обмоткой 110 кВ мощностью 20, 40 и 63 М ВА допускают следующие относительные нагрузки: при нагрузке одной ветви обмотки 1,2; 1,07; 1,05 и 1,03 нагрузки другой ветви должны составлять соответственно 0; 0,7; 0,8 и 0,9.

Расчет номинальной мощности трансформатора

Номинальная мощность, MB • А, трансформатора на подстанции с числом трансформаторов п > 1 в общем виде определяется из выражения

Для сетевых подстанций, где примерно до 25 % потребителей из числа малоответственных в аварийном режиме может быть отключено, обычно принимается равным 0,750,85. При отсутствии потребителей III категории К 1-2 = 1 Для производств (потребителей) 1й и особой группы известны проектные решения, ориентирующиеся на 50%ю загрузку трансформаторов.

Рекомендуется широкое применение складского и передвижного резерва трансформаторов, причем при аварийных режимах допускается перегрузка трансформаторов на 40 % на время максимума общей суточной продолжительностью не более 6 ч в течение не более 5 сут.

При этом коэффициент заполнения суточного графика нагрузки трансформаторов кн в условиях его перегрузки должен быть не более 0,75, а коэффициент начальной нагрузки кпн — не более 0,93.

Так как К1-2 < 1, а Кпер > 1 их отношение К = К 1-2 / К пер. всегда меньше единицы и характеризует собой ту резервную мощность, которая заложена в трансформаторе при выборе его номинальной мощности. Чем это отношение меньше, тем меньше будет закладываемый в трансформаторы резерв установленной мощности и тем более эффективным будет использование трансформаторной мощности с учетом перегрузки.

Завышение коэффициента к приводит к завышению суммарной установленной мощности трансформаторов на подстанции.

Уменьшение коэффициента возможно лишь до такого значения, которое с учетом перегрузочной способности трансформатора и возможности отключения неответственных потребителей позволит покрыть основную нагрузку одним оставшимся в работе трансформатором при аварийном выходе из строя второго трансформатора.

Таким образом, для двухтрансформаторной подстанции

В настоящее время существует практика выбора номинальной мощности трансформатора для двух трансформаторной подстанции с учетом значения к = 0,7, т.е.

Формально выражение (3.14) выглядит ошибочно: действительно, единица измерения активной мощности — Вт; полной (кажущейся) мощности — ВА. Есть различия и в физической интерпретации S и Р. Но следует подразумевать, что осуществляется компенсация реактивной мощности на шинах подстанции 5УР, ЗУР и что коэффициент мощности cos ф находится в диапазоне 0,92 0,95.

Тогда ошибка, связанная с упрощением выражения (3.13) до (3.14), не превышает инженерную ошибку 10%, которая включает в себя и приблизительность значения 0,7, и ошибку в определении фиксированного Рмах

Таким образом, суммарная установленная мощность двухтрансформаторной подстанции

При этом значении к в аварийном режиме обеспечивается сохранение около 98 % Рмах без отключения неответственных потребителей. Однако, учитывая принципиально высокую надежность трансформаторов, можно считать вполне допустимым отключение в редких аварийных режимах какойто части неответственных потребителей.

При двух и более установленных на подстанции трансформаторах при аварии с одним из параллельно работающих трансформаторов оставшиеся в работе трансформаторы принимают на себя его нагрузку. Эти аварийные перегрузки не зависят от предшествовавшего режима работы трансформатора, являются кратковременными и используются для обеспечения прохождения максимума нагрузки.

Далее приведены значения кратковременных перегрузок масляных трансформаторов с системами охлаждения М, Д, ДЦ, Ц сверх номинального тока (независимо от длительности предшествующей нагрузки, температуры окружающей среды и места установки).

Аварийные перегрузки масляных трансформаторов со всеми видами охлаждения:

Для трехобмоточных трансформаторов и автотрансформаторов указанные перегрузки относятся к наиболее нагруженной обмотке.

Источник: https://pue8.ru/vybor-elektrooborudovaniya/77-vybor-i-ispolzovanie-silovyh-transformatorov.html

Мощность трансформатора 180 ква

ТСЗ-180 кВА

Количество фаз сети

Материал обмоток трансформатора

Медь или алюминий

Габаритные размеры (дхшхв), мм

Для многих видов промышленных предприятий характерна большая территориальная распределенность производственных объектов и оборудования (крупные металлургические предприятия, горнодобывающие комплексы).

И в этих случаях особое значение приобретает возможность создания автономной точки преобразования напряжения в диапазоне до 1000 вольт.

Компоновка трехфазного сухого трансформатора напряжения ТСЗ мощностью 180 кВА позволит в минимальные сроки подключить трёхфазный потребитель к линии 660 вольт, часто применяемой для компенсации потерь из-за большой протяжённости кабельных линий.

