В чем измеряется трансформатор

Испытания и измерения характеристик силовых трансформаторов

В чем измеряется трансформатор

Для изоляции обмоток электрических машин применяется большое количество разнообразных электроизоляционных материалов, выбор которых определяется условиями работы машины и характеризуется нагревостойкостью, относительной влажностью окружающей среды, механической прочностью, озоностойкостью и другими критериями. Наиболее характерными видами дефектов изоляции обмоток электрических машин являются местные дефекты (трещины, расслоения, воздушные включения, местные перегревы и т.п.), охватывающие незначительную часть площади изоляции.

Объектом испытания в силовых трансформаторах являются, прежде всего, активная часть трансформатора, жидкий диэлектрик (для маслонаполненных трансформаторов), изоляция вводов, целостность бака, состояние средств защиты и предохранительные устройства.

При испытании трансформатора во время монтажа или ремонта измеряют ряд характеристик для определения их состояния или качества ремонта. Объем и последовательность испытаний зависят от целей и возможности их проведения.

К таким испытаниям относятся:

  • Измерение потерь холостого хода.
  • Измерение сопротивления короткого замыкания трансформатора.
  • Проверка коэффициента трансформации.
  • Определение группы соединения обмоток.
  • Измерение сопротивления обмоток постоянному току.
  • Испытание трансформаторов включением на номинальное напряжение.
  • Измерение сопротивления изоляции.
  • Испытание повышенным напряжением промышленной частоты.
  • Измерение тангенса угла диэлектрических потерь (tg δ) изоляции обмоток.
  • Испытание и анализ трансформаторного масла

Высоковольтные испытания силовых трансформаторов в Санкт-Петербурге

Силовые трансформаторы могут быть включены в работу без предварительной ревизии и сушки, если проведены высоковольтные испытания и измерения характеристик в ходе пусконаладочных работ. Испытания и измерения характеристик также дают возможность сверить характеристики оборудования с данными завода-изготовителя.

Высоковольтные испытания силовых трансформаторов проводятся с учетом требований техники безопасности (ПОТ), установленном в нормативных документах: ПУЭ ,7-е издание, ПТЭЭП, ОиНИЭ.

Помимо комплекса электроизмерительных работ в объеме приемосдаточных испытаний после монтажа, проводятся и плановые испытания в эксплуатации, испытания до и после ремонтов, требования к которым несколько отличаются от пусконаладочных.

Требования к испытательному оборудованию и ТБ

Для высоковольтных испытаний силовых трансформаторов и сопутствующих измерений требуется электронный мегаомметр типа Ф 4102/2-М; амперметр типа Э 526;измеритель сопротивления постоянному току ИСО-1 или аналогичный; испытательная установка АИД-70 или аналог, а также вольтметр типа Э 545 и комплект К-50.

Средства защиты, применяемые при испытаниях и измерениях силовых трансформаторов, стандартные: диэлектрические перчатки, боты или коврик, переносное заземление и предупреждающие плакаты. Средства защиты применяются соответствии с НД «Инструкция по применению и испытанию СЗ, используемых в электроустановках».

 Перед испытаниями требуется закоротить и заземлить все выводы трансформатора, для размагничивания после работы.

Бригада, которая должна проводить испытания и измерения характеристик силовых трансформаторов, должна иметь в составе не менее двух человек, один из которых- производитель работ должен иметь группу по электробезопасности не ниже IV, остальные- члены бригады – не ниже III.

Персонал, имеющий группу IIпо электробезопасности, могут находится вне зоны испытания и выполнять функции наблюдателей и охранников, не допуская посторонних к испытываемому оборудованию.

Также в их задачи входит наблюдение за целостностью ограничительного периметра и контроль за наличием предупредительных табличек.

Измерения трансформаторов

Наряду с высоковольтными испытаниями силовых трансформаторов, требуется провести измерения характеристик.

Это замеры изоляционных характеристик, в том числе сопротивление изоляции и тангенса угла диэлектрических потерь, измерение сопротивления обмоток постоянному току, коэффициента трансформации, измерение потерь холостого хода, короткого замыкания, проверка группы соединений обмоток трехфазных трансформаторов и полярности выводов однофазных трансформаторов, проверка работы переключающего устройства, системы охлаждения, фазировка. К режиму испытаний относятся испытания обмоток трансформатора, физико-химический анализ трансформаторного масла, вводов, встроенных трансформаторов тока и включение толчком на номинальное напряжение.

«Высоковольтные испытания трансформаторов повышенным напряжением промышленной частоты проводятся для каждой из обмоток. Все остальные обмотки заземляют. Испытательное напряжение плавно поднимается до нормированного значения, выдерживается в течение 1 мин. и плавно понижается.

При отсутствии испытательной установки необходимой мощности испытание обмоток трансформаторов, автотрансформаторов, масляных и дугогасящих реакторов с нормальной изоляцией, а также другие виды работ, связанных с высоковольтными испытаниями трансформаторов, не проводится» (согласно «Объемам и нормам испытания электрооборудования»).

