Что движется к катоду

Анод и катод: что это такое, как их определить, применение

Что движется к катоду

Для корректной работы полупроводниковых приборов, работающих в цепях с постоянным током, электроды радиоэлементов необходимо подключать с учетом их полярности. Неправильное подключение может привести к выходу из строя радиоэлемента либо к отказу в работе электронного прибора. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.

Часто эти электроды обозначаются на схемах соответствующими символами «+» или «–», либо определяются по схематическому изображению радиоэлемента. На корпусах деталей иногда проставляется точка или другая метка, позволяющая определить направление тока на конкретном электроде. Иногда полярность выводов приходится определять по специальным таблицам или с помощью измерительного прибора.

Понятие анода и катода

Для лучшего понимания терминов дадим определения этих понятий.

Анод

Под данным термином будем подразумевать электрод, по которому электрический ток втекает в разглядываемый прибор. При этом подразумевается, что электрический ток образуется потоком положительных зарядов. В действительности, по металлическим проводникам перемещаются электроны (носители отрицательных зарядов), которые движутся в сторону положительного полюса источника электрического тока.

Проще говоря, положительным электродом будем считать анод, а отрицательным электродом – катод. При подключении радиоэлементов следует соблюдать их полярность, руководствуясь обозначениями на схемах.

Катод

Это электрод, по которому электрический ток вытекает с прибора (подразумевается конвенциальное понимание тока, в виде потока положительных зарядов). Таким образом, если к  аноду подключается провод с положительным потенциалом, то к катоду – клеммы с отрицательными потенциалами.

Вышеуказанные термины применяются по отношению к гальваническим элементам. В гальванике анод – это электрод, на поверхности которого проходит реакция окисления металла. Названия электродов  встречаются:

  • в химии;
  • физике;
  • электротехнике;
  • радиоэлектронике.

При монтаже радиодеталей очень важно не перепутать электроды. Для этого необходимо знать, как определить их назначение.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента.

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу.

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления.

Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Рис. 3. Диод Рис. 4. Электроды светодиода

Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В  электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Анод и катод: где плюс, а где минус?

Из сказанного выше следует, что ток всегда течет в направлении от анода к катоду. Вывод один – на анод поступает плюс, а катод подсоединяется к минусу. Придерживаясь этого правила можно безошибочно определить, где плюс, а где минус.

ЭТО ИНТЕРЕСНО:  Как рассчитать амперы зная мощность

Вот так можно запомнить:)

В гальванотехнике на катоде происходит реакция восстановления. То есть положительные ионы из раствора оседают на катоде. По этому признаку определяем знак минус.

Как определить катод и анод радиодеталей мы рассмотрели выше. Если есть схема устройства то по ней довольно легко можно указать направление тока, и, соответственно, назначение электродов. При отсутствии схемы пользуйтесь признаками и метками на корпусах деталей.

Примечание: по отношению к стабилитрону некорректно применять термин катод и анод, так как он проводит ток в разных направлениях.

Отдельно заострю ваше внимание на элементах питания. Обычно «+» указывается на гальванических устройствах, а на аккумуляторах часто маркируются обе клеммы. В аккумуляторах автомобильного типа плюсовую клемму делают толще. По этому признаку также можно определить полярность полюсов.

В качестве выводов см. рисунок 6.

Рис. 6. Выводы

Цифрами обозначено:

  • 1– анод;
  • 2 – электролит;
  • 3 – катод;
  • 4 – источник тока.

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронныхприборах;
  • полупроводниковыхэлементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

в данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. такие реакции называют электролизом. использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы  только того металла,  положительные ионы которого содержатся в растворе электролита.

методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. гальваническое покрытие эффективно защищает металл от коррозии.

в вакуумных электронных приборах

примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. они работают по одному и тому же принципу: разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. такие вакуумные лампы используются в качестве усилителей сигналов. в данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

в полупроводниковых приборах

электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. они почти вытеснили вакуумные лампы из употребления. выводы полупроводниковых приборов традиционно называют анодами и катодами.

при всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». в усилителях большой мощности эти шумы становятся заметными. в качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с led подсветкой. они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

поясняющее видео

Источник: https://www.asutpp.ru/anod-i-katod.html

Самая удобная и увлекательная подготовка к ЕГЭ

Что движется к катоду

Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы к катоду (отрицательно заряженному электроду), анионы к аноду (положительно заряженному электроду).

На катоде катионы принимают электроны и восстанавливаются, на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.

Электролиз расплавленных солей

Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:

$NaCl→Na{+}+Cl{-}.$

Под действием электрического тока катионы $Na{+}$ движутся к катоду и принимают от него электроны:

$Na{+}+ē→{Na}↖{0}$ (восстановление).

