Зачем нужен конденсатор для пуска двигателя

Для чего нужен пусковой конденсатор в электродвигателе

Зачем нужен конденсатор для пуска двигателя

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Источник: https://crast.ru/instrumenty/dlja-chego-nuzhen-puskovoj-kondensator-v

Пусковой конденсатор, теория и примеры задач

Зачем нужен конденсатор для пуска двигателя

Он служит для поддержания тока, на вспомогательной обмотке двигателя и переходит в состояние отключения, когда двигатель начал работать. Работает пусковой конденсатор очень небольшой промежуток времени (порядка нескольких секунд). Пусковой конденсатор обеспечивает надежную работу электрического двигателя, так как максимальная нагрузка на электрический двигатель осуществляется в момент его начала работы и до набора рабочей скорости.

Как и всякий конденсатор, пусковой конденсатор характеризуется емкостью. Пусковые конденсаторы обычно имеют две алюминиевые обкладки, которые разделяет бумага, пропитанная непроводящим электролитом. Часто в пусковых конденсаторах в качестве диэлектрика применяют оксидную пленку, которую наносят на один из электродов. Пусковые конденсаторы изготавливают в небольших корпусах. Диапазон емкостей пусковых конденсаторов от 15 до 600 мкФ. Рабочее напряжение составляет от 110 до 450 В.

Пусковой конденсатор дает возможность повысить показатель магнитного потока, усилить пусковой вращающий момент, что увеличивает срок эксплуатации двигателя.

Пусковые конденсаторы часто применяют в кондиционерах, насосах, бытовой технике.

Схема питания электродвигателя с пусковым конденсатором

Если в схему питания электродвигателя включают пусковой конденсатор, то мы имеем более простой пуск двигателя и соответственно больший срок работы двигателя. Схема подключения однофазного электродвигателя при наличии пускового конденсатора приведена на рис.1

В приведенной схеме пусковая обмотка будет включаться на короткое время старта двигателя. Для того чтобы избежать перегрева дополнительной обмотки в цепь включают термореле. Рабочий и пусковой конденсаторы включают параллельно.

В настоящее время в интернете присутствует большое количество специальных калькуляторов для расчета емкости пускового конденсатора.

Для проведения подобных расчетов следует знать: каков тип соединения обмоток у двигателя (треугольник, звезда); какова мощность двигателя; напряжение в сети; коэффициент мощности. Рабочий конденсатор в приведенной на рис.

1 схеме необходим для работы электрической сети во время всего времени функционирования двигателя. Пусковой конденсатор должен иметь емкость в 2-3 раза больше, чем рабочий.

При выборе конденсаторов необходимо учитывать интервал рабочей температуры и возможные отклонения емкости от расчета, габариты элементов, а так же некоторые другие параметры.

И так, пусковой конденсатор применяют в схемах электродвигателей, подключая его параллельно рабочему конденсатору, при этом он является фазосмещающим элементом и позволяет получить магнитное поле, которое требуется для увеличения пускового момента электродвигателя. Работает пусковой конденсатор только в момент запуска двигателя.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/puskovoj-kondensator/

Для чего нужен конденсатор?

Зачем нужен конденсатор для пуска двигателя

Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью. Важно разобраться, для чего нужно конденсатор в электродвигателе и автомобиле, поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства.

Устройство используется во всех электрических и радиотехнических схемах. Для каких целей в схему включают конденсатор:

  1. Выступает в роли сопротивления, что позволяет использовать его в качестве фильтра, чтобы подавлять ВЧ и НЧ помехи.
  2. Применяют для фотовспышек и лазеров, а все благодаря способности устройства накапливать заряд и быстро разряжаться, создавая импульс.
  3. Помогает компенсировать реактивную энергию, что позволяет использовать его в промышленности.
  4. Благодаря умению накапливать и долгое время сохранять заряд конденсатор можно использовать для сохранения информации и для питания маломощных устройств.

Для чего нужен автомобильный конденсатор?

Это устройство может выполнять несколько функций в автомобиле. Например, их используют, чтобы создать высокие показатели напряженности во всей электрической системе в авто. Чаще всего конденсатор применяют для автомобильной акустики. Говоря о том, зачем нужен конденсатов в автозвуке, заметим, что его основное предназначение заключается в помощи усилителю быстро отдавать имеющуюся мощность на пиках низких частот.