Высоковольтные испытания трансформаторов

Для каждого типа трансформаторов существует свое испытательное напряжение, которое зависит от класса изоляции обмотки и типа силового трансформатора.

Различается напряжение для герметизированных трансформаторов и для облегченной обмотки, а также есть разница между показателями для пусконаладочных работ и работ профилактических.

Частота испытательного тока при высоковольтных испытаниях силовых трансформаторов принимается в 50 Гц. Для сопоставления напряжения, типа трансформаторов и типа работ, легче все пользоваться таблицей.

Испытательное напряжение для облегченной изоляции, кВ
Класс трансформатора, кВ Пуско-наладка Профилактика
До 0,69 4,5/2,7 4,3/2,6
3 16,2/9,0 15,3/8,5
6 22,5/14,4 21,3/13,6
10 31,5/21,6 29,8/20,4
15 40,5/33,3 38,3/31,5
20 49,5/45,0 46,8/42,5
35 76,5 72,3
Испытательное напряжение для герметизированных трансформаторов, кВ
3 9,0 8,5
6 18,0 17,0
10 25,2 23,8
15 34,2 32,3
20 45,0 42,5

В том случае, если испытание сопротивления на заводе было проведено с помощью другого напряжения, испытательное напряжение должно быть скорректировано. В высоковольтных испытаниях силовых трансформаторов испытанию подвергается изоляция каждой обмотки. Чтобы результаты были «чистыми», следует заземлить выводы расщепленных ветвей обмоток вместе с баком трансформатора. Заземлить также следует выводы измерительных обкладок (ИО) вводов, а также ИО встроенных трансформаторов тока.

По правилам, установленным нормативными документами: «Контроль величины испытательного напряжения должен производиться на стороне высшего напряжения испытательного трансформатора. Исключение могут составлять силовые трансформаторы небольшой мощности с номинальным напряжением до 10 кВ включительно. Для них допускается испытательное напряжение измерять вольтметром, включая его на стороне НН испытательного трансформатора. Класс точности низковольтного вольтметра должен быть 0,5».

Начало высоковольтных испытаний трансформаторов следует начинать с подъема напряжения с наименьшего значения. Старт напряжения следует начать со значения, равного или немного превышающего треть от расчетного испытательного.

Скорость повышения напряжения должна составлять 2-3 кВ в секунду, при этом повышение должно производиться равномерно, что должно быть отслежено по приборам. Выдержка времени – 60 секунд, после чего напряжение плавно и без остановок следует снизить до нуля, или, максимум, до того значения, с которого начинался рост.

При высоковольтных испытаниях трансформаторов равномерность повышения-понижения имеет решающее значение, поскольку позволяет отследить точку, в которой может наступить пробой изоляции. Резкий скачок напряжения в разы повышает такую возможность, вне зависимости от состояния изоляции. После испытания обмотки заземляются.

Таким же образом производится высоковольтное испытание на прессующих кольцах, бандажах и полубандажах ярем, ярмовых балках, стяжных шпильках, находящихся в доступе – обычно это происходит при ремонте активной части трансформатора.

В высоковольтных испытаниях трансформаторов изоляция считается прошедшей испытания, если не произошло одно или несколько действий:

  • пробой изоляции;
  • задымление;
  • выделение газа или дыма;
  • возгорание;
  • звуки разрядов.

В том случае, если повреждения изоляции выявлено не было, и, как визуально, так и по приборам, изоляция осталась целой, и не было допущено утечки тока, в протоколе фиксируется, что силовой трансформатор испытания повышенным напряжением промышленной частоты выдержал. При этом должен быть указан класс изоляции и схема испытания.

Помимо обмоток и иных частей трансформатора, в ходе высоковольтных испытаний трансформаторов проводится испытание цепей КИА (контрольно-измерительной аппаратуры), защитной аппаратуры. Для этого производится подключение одного вывода измерительного аппарата к зажимам испытуемых цепей. Второй вывод аппарата заземляется.

Можно также объединить незаземленные цепи, чтобы провести общее испытание. Так же, как и при общих высоковольтных испытаниях трансформаторов, испытание цепей защитной и контрольно-измерительной аппаратуры длится минуту при напряжении 1 кВ.

То же касается и манометрических термометров, но здесь рекомендуемое напряжение снижается и составляет 0,75 кВ.

Что касается высоковольтных испытаний трансформаторов с облегченной изоляцией, для обмоток ниже 35 кВ (включительно), переменный ток при испытаниях может быть заменен выпрямленным напряжением с измерением тока утечки.

Работы оформляются в протокол согласно документу «Объем и нормы испытаний электрооборудования РД 34.45-51.300-97». В ротоколе указывается заказчик, исполнитель, объект, его местонахождение, дата испытания, климатические условия, данные испытательных приборов (марка, заводской номер, диапазон измерения, класс точности, дата проверки, дата следующей проверки, свидетельство о проверке, орган проверки, заключение), а также результаты испытания.