Сухое исполнение обмоток ТСЗ-180 допускает установку этого трансформатора в помещениях категории «В», но не допускает размещение вне помещений (IP20). Электрические свойства алюминиевых, либо медных обмоток данного изделия позволяют использовать его для преобразования напряжений от 12 до 1000 вольт.

Значения мощности в 180 кВА нет в традиционном ряде мощностей, рекомендуемых для производителей трансформаторной техники и кроме четырнадцати серийных моделей силовых трансформаторов серии ТСЗ, можно купить трехфазный сухой трансформатор напряжения мощностью 180 кВА, сделав специальный заказ.

Компания «ЭТА» давно отработала схему изготовления изделий по специальному заказу. Цена на заказное изделие рассчитывается отдельно. Ориентировочную стоимость на трехфазный сухой трансформатор напряжения ТСЗ мощностью 180 кВА с дополнительными опциями вам подскажут консультанты отдела продаж.

Более точную цифру можно узнать после рассмотрения заказа конструкторами, на что уйдёт не более одного дня.

Наш отдел продаж может обеспечить надлежащее документальное оформление для любой формы сделок и вы можете купить трехфазный сухой трансформатор напряжения ТСЗ мощностью 180 кВА с оплатой как в наличной, так и в безналичной форме. При этом не имеет значения в каких объёмах вы производите покупку: оптовые и розничные сделки обслуживаются нашей компанией одинаково оперативно.

    показать номер 3432130338
  • Условия оплаты и доставки
  • КонтактыТрансформаторы серии ТМГ, ТМГМШ, ТМГСУ классов напряжения до 15 кВ силовые трехфазные понижающие с естественным масляным охлаждением, с переключением ответвлений обмоток без возбуждения, в герметичном исполнении (в дальнейшем именуемые «трансформаторы»), включаемые в сеть переменного тока частотой 50 Гц, предназначены для преобразования электроэнергии в сетях энергосистем и потребителей электроэнергии.Трансформаторы ТМГМШ предназначены для потребителей с повышенными требованиями к уровню шума и к потерям холостого хода, ТМГСУ – для сетей и потребителей с повышенными требованиями к симметричности фазных напряжений при неравномерной нагрузке фаз.Трансформаторы предназначены для эксплуатации в районах с умеренным или холодным климатом при:
  • невзрывоопасной, не содержащей токопроводящей пыли окружаю­щей среде;
  • высоте установки над уровнем моря не более 1000 м.
  • трансформаторы не предназначены для работы в условиях тряски, вибрации, ударов, в химически активной среде.
  • режим работы – длительный.
  • температура окружающего воздуха для трансформаторов, предназначенных для работы в условиях умеренного климата (исполнение У) – от минус 45 до плюс 40 °С, для трансформаторов исполнения XJI (исполнение для холодного климата) – от минус 60 до плюс 40 °С.
ЭТО ИНТЕРЕСНО:  Как подключить трехфазный двигатель к сети 220 вольт

  Кухонные уголки из массива фото

Подготовка изделий к использованию

Трансформаторы относятся к электрическим установкам, поэтому при вводе в эксплуатацию и в процессе эксплуатации трансформатора необходимо соблюдать все нормы, правила и требования всех действующих документов но технике безопасности и пожарной безопасности электро­установок.

Трансформатор и его активную часть необходимо поднимать только за специально предназначенные для этой цели детали:

  • трансформаторы мощностью 16-250 кВА в сборе и активную часть с крышкой;
  • трансформаторов мощностью 16-630 кВА – за серый, расположенные на крышке;
  • трансформаторы мощностью 400,630 кВ А в сборе – за серьги, расположенные на баке;
  • активную часть без крышки – за серый, расположенные на верхних ярмовых балках.
  • Категорически запрещается:
  • поднимать трансформаторы мощностью 16-250 кВ А за скобы, прива­ренные к баку, служащие для креплёния изделия при транспортировании;
  • поднимать трансформаторы мощностью 400,630 кВ А за серьги, прива­ренные к крышке;
  • производить работы и переключения на трансформаторе, включенном в сеть хотя бы с одной стороны:
  • пользоваться переключателем без ознакомления с настоящим руко­водством по эксплуатации;

Категория размещения трансформаторов – 1 по ГOCT15150-69.

Трансформаторы допускают эксплуатацию в условиях категорий размещения 2,3,4 по ГОСТ15150-69.

Контрольно-измерительные приборы

Для контроля уровня масла на крышке трансформатора установлен маслоуказатель поплавкового типа.

Для измерения температуры верхних слоев масла в баке на крышке трансформатора предусмотрен карман для установки термометра.

Для уменьшения избыточного давления в баке при увеличении его сверх допустимою в трансформаторах мощностью от 16 до 63 кВА на крышке патрубка для заливки, масла установлен предохранительный клапан.