Если в акустической системе конденсатор не используется, тогда звук баса не будет таким четким, а также может возникать просадка в питании всей электрической сети автомобиля. Подобные скачки напряжения в итоге могут привести к тому, что сабвуфер попросту сломается.

При выборе конденсатора для автомобиля руководствуйтесь таким правилом, что на 1 кВт мощности должно приходиться 1 Ф. Выбирайте качественный конденсаторы и лучше всего, если у них будет смеха управления зарядом.

Стоит также выяснить, как правильно установить конденсатор. Лучше всего делать это максимально близко к сабвуферному усилителю, поскольку именно на него приходится самая большая нагрузка. Расстояние не должно быть больше 60 см. Тип подключения – параллельное.

Зачем нужен конденсатор в электродвигателе?

Для правильной работы некоторых двигателей необходимо использовать пусковой и рабочий конденсаторы. Основное предназначение пускового конденсатора заключается в повышении пусковых характеристик двигателя. Это устройство помогает уменьшить время входа двигателя в его рабочий режим, одновременно увеличить крутящийся момент и облегчить процесс запуска двигателя.

Что касается рабочего конденсатора, то он вовлечен в работу на протяжении всего времени работы двигателя. Это устройство обеспечивает допустимый нормами нагрев обмоток, оптимальную нагрузочную способность и экономичность электрического двигателя. Еще он способствует максимальному крутящему моменту и увеличению срока службы двигателя.

Теперь следует выяснить, какой конденсатор нужен для двигателя. Емкость этого устройства обычно выбирается из расчета, что на 100 Вт должно приходиться 6,6 мФ. Порой данное значение является некорректным, поэтому лучше всего подбирать емкость путем экспериментов.

Есть несколько способ подбора, но наиболее точные значения можно получить благодаря подключению двигателя через амперметр. Важно проконтролировать потребляемый ток при разных емкостях.

Задача заключается в том, чтобы найти, при какой емкости значение тока на амперметре будет минимальным.

Как заправить леску в катушку триммера? Для того чтобы ухаживать за газоном и удалять траву на своем участнике, многие покупают триммер, в котором установлена специальная катушка с леской. В этой статье вы сможете найти информацию, которая позволит научиться правильно заправлять леску в катушку. Как построить красивый дом? При строительстве дома, необходимо учитывать много мелочей, поскольку здание должно быть крепким, теплым, ну и, конечно, красивым. В этой статье вы сможете найти информацию, которая касается того, как построить красивый дом.
Как правильно класть плитку? Плитка – строительный материал, подходящий для отделочных работ в ванной, туалете и кухне. Укладывать ее можно и на стены, и на пол. В этой статье вы сможете найти информацию о том, как правильно класть плитку. Как проверить блок питания? Если компьютер не включается, не нужно сразу вызывать техника, поскольку первичную проверку можно провести самостоятельно. В этой статье вы сможете найти информацию, которая позволит проверить блок питания.

Источник: http://kak-bog.ru/dlya-chego-nuzhen-kondensator

Конденсатор для пуска электродвигателя

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Конденсатор для пуска электродвигателя

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A  до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

ЭТО ИНТЕРЕСНО:  Что такое гелевый аккумулятор

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

C = (k×Iφ)/U

Где

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Трехфазный электродвигатель

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120°. Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить  пусковой момент вращения.

Источник: https://stankiexpert.ru/tehnologii/kondensator-dlya-puska-ehlektrodvigatelya.html

Пусковые конденсаторы для электродвигателей 220В — схема подключения, расчет и цена

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Назначение и преимущества

Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.

Наличие подобного элемента в системе определяет следующее:

  1. Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
  2. Проводится значительное повышение показателя магнитного потока.
  3. Повышается пусковой момент, значительно улучшается работа двигателя.

Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.

Сеть переменного тока может служить источником питания в случае с использованием рассматриваемого типа конденсатора. Практически все используемые варианты исполнения неполярные, они имеют сравнительно больше для оксидных конденсаторов рабочее напряжение.

Преимущества сети, которая имеет подобный элемент, заключаются в следующем:

  1. Более простой пуск двигателя.
  2. Срок службы двигателя значительно больше.

Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.

Схемы подключения

схема подключения электродвигателя с пусковым конденсатором

Большее распространение получила схема, которая имеет в сети пусковой конденсатор.

Данная схема имеет определенные нюансы:

  1. Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
  2. Дополнительная обмотка работает небольшое время.
  3. Термореле включается в цепь для защиты от перегрева дополнительной обмотки.

При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.

К основным моментам создания цепи питания электродвигателя, можно отнести следующее:

  1. От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
  2. Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
  3. После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
  4. Оба конденсатора идут к двигателю.

Подобным образом можно провести подключение однофазного электродвигателя.

Стоит отметить, что рабочий конденсатор присутствует в цепи практически постоянно. Поэтому стоит помнить о том, что они должны быть подключены параллельно.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.

Обзор моделей

конденсатор CBB-60

Существует несколько популярных моделей, которые можно встретить в продаже.

Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:

  1. Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
  2. Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
  3. Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.

Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.

Советы

  1. Зачастую, работа электродвигателя может происходить без включения в цепь пускового конденсатора.
  2. Включать этот элемент в цепь рекомендуется только в том случае, если производится пуск под нагрузку.
  3. Также, большая мощность двигателя также требует наличие подобного элементам в цепи.
  4. Особое внимание стоит уделить процедуре подключения, так как нарушение целостности конструкции приведет к ее неисправности.

Источник: https://slarkenergy.ru/oborudovanie/datchiki/puskovye-kondensatory.html

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Разложение пульсирующего магнитного потока на два вращающихся

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

ЭТО ИНТЕРЕСНО:  Что представляет собой статор электродвигателя

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно.

Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления.

Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 — активное сопротивление стержней ротора, Ом,
  • x2обр — реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов.

Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга.

Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

С пусковым сопротивлением

Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Однофазный электродвигатель с экранированными полюсами

Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

Источник: https://engineering-solutions.ru/motorcontrol/induction1ph/

Как выбрать конденсатор для электродвигателя

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Источник: https://www.szemo.ru/press-tsentr/article/kak-vybrat-kondensator-dlya-elektrodvigatelya-/

Запуск электродвигателя при использовании конденсаторов

Если мы обратим свой взгляд на всевозможную технику, используемую в нашем в мире, то обнаружим, что в ней нередко используются электродвигатели асинхронного типа. Чтобы подобный электродвигатель вращался часто, необходимо наличие обязательного вращающегося магнитного поля. Подобные агрегаты отличаются:

  1. простотой
  2. малым уровнем шума
  3. хорошими характеристиками
  4. а также легкостью в эксплуатировании

Чтобы такое магнитное поле было создано, требуется трехфазная сеть. В случае этого в статоре электродвигателя достаточно расположить 3 обмотки, которые будут размещены под углом сто двадцать градусов относительно друг друга, после чего подключить к ним необходимое и соответствующее напряжение. Именно тогда круговое вращающееся поле станет способно вращать статор.

В быту же зачастую используются приборы у которых имеется только лишь однофазная электрическая сеть. Для таких приборов применяются наиболее распространённые в этой сфере однофазные двигатели асинхронного типа.

Когда мы помещаем в статор электродвигателя обмотку, то магнитное поле в ней сможет образоваться только конкретно при протекании переменного синусоидального тока. Это поле, тем не менее заставить ротор вращаться, к сожалению, не сможет.

Чтобы произвести запуск двигателя , вам надо выполнить два действия. Во-первых, разместить на статоре дополнительную обмотку под углом 90 градусов относительно рабочие обмотки.

А во-вторых включить фазосдвигающий элемент непосредственно последовательно с дополнительной обмоткой. Таким элементом может быть конденсатор.

Пусковые и рабочие типы подключения схем

Когда вы выполните требуемые действия, в электродвигателе возникнет круговое магнитное поле, соответственно и в роторе возникнут соответствующие токи. Взаимодействие тока и поля статора сможет привести к вращению ротора. Существует несколько способов подключения конденсаторов к электродвигателю.

В зависимости от способа различают разные типы схем. В этих схемах может использоваться, во-первых, пусковой конденсатор, во-вторых, рабочий конденсатор, а также одновременно пусковой и рабочий конденсатор сразу. При этом самым распространенным методом является подключение с пусковым конденсатором.