В них входят: указание фазы установки, тип, заводской номер, год изготовления, внешний осмотр, сопротивление изоляции тангенс угла диэлектрических потерь, коэффициент трансформации. В протоколе также в обязательном порядке указываются номер свидетельства о регистрации электролаборатории, и Ф,И.О. сотрудников ЭЛ
, проводивших испытания.

Мероприятия  по технике безопасности позволяют минимизировать риск нарушения работы силового трансформатора и провести испытания с минимальным риском для жизни работников ЭЛ. 

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  • ПУЭ (Правила устройства электроустановок), 7-е изд., гл. 1.8, п. 1.8.16, пп. 1-14
  • ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Прил. 3 Раздел 2, прил. 3.1, таб. 5.
  • Паспорт завода-изготовителя.

Источник: http://www.gorod812.com/ispytaniya-izmereniya-i-naladka/ispytaniya-i-izmereniya-kharakteristik-silovykh-transformatorov

Почему мощность трансформатора измеряют в ква, а не в квт ?

В чем измеряется трансформатор

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы — нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах.

Индуктивная

Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной.

Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные. 

Ёмкостная

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.

Смешанная

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА — киловольт-амперах. Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:

S(полная мощность)=P(активная мощность)/k(коэффициент мощности)

Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт — это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/197-pochemu-moshchnost-transformatora-izmeryayut-v-kva-a-ne-v-kvt

Номинальная мощность трансформатора: понятие, в чем указывается и измеряется, шкала

В чем измеряется трансформатор

Для установки трансформатора необходимо рассчитывать его номинальную мощность. Выбор агрегата по данному показателю зависит от планируемых режимов работы, уровня нагрузки, условий и типа охлаждения прибора. При расчетах учитываются особенности измерения мощности трансформатора распределение нагрузки на составные части цепи при аварийной и стандартной работе прибора.

Понятие номинальной мощности трансформатора

Номинальная мощность трансформатора – это полная мощность, на которую рассчитан прибор его изготовителем. То есть, напряжение, которое в течение всего срока эксплуатации трансформатор выдерживает без перерыва.

Заводы дают гарантию службы от 20 до 25 лет.

Данный показатель всегда связан с температурным режимом работы: насколько допускается нагрев обмоток и при каких условиях охлаждается агрегат. При разных мощностях обмоток трансформатора номинальной считают наибольшую. В основном, в трансформаторах установлено масляное охлаждение, которое напрямую зависит от температуры окружающей среды.

Поскольку погодные условия постоянно изменяются, наибольший нагрев обмоток при максимальной теплоте воздуха считается верхним пределом среднего показателя сопротивления температуры, возможной для соблюдения безопасности.

У приборов с другим типом охлаждения в паспорте от производителя прописываются номинальные температурные условия.

Помимо номинальной, есть типовая мощность трансформатора, которая считается, как сумма величин нагрузки на все обмотки, поделенная на два. А максимальная нагрузка на обмотки рассчитывается, как произведение наибольшей величины тока на максимально разрешенное напряжение данной части цепи.

В чем измеряется и указывается

Номинальную мощность трансформаторов измеряют в кВА (киловольт-амперах), а не в кВТ (киловаттах). Эти два показателя отличаются друг от друга и не тождественны. Первый – это полная (номинальная) мощность, второй – активная. Номинальная потребляется в работу не в полном объеме, поскольку часть ее распространяется на электромагнитные поля цепи, и только оставшаяся часть – это активная мощность – действует по назначению.

ЭТО ИНТЕРЕСНО:  Можно ли реанимировать гелевый аккумулятор

Нагрузка на трансформатор обуславливается потребляемым током, а не энергией, которая используется фактически. То есть, полная мощность представляет собой все напряжение, налагаемое во время работы прибора на все составляющие электрической цепочки. Поэтому данную номинальную величину указывают в единицах вольт-ампер.

В работе электроприборов также учитывают коэффициент, который выражается в отношении активной к номинальной (cos фи). Данный коэффициент отражает величину сдвижения переменного тока по фазе относительно нагрузки, приложенной к ней.



Шкала стандартных мощностей силовых трансформаторов

На территории России используется единая шкала стандартных мощностей. Она разделяется на два шага: 1,35 и 1,6, каждый включает ряд величин, представленных в таблице ниже.

Шаг 1,35. В кВА Шаг 1,6. В кВА
100 100
135 160
180 250
240 400
320 630
420 1000
560 1600

В настоящее время заводы выпускают трансформаторные подстанции (ТП), применяя мощности шага 1,6. Шкала шага 1,35 уже не используется на производствах, но старые установки, выпущенные в советское время, проектировались именно по этой шкале. При этом, исследования определили старые приборы как более выгодные, поскольку они могут работать в полную силу, в отличие от современных агрегатов.