Анионы $Cl{-}$ движутся к аноду и отдают электроны:

$2Cl{-}-2ē→{Cl_2}↖{0}$ (окисление).

Суммарное уравнение процессов:

$Na{+}+ē→{Na}↖{0}|2$

$2Cl{-}-2ē→{Cl_2}↖{0}|1$

$2Na{+}+2Cl{-}=2{Na}↖{0}+{Cl_2}↖{0}$

или

$2NaCl{→}↖{\text»электролиз»}2Na+Cl_2$

На катоде образуется металлический натрий, на аноде — газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.

Электролиз водных растворов электролитов

Более сложный случай — электролиз растворов электролитов.

В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.

Для определения продуктов электролиза водных растворов электролитов существуют следующие правила:

1. Процесс на катоде зависит не от материала, из которого сделан катод, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:

1.1. Катион электролита расположен в ряду напряжений в начале ряда по $Al$ включительно, то на катоде идет процесс восстановления воды (выделяется водород $Н_2$). Катионы металла не восстанавливаются, они остаются в растворе.

1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ионы металла, и молекулы воды.

ЭТО ИНТЕРЕСНО:  Как измерить амперы тестером

1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.

1.4. В растворе содержатся катионы разных металлов, то сначала восстанавливается катион металла, стоящий в ряду напряжений правее.

Катодные процессы

$Li K Ca Na Mg Al$ $Li{+} K{+} Ca{2+} Na{+} Mg{2+} Al{3+}$ $Mn Zn Fe Ni Sn Pb$ $Mn{2+} Zn{2+} Fe{2+} Ni{2+} Sn{2+} Pb{2+}$ $H_2$ $2H{+}$ $Cu Hg Ag Pt Au$ $Cu{2+} Hg_2{2+} Ag{+} Pt{2+} Au{3+}$
Восстанавливается вода: $2H_2O+2ē=H_2+2OH{−};$$M{n+}$ не восстанавливается Восстанавливаются катионы металла и вода: $M{n+}+nē=M0$ $2H_2O+2ē=H_2+2OH{−}$ Восстанавливаются катионы металла: $M{n+}+nē=M0$
$nē→$Усиление окислительных свойств катионов (способности принимать электроны)

2. Процесс на аноде зависит от материала анода и от природы аниона.

Анодные процессы

Кислотный остаток $Ас{m–}$ Анод
Растворимый Нерастворимый
Бескислородный Окисление металла анода $M{−}−nē=M{n+}$анод раствор Окисление аниона (кроме $F{–}$) $Ac{m−}−mē=Ac0$
Кислородсодержащий В кислотной и нейтральной средах: $2H_2O−4ē=O_2+4H{+}$ В щелочной среде:$4OH{−}−4ē=O_2+4H{+}$

2.1. Если анод растворяется (железо, цинк, медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона.

2.2. Если анод не растворяется (его называют инертным — графит, золото, платина), то:

а) при электролизе растворов солей бескислородных кислот (кроме фторидов) на аноде идет процесс окисления аниона;

б) при электролизе растворов солей кислородсодержащих кислот и фторидов на аноде идет процесс окисления воды (выделяется $О_2$). Анионы не окисляются, они остаются в растворе;

в) анионы по их способности окисляться располагаются в следующем порядке:

Попробуем применить эти правила в конкретных ситуациях.

Рассмотрим электролиз раствора хлорида натрия в случае, если анод нерастворимый и если анод растворимый.

1) Анод нерастворимый (например, графитовый).

В растворе идет процесс электролитической диссоциации:

Суммарное уравнение:

$2H_2O+2Cl{-}=H_2+Cl_2+2OH{-}$.

Учитывая присутствие ионов $Na{+}$ в растворе, составляем молекулярное уравнение:

2) Анод растворимый (например, медный):

$NaCl=Na{+}+Cl{-}$.

Если анод растворимый, то металл анода будет окисляться:

$Cu{0}-2ē=Cu{2+}$.

Катионы $Cu{2+}$ в ряду напряжений стоят после ($Н{+}$), по этому они и будут восстанавливаться на катоде.

Концентрация $NaCl$ в растворе не меняется.

Рассмотрим электролиз раствора сульфата меди (II) на нерастворимом аноде:

$Cu{2+}+2ē=Cu{0}|2$

$2H_2O-4ē=O_2+4H{+}|1$

Суммарное ионное уравнение:

$2Cu{2+}+2H_2O=2Cu{0}+O_2+4H{+}$

Суммарное молекулярное уравнение с учетом присутствия анионов $SO_4{2-}$ в растворе:

Рассмотрим электролиз раствора гидроксида калия на нерастворимом аноде:

$2H_2O+2ē=H_2+2OH{-}|2$

$4OH{-}-4ē=O_2+2H_2O|1$

Суммарное ионное уравнение:

$4H_2O+4OH{-}=2H_2+4OH{-}+O_2+2H_2O$

Суммарное молекулярное уравнение:

$2H_2O{→}↖{\text»электролиз»}2H_2+O_2$

В данном случае, оказывается, идет только электролиз воды. Аналогичный результат получим и в случае электролиза растворов $H_2SO_4, NaNO_3, K_2SO_4$ и др.