Использование пускового конденсатора

Когда мы производим запуск двигателя, тогда и включаются конденсатор и пусковая обмотка. Связано это с тем свойством, что агрегат продолжает своё вращение даже в том случае, когда отключают дополнительную обмотку. Для такого запуска чаще всего используют реле и кнопку.

Из-за того, что пуск однофазного электродвигателя с конденсатором происходит достаточно быстро, дополнительная обмотка часто работает весьма небольшое время . Благодаря этому для экономии её возможно выполнять из провода с относительно меньшим сечением, нежели сама основная обмотка.

Чтобы предупредить и предотвратить перегрев дополнительной обмотки, в схему практически всегда добавляют термореле или же центробежный выключатель.

Благодаря этим устройствам при наборе электродвигателем определенной скорости или при достижении сильного нагрева становится возможно регулирующее отключение .

Схема, которая использует пусковой конденсатор имеет довольно хорошие пусковые характеристики электродвигателя, но при этом рабочие характеристики несколько ухудшаются.

Преимущества схемы с рабочим типом элемента

Значительно более хорошие рабочие характеристики вы можете получить, если использовать схему с рабочим конденсатором. После запуска электродвигателя конденсатор в такой схеме не отключается. Правильный подбор конденсатора для однофазного электродвигателя может дать большие преимущества. Главное из них — это компенсация искажения поля и повышение КПД агрегата. Однако, как и следовало ожидать, в такой схеме ухудшаются пусковые характеристики.

Стоит учитывать также, что при выборе величины емкости искомого конденсатора для электродвигателя производится исходя из определенного тока нагрузки.

Если ток изменяется относительно расчетного значения, то, следовательно, поле будет переходить от круговой к эллиптической форме, а вследствие этого характеристики агрегата будут ухудшаться.

Для обеспечения высоких хороших характеристик, в принципе, необходимо только при изменении нагрузки электродвигателя изменить величину емкости конденсатора. Однако, это может чересчур усложнить схему включения.

Наиболее компромиссным вариантом решения данной задачи является выбор схемы, обладающей пусковым и рабочим конденсаторами одновременно. В такой схеме пусковые и рабочие характеристики будут средними относительно рассмотренных ранее схем. В целом же, если при подключении однофазного двигателя требуется важный большой пусковой момент, то в таком случае выбирается схема конкретно с пусковым элементом. Если же такая необходимость отсутствует, то соответственно, используется рабочий элемент.

ЭТО ИНТЕРЕСНО:  Как установить узо на бойлер

Несколько общих советов по эксплуатации

При выборе схемы пользователь всегда имеет возможность выбрать ту схему, которая конкретно ему подходит. Однако, обычно же все выводы искомых обмоток выводы конденсатора для электродвигателя выведены в клеменную коробку.

Если вам надо модернизировать систему, а возможно что и самостоятельно сделать требуемый расчет конденсатора для вашего используемого однофазного двигателя, то можно дать вам совет. Исходить надо из того, что на каждый киловатт мощности вашего агрегата требуется гарантированно определённая емкость в 0,7 — 0,8 мкФ относительно рабочего типа или же, соответственно, в два с половиной раза большая емкость относительно типа пускового .

При проверке технического состояния двигателя нередко вы можете заметить, что после достаточно продолжительной работы появился посторонний шум и неприятная вибрация. Ротор же трудно проверить. Причиной может быть плохое состояние подшипника.

Беговые дорожки оказались покрыты ужасной ржавчиной , царапинами , вмятинами . Повреждены некоторые шарики и сепаратор. Во всех этих случаях вам необходимо детально рассмотреть и устранить у вас имеющиеся неисправности.

Тем не менее, при незначительном повреждении часто достаточно:

  1. внимательно и тщательно промыть подшипники бензином;
  2. затем смазать их;
  3. очистить корпус вашего двигателя от пыли и грязи.

Источник: https://elektro.guru/elektrooborudovanie/elektrodvigatel/ispolzovanie-kondensatora-v-zapuske-elektrodvigatelya.html

Рабочие конденсаторы – Пусковой конденсатор для электродвигателя, чем отличается от рабочего?

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут: 

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор.

Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток.

Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

volt-index.ru

Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам.