При выборе разных видов приборов, учитывается, что они должны быть максимально близкими по наибольшему показателю нагрузки в обычном режиме и предельному напряжению в аварийном.

При выборе трансформаторов для промышленных производств важно учитывать их количество для рационального распределения электроэнергии и их типовые мощности при определенной номинальной нагрузке.

Пример выбора трансформатора

Выбрать трансформатор можно исходя из их конструктивного исполнения, ориентируясь на необходимые характеристики, или по номинальной нагрузке.

Выбор по конструктивному исполнению

Силовые трансформаторы бывают нескольких видов:

  • масляные – устанавливаются внутри или снаружи зданий, где нет опасности возгорания или взрыва веществ;
  • сухие – находятся в пожароопасных помещениях;
  • с негорючим жидким диэлектриком – устанавливаются внутри строений, отличающихся высокой взрыво- и пожароопасностью.

Источник: https://otransformatore.ru/silovoj/ponyatie-nominalnoj-moshhnosti-transformatora-v-chem-ukazyvaetsya-i-izmeryaetsya/

Трансформаторы напряжения VTM

Трансформаторы напряжения VTM (далее — трансформаторы) предназначены для измерения и учета электроэнергии при непосредственном подсоединении к шинам генераторного напряжения электрических станций или к выводам генераторов, а также для защиты, автоматики, управления и сигнализации в установках переменного тока номинальной частотой 50 Гц классов напряжения до 24 кВ.

Описание

Трансформаторы напряжения VTM являются однофазными, заземляемые и незазем-ляемыми, с одним коэффициентом трансформации, имеют одну вторичную обмотку. Первичные и вторичные обмотки залиты эпоксидной смолой. Эпоксидное литье выполняет одновременно функции изолятора и несущей конструкции.

Принцип действия трансформаторов заключается в преобразовании напряжения промышленной частоты в напряжения для измерения, а также для обеспечения гальванического разделения измерительных приборов от цепи высокого напряжения.

Выводы первичных обмоток трансформаторов напряжения VTM расположены на верхней части корпуса.

Зажимы вторичных обмоток расположены на литом выступе корпуса и закрываются прозрачной пластмассовой пломбируемой крышкой.

Основание трансформаторов снабжено металлической опорной плитой, вмонтированной в диэлектрический корпус. Для крепления трансформатора на месте эксплуатации в опорной плите изготовлены 4 отверстия.

Внешний вид трансформаторов напряжения VTM-0083

Технические характеристики

Наименование характеристик Модель трансформаторов напряжения
VTM-0076 VTM-0083
Номинальное напряжение первичной обмотки, кВ 15/V3 15,75
Наибольшее рабочее напряжение первичной обмотки, кВ 17,5 24
Класс точности измерительной обмотки 0,2
Класс точности защитной обмотки
Номинальная мощность измерительной обмотки, В-А 100
Номинальное напряжение вторичной обмотки, В 100/V3 100, 120
Номинальная частота, Гц 50
Г абаритные размеры, не более, мм 352x305x232 361x327x393
Масса, не более, кг 65 90

Климатическое исполнение по ГОСТ 15150-69 в диапазоне от минус 40 до 65 °С.

Знак утверждения типа

Знак утверждения типа наносится на табличку трансформаторов методом наклейки и на паспорт типографским способом.

Комплектность

Трансформатор напряжения — 1 шт.

Паспорт — 1 экз.

Поверка

осуществляется в соответствии с ГОСТ 8.216-88 «Трансформаторы напряжения. Методика поверки».

Основные средства поверки: трансформатор напряжения измерительный лабораторный НЛЛ-15 (кл. т. 0,05), прибор сравнения КНТ-03 (± 0,001 %; ± 0,1 мин); магазин нагрузок МР3025 (± 4 %).

Сведения о методах измерений

Сведения о методах приведены в соответствующем разделе паспорта.

Нормативные и технические документы, устанавливающие требования к трансформаторам напряжения VTM

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки»

Техническая документация фирмы-изготовителя.

Рекомендации к применению

Осуществление торговли и товарообменных операций.

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Источник: https://all-pribors.ru/opisanie/51019-12-vtm-54163

Выбор коэффициента трансформации измерительных трансформаторов тока 6-10 кВ

Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО — везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.

Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.

Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже — 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Как выбрать трансформатор тока

Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.

Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5.

Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.

Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.

А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.

Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.

Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика — в «Правилах устройсва электроустановок» (ПУЭ).

Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют «трансформаторами с завышенным коэффициентом трансформации» и ограничивают их использование следующим образом.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:

Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.

Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети.

Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции.

Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом — 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Например, минимальный коэффициент трансформации — 15/5, расчетный уровень рабочего тока — 25% от максимального, ток во вторичной обмотке трансформатора — 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ — 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение — 30/5.

Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов

Источник: https://tmtrade.ru/vybor-transformatorov-toka

Измерение потерь холостого хода трансформаторов, параметры, периодичность, схема опыта

Мощность потерь силового трансформатора состоит из так называемых потерь в меди и потерь в стали. Первые связаны с протеканием тока нагрузки через проводники обмоток, имеющие определенное электрическое сопротивление. Потери же в стали обусловлены вихревыми токами, токами намагничивания, возникающими в магнитопроводе.

При проведении опыта холостого хода на одну обмотку подключается напряжение, другая остается разомкнутой. Мощность, потребляемая при этом трансформатором из сети, тратится в большей степени на намагничивание стали магнитопровода, в меньшей – на нагрев проводников обмотки, чем можно пренебречь. Поэтому этот опыт позволяет измерить мощность потерь в стали, называемыми потерями холостого хода.

Дополнительно, подключив вольтметр к оставшейся разомкнутой обмотке, можно измерить на ней напряжение, и по показаниям двух вольтметров рассчитать коэффициент трансформации. Но это измерение к самому опыту холостого хода не относится.

Опыту ХХ при вводе в эксплуатацию подвергаются:

-Все сухие трансформаторы, а также имеющие в качестве изолирующей и охлаждающей среды жидкий негорючий диэлектрик.

-Маслонаполненные трансформаторы, мощность которых более 1600 кВА.

-Трансформаторы собственных нужд электростанций, вне зависимости от их мощности.

В эксплуатации такие измерения проводятся только для трансформаторов с мощностью 1000 кВА и более, и только после капитального ремонта, связанного со сменой обмоток или ремонтом магнитопровода. По сетевым правилам возможно проведение измерений по распоряжению технического руководителя предприятия после того, как хроматографический анализ газов, растворенных в масле, дал настораживающие результаты. Но это касается только силовых трансформаторов с обмотками на напряжение 110 кВ и выше.

Порядок и схема измерения

Перед проведением опыта проводят процесс размагничивания магнитопровода испытуемого трансформатора. Для этого используется постоянный ток, пропускаемый через одну из обмоток стороны низкого напряжения.

Подключение тока производится многократно, каждое последующее подключение происходит с изменением полярности и уменьшением величины. Начальное значение не должно быть меньше двойного значения ожидаемого тока холостого хода.

При каждом последующем включении величина уменьшается на 30-40 %. Процесс заканчивается при токе, меньшим значения тока холостого хода.

Для проведения непосредственно опыта холостого хода на вторичную обмотку трансформатора подается номинальное напряжение, с отклонением от нормы ±5%. Вывод нейтрали, если он есть, при этом не используется. Напряжение при этом – строго синусоидальное, с номинальной частотой сети.

Для проведения измерений потребуется три лабораторных прибора, с классом точности не менее 0,5. Это амперметры, вольтметры и ваттметры. амперметры подключаются в каждую фазу последовательно. вольтметры включаются на линейное напряжение всех трех фаз. Токовые обмотки ваттметров подключаются последовательно с амперметрами. Обмотки напряжения ваттметров подключаются согласно приведенным схемам. Подается напряжение, с приборов снимаются показания.

Строго говоря, измерение производится по тем же схемам, которые использовались на заводе изготовителе для проведения опыта. Ведь полученные данные нужно будет сравнить с заводскими. Но, если источник трехфазного напряжения недоступен, можно выполнить три измерения, подавая напряжение на две фазы обмотки трансформатора, закорачивая третью, остающуюся свободной.

При этом используется только линейное напряжение, так как искажение формы кривой из-за нелинейных нагрузок в сети на него имеет минимальное влияние. По этим же схемам проводится опыт холостого хода при пониженном (малом) напряжении.

Анализ результатов измерения

При приемосдаточных испытаниях и капитальном ремонте полученные данные сравниваются с протоколом о соответствующих испытаниях, проведенных на заводе после изготовления трансформатора. Расхождение более 5 % не допускается.

Для однофазных трансформаторов в этих же случаях мощность потерь не должна отличаться от исходной величины более, чем на 10%.

В эксплуатации измеряется только ток холостого хода на основании опыта с номинальным напряжением или мощность потерь при пониженном. ПТЭЭП при этом не нормирует отклонения от нормы.

Однако, при подозрении на повреждение в трансформаторе метод измерения потерь с использованием трех последовательно проведенных опытов дает очень ценный результат. Поскольку обмотки фаз трансформатора находятся в неравных условиях, то можно не только вычислить, есть ли там дефект, но и определить дефектную фазу.

Путь магнитного потока при возбуждении выводов АВ и ВС одинаков. Поэтому и мощности потерь для опытов на этих фазах не будут отличаться. При возбуждении фаз АС путь, пройденный магнитным потоком, длиннее, поэтому мощность потерь будет на 25-50% превышать предыдущие. Сравнивая эти показатели, можно выявить, на какой фазе есть дефект.

Источник: https://pue8.ru/elektrotekhnik/934-izmerenie-poter-kholostogo-khoda-transformatorov.html

Проверка трансформатора с помощью мультиметра

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока.

Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене.