Электролиз расплавов и растворов веществ широко используется в промышленности:

  1. Для получения металлов (алюминий, магний, натрий, кадмий получают только электролизом).
  2. Для получения водорода, галогенов, щелочей.
  3. Для очистки металлов — рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
  4. Для защиты металлов от коррозии (хрома, никеля, меди, серебра, золота) — гальваностегия.
  5. Для получения металлических копий, пластинок — гальванопластика.

Источник: https://examer.ru/ege_po_himii/teoriya/elektroliz_rasplavov_i_rastvorov

Глава 6. Основы электрохимии

Что движется к катоду

Электролиз — это совокупность процессов, происходящих на поверхностях электродов, погруженных в раствор или расплав электролита, при пропускании через них электрического тока. При электролизе электрическая энергия от внешнего источника тока превращается в энергию окислительно-восстановительных реакций.

При электролизе внешний источник тока подключен к электродам — катоду и аноду: при этом к катоду подключен отрицательный полюс источника тока, а к аноду — положительный. Электроды погружаются в раствор или расплав электролита.

Так как в растворах электролитов имеются ионы, то под действием внешнего электрического поля они движутся к противоположно заряженным электродам (положительные ионы-катионы движутся к катоду, а отрицательные ионы-анионы движутся к аноду) и на поверхности их окисляются (на аноде) или восстанавливаются (на катоде) до чистых (элементарных) веществ (рис.2). Устройство, в котором происходит процесс электролиза называется электролизером.

Наиболее простым является электролиз расплавов электролитов, так как эта система содержит только ионы, образующиеся из молекул электролита.

Пример: рассмотрим электролиз расплава NaCl.

При расплавлении NaCl происходит распад молекул на ионы, которые движутся в электролизере к соответствующим электродам

NaCl     

®

     Na+      +       Cl-     

на катод на анод

На поверхности электродов будут протекать окислительно-восстановительные реакции:

Катодный процесс: Na+ + 1e ® Nao

Анодный процесс: 2Cl- — 2e ® Cl2

То есть на катоде выделяется чистый натрий, а на аноде — газообразный чистый хлор.

6.3.3 Электролиз растворов

Электролиз растворов электролитов — более сложный процесс, так как помимо самого электролита в данной системе содержатся молекулы воды. Рассмотрим процессы, происходящие на поверхности инертных электродов, в этом случае.

Характер катодных процессов определяется величиной электродного потенциала того металла, ионы которого движутся к катоду.

1. Если ЕМе < -1,6В (а к таким металлам относятся Na, K, Ca, Mg, Al), то ион этого металла не может восстановиться на катоде, а вместо него восстанавливаются молекулы воды

а на катоде выделяется газообразный водород.

2. Если -1,6В < ЕМе < 0В (к таким металлам относятся Zn, Fe, Sn, Cr, Ni, Pb), то

на катоде одновременно восстанавливаются ионы металла и молекулы воды

Men+ + ne ® Meo

то есть на катоде выделяется чистый металл и газообразный водород.

3. Если ЕМе > 0В (к таким металлам относятся Cu, Ag, Hg, Au), то на катоде выделяется чистый металл

Men+ + ne ® Meo.

Характер анодных процессов определяется строением анионов (к ним относятся ионы кислотных остатков и ион ОН-), а также материалов, из которого изготовлен анод. В данном случае возможны следующие варианты:

1. Анионы простого строения (Cl-, Br-, I-, S2-) непосредственно окисляются на поверхности анода да чистого вещества.

Например:

2Сl- — 2e ® Cl2.

2. Анионы сложного строения (кислородсодержащие ионы SO42-, CO32-, PO43- и т.д.) на аноде не изменяются, а вместо них окисляются молекулы воды

и при этом выделяется газообразный кислород.

3. Если анод выполнен не из инертного (уголь, графит, платина) материала, то в процессе электролиза происходит окисление металла анода и переход ионов металла в раствор (то есть анод разрушается)

Meo — ne ® Men+.

Таким образом, при электролизе растворов на катоде можно получить чистые металлы и (или) газообразный водород, на аноде — чистые неметаллы (галогены и серу) или газообразный кислород.

Например: разобрать схему электролиза раствора медного купороса CuSO4.