Для контроля внутреннего давления в баке и сигнализации о превышении давления в баке допустимых величин, в трансформаторах ТМГ, начиная с мощности 100 кВА,

Для контроля устанавливаемых в помещении, предусматри­вается по требованию заказчика установка мановакуумметра. Контакты мановакуумметра проводами соединяются с коробкой зажимов.

  Литр пропана перевести в кубы

Маркировка и пломбирование

Трансформаторы снабжаются табличкой с техническими характе­ристиками трансформатора.

Обозначение фаз расположено на крышке у вводов НН и ВН.

Место заземления обозначено знаком заземления по ГОСТ 21130-75.

Пломбирование бака трансформатора осуществляется путем установки пломбы на болтах, крепящих крышку с рамой бака.

Пломбируется заливочный патрубок и пробка слива масла.

При нарушении целостности пломб предприятие-изготовитель снимает установленные гарантии.

На время транспортирования:

  • контактные зажимы вводов НH трансформаторов мощностью 400 кВ А с напряжением НН 0,23 кВ и мощностью 630 кВА упаковываются в деревянный ящик:
  • маноовакуумметр, коробка зажимов (в случае заказа потребителем, для трансформаторов, начиная с мощности 100 кВ А) упаковываются в деревянный ящик;
  • транспортные ролики (в случае заказа потребителем для трансфор­маторов начиная с мощности 160 кВ А) крепятся к опорным швеллерам, расположенным на дне бака;
  • резиновые пластины для трансформаторов ТМГМШ упаковываются в полиэтиленовый мешочек и крепятся к вводам;

При покупке дизельной электростанции первое, с чем сталкивается потребитель, – это выбор мощности ДГУ. В характеристиках производители всегда указывают две единицы измерения мощности.

кВА – полная мощность оборудования;

кВт – активная мощность оборудования;

Выбирая генератор или стабилизатор напряжения необходимо отличать полную потребляемую мощность (кВА) от активной мощности (кВт), которая затрачивается на совершение полезной работы.

Онлайн калькулятор перевода кВА в кВт:

Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Мощность бывает полная, реактивная и активная:

  • S – полная мощность измеряется в кВА (килоВольтАмперах)

Характеризует полную электрическую мощность переменного тока. Для получения полной мощности значения реактивной и активной мощностей суммируются. При этом соотношение полной и активной мощностей у разных потребителей электроэнергии может отличаться. Таким образом, для определения совокупной мощности потребителей следует суммировать их полные, а не активные мощности.

  Лопата скребок для уборки снега

кВА характеризует полную электрическую мощность, имеющую принятое буквенное обозначение по системе СИ – S: это геометрическая сумма активной и реактивной мощности, находимая из соотношения: S=P/cos(ф) или S=Q/sin(ф).

  • Q – реактивная мощность измеряется в кВар (килоВарах)

Реактивная мощность, потребляемая в электрических сетях, вызывает дополнительные активные потери (на покрытие которых расходуется энергия на электростанциях) и потери напряжения (ухудшающие условия регулирования напряжения).

  • Р – активная мощность измеряется в кВт (килоВаттах)

Это физическая и техническая величина, характеризующая полезную электрическую мощность. При произвольной нагрузке в цепи переменного тока действует активная составляющая тока. Эта часть полной мощности, которая определяется коэффициентом мощности и является полезной (используемой).

Единый коэффициент мощности обозначается Сos φ.

Это коэффициент мощности, который показывает соотношение (потерь) кВт к кВА при подключении индуктивных нагрузок.

Распространенные коэффициенты мощности и их расшифровка(cos φ):

1 – наилучшее значение

0,95 – отличный показатель

0,90 – удовлетворительные значение

0,80 – средний наиболее распространенный показатель

0,70 – плохой показатель

0,60 – очень низкое значение

Источник: https://firmmy.ru/moshhnost-transformatora-180-kva

Активная мощность: формула, как определить — Asutpp

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Прибор Мощность бытовых приборов, Вт/час
Зарядное устройство 2
Люминесцентная лампа ДРЛ От 50
Акустическая система 30
Электрический чайник 1500
Стиральной машины 2500
Полуавтоматический инвертор 3500
Мойка высокого давления 3500

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

Источник: https://www.asutpp.ru/aktivnaya-moshhnost-cepi-peremennogo-toka.html

Активная, реактивная и полная (кажущаяся) мощности

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I Cosθ

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Q = U I sinθ

Реактивная мощность = √ (Полная мощность2 – Активная мощность2)

вар =√ (ВА2 – P2)

квар = √ (кВА2 – кВт2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Источник: https://khomovelectro.ru/articles/aktivnaya-reaktivnaya-i-polnaya-kazhushchayasya-moshchnosti.html

Как определить мощность трансформатора: формула для нахождения сечения магнитопровода, как рассчитать обмотки

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

Источник: https://220v.guru/elementy-elektriki/transformatory/kak-opredelit-moschnost-transformatora-po-formule.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для любых предложений по сайту: [email protected]