ЭТО ИНТЕРЕСНО:  Как долго можно хранить литий ионный аккумулятор

Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора.

На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга.

Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Источник: https://evosnab.ru/instrument/test/proverka-transformatora-multimetrom

Измерение, контроль и регистрация результатов при сварке

Измерение – процесс определения значений переменной, выраженных соответствующей физической величиной.

Переменными процесса сварки являются: электрические параметры (напряжение дуги, ток сварки, мощность дуги, электрическое сопротивление дуги, ), скорость подачи электродной проволоки, скорость сварки, температура в заданной точке основного металла, и др.

Могут определяться средние значения параметров или их эффективные значения, а также пиковые значения параметра, его частотные характеристики и т.п.

Контроль – сравнение измеряемого значения искомого параметра сварки с заданными пределами (верхним и нижним).

Измерение основных параметров сварки

Из всех параметров режима сварки только напряжение дуги не требует использования специальных датчиков и может быть определено прямым измерением с использованием вольтметра. Для того, чтобы измерить скорость подачи электродной проволоки, ток сварки, температуру основного металла, расход защитного газа и т.п. требуется применение соответствующих датчиков.

Измерение тока сварки

Имеется большое разнообразие датчиков тока: трансформаторы тока, токовые шунты и датчики тока на основе преобразователей Холла.

Трансформатор тока – это измерительный трансформатор, ток во вторичной обмотке которого пропорционален току в первичной обмотке. Этим измерительным прибором можно измерять значения только переменного тока.

Первичная обмотка трансформатора тока включается в электрическую цепь последовательно с потребителем, ток которого необходимо определить. К выводам вторичной обмотки подключается амперметр с диапазоном измерения тока 1 – 5 ампер (таким образом, трансформатор тока работает в режиме короткого замыкания).

Внешний вид некоторых типов трансформаторов тока

Трансформаторы тока выпускаются на разные диапазоны измерения тока (0 – 300 А, 0 – 600 А и т.д.). Причем диапазон тока во вторичной обмотке сохраняется постоянным: 1 – 5 ампер.

При измерении сварочных токов роль первичной обмотки выполняет сам сварочный кабель, пропущенный в центральное отверстие трансформатора тока. При этом необходимо помнить простое правило: сколько раз сварочный кабель пропущен через центральное отверстие трансформатора тока, во столько раз уменьшается диапазон измерения тока, а также снижается погрешность измерения, что является желательным при измерении малых сварочных токов.

Принцип измерения тока сварки с помощью трансформатора тока.

Для удобства пользования, а именно, для подключения трансформатора тока без разрыва сварочной цепи, трансформаторы тока изготавливают в виде измерительных клещей.

Внешний вид трансформатора тока, выполненного в виде измерительных клещей

Токовым шунтом является низкое активное сопротивление, которое устанавливается в разрыв цепи. Значение тока определяется через падение напряжения на шунте, которое он вызывает.

Внешний вид токовых шунтов (на переднем плане — на 500 А; на заднем — на 300 А) Схема подключения токовых шунтов в измерительную (сварочную) цепь.

Электрическое сопротивление токовых шунтов подбирается таким образом, чтобы при его номинальном токе (например, 300 или 500 А) на нём падало строго определённое напряжение. Обычно оно составляет 75 мВ, но может быть и другим (например, 45 или 60 мВ). Падение напряжения на шунте измеряется милливольтметром. Для удобства пользования шкала милливольтметров, предназначенных для подключения к токовому шунту, градуируется в амперах, что исключает необходимость пересчета показаний пользователем.

Милливольтметр с диапазоном измерения

Токовый шунт не рекомендуется использовать для измерения переменного тока, так как собственная индуктивность шунта может влиять на скорость изменения тока и искажать форму его кривой.

Однако уместно заметить, что такое влияние шунта проявляется только при частотах переменного тока выше 10 кГц. Таким образом, токовый шунт вполне может быть использован в условиях дуговой сварки переменным током при использовании тока промышленной частоты (50 или 60 Гц).

Основным недостатком токовых шунтов является необходимость разрыва цепи, в которой измеряется ток.

В настоящее время вместо токовых шунтов всё чаще используются датчики тока на основе преобразователей Холла. Их основным компонентом является полупроводниковый элемент, который реагирует на магнитное поле, создаваемое током в цепи, т.е. током, значение которого требуется определить. Выходным сигналом такого датчика является напряжение, причём довольно высокое (обычно от 1 до 10 В в зависимости от модели датчика).

Датчики Холла по сравнению с токовыми шунтами имеют следующие важные достоинства:

Выходной сигнал датчика Холла примерно в 100 раз выше, чем у токового шунта. Более мощный выходной сигнал датчика Холла менее подвержен влиянию шумов. Поэтому датчик Холла обеспечивает более низкую погрешность измерения.

Датчик Холла относится к измерительным устройствам, которые не оказывают влияние на измеряемый сигнал. В то время как электрическое сопротивление токового шунта, пусть даже и незначительное, влияет на параметры сварочной цепи.