Решение:

При растворении медного купороса в воде происходит распад соли на ионы, которые в электролизере направляются к противоположно заряженным электродам

CuSO4     =     Cu2+     +     SO42-   
на катод на анод

Ион металла движется на катод, но так как. ЕCuо > 0 в, то на катоде будет выделяться читый металл (см. характер катодных процессов). Ион кислотного остатка движется на анод и так как ион SО42- является сложным ионом, то на аноде будет в чистом виде выделяться кислород (см. характер анодных процессов). То есть на электродах будут протекатьследующие реакции

Катодный процесс: Cu2+ + 2e = Cuo

Анодный процесс:

6.3.4 Законы электролиза

Законы электролиза (иначе их называют законами Фарадея) позволяют количественно оценивать электрохимические превращения, протекающие в системе при электролизе расплавов или растворов.

1-ый закон электролиза: масса превратившегося на электроде вещества прямо пропорциональна величине электрохимического эквивалента вещества и количеству пропущенного через систему электричества.

Электрохимический эквивалент определяется по формуле

(6.7)

где: k — электрохимический эквивалент, г/(моль·кулон);

mэкв — эквивалентная масса вещества, г/моль;

F — постоянная Фарадея, F = 96500 кулон;

A — атомная (мольная) масса вещества, превращающаяся на электроде;

n — заряд иона вещества или степень окисления (по модулю).

Количество электричества Q ( в кулонах), прошедшего через систему, определяется по известной в курсе физике формуле

Q = I·t

где: I — сила тока электролиза, А;

t — время электролиза, с.

Таким образом, полное математическое выражение для 1-го закона электролиза имеет вид

или

(6.8)

Нетрудно определить, что если Q = F, то m = A/n = mэкв, то есть физический смысл постоянной Фарадея F — это количество электричества, которое необходимо пропустить через систему при электролизе, чтобы на электроде выделилась масса вещества, равная его эквивалентной массе (F = 96500 кулон).

Например : определить массу вещества, которая выделится на аноде при электролизе раствора Н3РО4 током 10А в течение 965 с.

Решение:

1. Рассмотрим схему электролиза раствора Н3РО4 и определим вещество, которое будет выделяться на аноде при электролизе данного раствора:

Н3РО4     

®

     3Н+     +     РО43-     

на катод на анод

Так как ион РО43- является сложным анионом, то согласно характеру анодных процессов, на аноде будет выделяться газообразный кислород (атомная масса кислорода по таблице Д.И.Менделеева равна 16, степень окисления равна -2).

2. Определим массу выделившегося вещества, согласно 1-му закону электролиза

m = A·I·t / (n·F) = 16·10·965/(2·96500) = 0,8 г.

Ответ: на аноде выделится 0,8 г О2.

2-ой закон электролиза: при последовательно включенных в электрическую цепь электродах, массы выделившихся при электролизе веществ относятся друг к другу, как их эквивалентные массы, то есть

m(1) / m(2) = mэкв(1) / mэкв(2)

где: m(1) и m(2) — массы выделившихся на электродах веществ;

mэкв(1) и mэкв(2) — эквивалентные массы этих веществ.

Из данного закона можно выделить очень важное следствие: массы веществ, выделившихся на катоде и аноде, при электролизе относятся друг к другу, как их эквивалентные массы, то есть

m(к) / m(а) = mэкв(к) / mэкв(а)

где: m(к) и m(а) — массы выделившихся на катоде и аноде веществ;

mэкв(к) и mэкв(а) — эквивалентные массы этих веществ.

Применяя 2-ой закон электролиза, можно определить массу выделившегося на электроде вещества, если известна масса вещества, выделившаяся на другом электроде.

Пример: определить массу выделившегося на катоде вещества при электролизе раствора К2СО3, если на аноде при этом выделилось 4 г вещества.

Решение:

1. Определим вещества, выделяющиеся на электродах при электролизе раствора К2СО3

К2СО3     

®

     2К+     +     СО32-     

на катод на анод

По характеру катодных и анодных процессов определяем, что на катоде выделяется газообразный водород Н2, а на аноде — газообразный кислород О2.

2. Используем 2-ой закон электролиза для определения массы вещества, выделившегося на катоде:

m(к) / m(а) = mэкв(к) / mэкв(а), следовательно

m(Н2) = mэкв(Н2)·m(О2) / mэкв(О2).

Так как mэкв(Н2) = А(Н2) / n(Н2) = 1/1 = 1г/моль

и mэкв(О2) = А(О2)/n(О2) = 16/2 = 8 г/моль,

то имеем

m(Н2) = mэкв(Н2)·m(О2) / mэкв(О2) = 1·4/8 = 0,5 г.

Ответ: на катоде выделилось 0,5г Н2.

Источник: https://cde.osu.ru/courses2/course93/g6_3.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как найти силу тока в трехфазной сети

Закрыть