В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные).

По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.

Для  запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:

Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Схема подключения пускового конденсатора  к асинхронному двигателю

Для запуска двигателя используют кнопку Кн1, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты.

После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т.е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В.

Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.

Рабочий конденсатор

Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.

Под действием этого напряжения конденсатор находится постоянно и при выборе его номинала необходимо учесть этот фактор. В расчетах напряжения рабочего конденсатора берут коофициент 2,5-3. Для сети 220 В напряжение рабочего конденсатора должно быть 550-600 В. Это обеспечит необходимый запас по напряжению в процессе работы.

При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

Для каждого из этих способов соединения свой расчет.

Треугольник: Ср=4800*Ip/Up.

Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.

Звезда: Ср=2800*Ip/Up.

Пример: двигатель 1000 Вт – ток составляет  примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ.

Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙ ПУСКОВОЙ
Где применяется В цепи рабочих обмоток асинхронного двигателя В пусковой цепи
Выполняемые функции Создание вращающегося электромагнитного поля для работы электромотора Сдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работы От включения до окончания работы Во время запуска до выхода на нужный режим.
Тип конденсатора МБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающего МБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы.

Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение.

Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

vchemraznica.ru

Подбор рабочего конденсатора к трехфазному электродвигателю

Для ответа на вопрос, как подобрать конденсатор для асинхронных двигателей и чем конденсаторы отличаются друг от друга, соберем стенд из обычного трехфазного двигателя мощностью 250 Вт. В качестве нагрузки используем стандартный генератор от автомобиля ВАЗ.Подключим через автоматы три разных конденсатора. Включение/отключение автоматов даст возможность проверить возможности конденсаторов.

Подбираем конденсатор

Для эксперимента выберем три конденсатора емкостью 10, 20 и 50 микрофарад. Наша задача заключается в попытке запуска электродвигателя с каждого конденсатора по очереди.

Конденсатор на 10 мкФ

При подключении к сети 220 В и включения первого конденсатора емкостью 10 микрофарад электродвигатель включается только после толчка рукой. Автоматического запуска не происходит.
Вывод: для электродвигателя мощностью 250 Вт емкости конденсатора в 10 микрофарад недостаточно.

Конденсатор на 20 мкФ

При попытке запустить электродвигатель от конденсатора емкостью 20 МкФ включение двигателя в работу происходит автоматически.
Вывод: при емкости конденсатора 20 микрофарад электродвигатель запустился без проблем.

Конденсатор на 50 мкФ

При продолжении эксперимента с конденсатором емкостью 50 микрофарад электродвигатель запускается автоматически, однако работает с высоким уровнем шума и просто трясется.

Вывод: емкость последнего испытанного конденсатора велика для установленного электродвигателя.

Подбирая конденсатор для маломощного трехфазного электродвигателя, отдавайте предпочтение устройству с номинальной емкостью (как в нашем эксперименте), соответствующей мощности двигателя. Конденсатор малой емкости электродвигатель не запускает, слишком большой емкости – вызывает нагрев двигателя и большой шум в работе. Оптимально себя в эксперименте зарекомендовал конденсатор емкостью 20 МкФ, который сразу запустил двигатель и не вызвал его перегрева.

Заключение

Для запуска трехфазного электродвигателя в сети 220 В рабочий конденсатор подбирается исходя из мощности двигателя. При возрастании мощности на каждые 100 Вт емкость должна возрастать на 7-10 микрофарад.

Например, для двигателя мощностью 0,5 КВт можно подобрать конденсатор емкостью в пределах 35-50 МкФ.Также нужно учитывать такой параметр, как номинальное напряжение устройства (то есть то напряжение, которое способен выдержать конденсатор).

В работе рекомендуется применять конденсаторы с параметрами, на 100% превышающими реальное напряжение, прилагаемое к устройству. Для данного примера это 450 В.

Смотрите подробное видео

Источник: https://esr-energy.ru/raznoe/rabochie-kondensatory-puskovoj-kondensator-dlya-elektrodvigatelya-chem-otlichaetsya-ot-rabochego.html

Зачем ставят конденсатор на электродвигатель

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Понравилась статья? Поделиться с друзьями:
Электро Дело
Что такое mAh на аккумуляторе

Закрыть