Токовый шунт, будучи включённым непосредственно в разрыв сварочной цепи, находится под напряжением, что требует особого внимания для исключения случайных контактов с другими электрическими цепями.

Кроме этого, при одновременном измерении тока сварки и напряжения дуги возможно ошибочное подключение измерительных кабелей таким образом, что произойдёт короткое замыкание сварочного источника питания.

Датчик Холла в этом смысле обладает очень важным преимуществом, так как не имеет прямого электрического контакта с компонентами сварочной цепи.

Токовый шунт требует больше затрат времени на установку, так как для этого необходимо разорвать цепь. Датчик Холла, выполненный в виде клещей, устанавливается в считанные секунды.

Внешний вид измерительных клещей, в которых используется датчик Холла и принцип его действия.

Для того, чтобы проведенное сравнение этих двух типов датчиков было полным необходимо также указать, что токовый шунт в 2 – 3 раза дешевле датчика Холла, и значительно более долговечнее и надёжнее последнего.

Измерение напряжения дуги

Определение значения напряжения дуги производится непосредственно вольтметром без применения каких-либо датчиков. Однако и в этом случае необходимо учитывать некоторые особенности измерения этого параметра процесса сварки для того, чтобы выполнить его должным образом.

из них заключается в том, что для снижения погрешности измерения напряжения дуги необходимо избегать включения в цепь измерения падений напряжения на сварочных кабелях и на электрических контактах в сварочной цепи.

Справедливости ради следует сказать, что падение напряжения на переходном контакте мундштук – проволока не велико и не превышает 0,10,2 В при токах сварки 100 300 А.

Наиболее часто используемая схема подключения вольтметра при определении напряжения на дуге в условиях сварки МИГ/МАГ

Измерение скорости подачи электродной проволоки

Для измерения скорости подачи электродной проволоки обычно используется два типа тахогенераторов; оптический тахогенератор и тахогенератор электромагнитной системы.

Параметры выходного сигнала тахогенератора первого типа позволяют использовать его с измерительными устройствами с цифровым входом, в то время как тахогенератор второго типа должен подключаться к аналоговому входу измерительного устройства.

При отсутствии соответствующих тахогенераторов скорость подачи электродной проволоки можно измерить при настройке сварочной установки путем замера длины куска проволоки и времени, в течение которого он был подан подающим механизмом.

Внешний вид одного из тахогенераторов для измерения скорости подачи электродной проволоки

Измерение скорости сварки

Скорость сварки, как правило, определяют по длине выполненного сварного шва и времени, затраченного на его выполнение.

Измерение расхода газа

В сварочных установках используют расходомеры газа поплавкового и дроссельного типа.

Регистрирующие устройства

Для измерения параметров сварки и, в первую очередь, для регистрации результатов измерений используются самопишущие приборы измерения различных типов, а также системы на базе персональных компьютеров и другие электронные измерительные системы.

Одна из портативных систем для измерения и регистрации (на бумажном носителе) параметров сварки

Один из типов самопишущих приборов

Источник: https://weldering.com/izmerenie-kontrol-registraciya-rezultatov-svarke

Как прозвонить трансформатор или как определить обмотки трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru.

На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки.

А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

ЭТО ИНТЕРЕСНО:  Для чего предназначен резистор

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

2. Определение обмоток по сопротивлению

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 10005000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5.

Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е.

пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

Источник: https://sesaga.ru/kak-prozvonit-transformator-ili-kak-opredelit-obmotki-transformatora.html

Проверка и электрические испытания силовых трансформаторов

Для преобразования переменного тока одного напряжения в переменный ток иного напряжения, более высокого или низкого, применяют силовые трансформаторы. Тип трансформатора выбирают в зависимости от нужного количества обмоток.

Чаще всего устанавливают трансформаторы с двумя или тремя обмотками. Изоляция обмоток силовых трансформаторов изготовлена из различных электроизоляционных материалов, характеризующихся такими свойствами как стойкость к влажности, нагреву, механической прочностью.

 Правильный выбор изоляции определяется условиями, в которых трансформатор будет работать.

При вводе силовых трансформаторов в эксплуатацию проводят пуско-наладочные испытания. Первый этап испытаний и измерений осуществляют при монтаже, второй после сборки, заливки бака маслом.

В ходе пуско-наладочных испытаний проверяют состояние изоляции и соединения обмоток, измеряют потери холостого хода, сопротивление обмоток, определяют коэффициент трансформации.

Важно придерживаться определенной последовательности проведения испытаний, так как большинство измерений требуют соблюдения температурного режима и отсутствия магнитного поля.

В течение эксплуатации возникают сбои в работе трансформаторов, наиболее частыми причинами, которых являются расслоения и трещины изоляции, перегрев. Чтобы избежать преждевременного выхода из строя и обеспечить беспрерывную работу необходимо проводить периодические испытания трансформаторов. Испытание силовых трансформаторов проводятся согласно действующей нормативно-технической документации: ГОСТ, ПУЭ, ПТЭЭП и других.

Проверка силовых трансформаторов

Проверка силовых трансформаторов начинается с внешнего осмотра всех его элементов, наличие пломбировки у пробки и на кранах для отбора масла, количество масла, состояние заземления.

В силовых трансформаторах проверяют и испытывают его активную часть, состояние жидкого диэлектрика (масла), предохранительные и защитные устройства, изоляцию, целостность бака. Испытание сухих трансформаторов проводится так же как и масляных, при этом не выполняется проверка гидравлической системы.

Если трансформатор долго находился на воздухе, и произошло увлажнение изоляции или масла, тогда при включении необходимо его просушить или прогреть до тех пор пока характеристики изоляции не будут соответствовать нормам.

Условия включения сухих трансформаторов определяются в соответствии с документацией производителя. Характеристики изоляции необходимо измерять не менее чем через 12 часов после окончания заливки масла и при температуре не ниже не ниже 10°С.

Измерение сопротивления изоляции обмоток трансформатора осуществляется при помощи мегаомметра с рабочим напряжением 2500 В. Перед проведением измерения и между измерениями все обмотки трансформатора заземляются.

Тангенс угла диэлектрических потерь обмоток измеряется мостом переменного тока.

Измерение тангенса угла потерь трансформаторов, залитых маслом, проводятся при напряжении не более 2/3 испытательного напряжения, установленного изготовителем, а без масла – при напряжении не более 220 В.

Электрические испытания трансформаторов

Электрические испытания трансформаторов включают измерение емкости для определения влажности обмоток. Емкость увлажненной изоляции изменяется с увеличением частоты сильнее, чем у сухой изоляции. Измерения емкости выполняются на частотах 2 Гц и 50 Гц. Также влажность можно проконтролировать по коэффициенту абсорбции, представляющему собой отношение значения сопротивления изоляции после 60 мин измерения, к значению после 15 мин.

Проверка на наличие скрытых дефектов

Проверка силовых трансформаторов на наличие скрытых дефектов производится путем измерения сопротивления обмоток постоянному току. Измерение выполняется мостовым методом или с помощью вольтметра и амперметра. Измерение сопротивления изоляции трансформаторов постоянному току измеряется для всех ответвлений обмоток всех фаз.

Проверка на правильность соединения обмоток

Проверка трансформатора на правильность соединения обмоток осуществляется определением его коэффициента трансформации. Измерение производится с помощью двух вольтметров.

Группа соединений обмоток трансформатора проверяется методом двух вольтметров, прямым методом (фазометром) или методом постоянного тока. Ток и потери холостого хода характеризуют потери на гистерезис и на вихревые токи. Измерение производится с применением измерительных комплексов или ваттметров. Снятие круговой диаграммы осуществляется на всех положениях переключателя методом сигнальных ламп или методом вольтметра-амперметра.

Фазировка трансформатора

Фазировка трансформатора производится измерением напряжения между разноименными фазами включаемого трансформатора и сети (или другого трансформатора) и контролем отсутствия напряжения между фазами. Проверка осуществляется с помощью вольтметра или специальных указателей. Проверка масла в трансформаторе производится испытанием его высоким напряжением и определением тангенса угла диэлектрических потерь.

По окончании полученные данные выносятся в протокол испытания силового трансформатора. Ввод трансформатора в работу возможен при соответствии всех результатов установленным нормам и требованиям. Испытание силовых трансформаторов – это сложная и трудоемкая работа, требующая высокого профессионализма и опыта. Компания «Электрик-Мастер» профессионально, быстро и качественно проведет испытание силовых трансформаторов.

Специалисты нашей компании имеют большой опыт проведения данного вида работ и с максимальной ответственностью относятся ко всему процессу испытания. Применение современного специализированного оборудования позволяет получить точные данные, которые тщательно вносятся в протокол испытания силового трансформатора. Выполняя испытания в компании «Электрик-Мастер», Вы обеспечите долгую и надежную работу силовых трансформаторов!

Проверка трансформатора после капитального и текущего ремонта является обязательной. Испытание трансформаторов после ремонта является обязательным. Проведение пуско-наладочных испытаний сложная работа, требующая от исполнителя профессионализма, большого опыта и наличия специализированного оборудования. По окончанию работ оформляется протокол испытания силового трансформатора.

Источник: https://elektrik-master.ru/services/transformators_examination.html

Активная, реактивная и полная (кажущаяся) мощности

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I Cosθ

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Q = U I sinθ

Реактивная мощность = √ (Полная мощность2 – Активная мощность2)

вар =√ (ВА2 – P2)

квар = √ (кВА2 – кВт2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Источник: https://khomovelectro.ru/articles/aktivnaya-reaktivnaya-i-polnaya-kazhushchayasya-moshchnosti.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Каким током заряжать аккумулятор АА

Закрыть