Что опаснее постоянное или переменное напряжение

Что такое постоянный и переменный ток: разница и 5 особенностей

Что опаснее постоянное или переменное напряжение

Отличие переменного тока от постоянного можно понять, исходя из определенийОчень давно, учеными был изобретен электрический ток. Первым изобретением был постоянный. Но в последующем, проводя в своей лаборатории опыты, Никола Тесла изобрел переменный ток. Между ними было и есть много различий, согласно которым один из них используется в слаботочной аппаратуре, а другой имеет возможность преодолевать различные расстояния с небольшими потерями. Но многое зависит от величин токов.

:

Отличие переменного тока от постоянного, можно понять исходя из определений. Для того чтобы лучше разобраться в принципе работы и особенностях, необходимо знать следующие факторы.

Основные отличия:

  • Движение заряженных частиц;
  • Способ производства.

Переменным, называют такой ток, в котором заряженные частицы, способны изменять направление движения и величину в определенное время. К главным параметрам переменного тока относят его напряжение и частоту.

В настоящее время, общественные электрические сети и различные объекты, используют переменный ток, с определенным напряжением и частотой. Данные параметры определяются оборудованием и устройствами.

Обратите внимание! В бытовых электросетях, используется ток величиной 220 Вольт и тактовой частотой 50 Гц.

Направление движения и частота заряженных частиц в постоянном токе неизменны. Данный ток для питания используют различные бытовые устройства, такие как телевизоры и компьютеры.

Определение переменного и постоянного тока

В связи с тем, что переменный ток, проще и экономичнее по способу производства и передачи на различные расстояния, он стал основой электрификации объектов. Производят переменный ток на различных электростанциях, с которых посредством проводников, то поступает к потребителю.

Постоянный ток, получают при преобразовании переменного тока или путем химических реакций (например, щелочная батарейка). Для преобразования, используют трансформаторы тока.

Какой уровень напряжения является допустимым для человека: особенности

Для того чтобы знать, какие значения электрического тока являются допустимыми для человека, составлены соответствующие таблицы, в которых указаны величины переменного и постоянного тока и время.

Параметры воздействия электрического тока:

  • Сила;
  • Частота;
  • Время;
  • Относительная влажность.

Допустимое напряжение прикосновения и ток, которые протекают через человеческое тело в различных режимах электроустановок, не превышают следующих значений.

Переменный ток 50 Гц, должен быть не более 2,0 Вольт и силой тока 0,3 мА. Ток с частотой 400 Гц напряжением 3,0 Вольт и сила тока 0,4 мА. Постоянный ток напряжением 8 и силой тока 1 мА. Безопасное воздействие тока с такими показателями, до 10 минут.

Предельно допустимые уровни напряжения и тока

Обратите внимание! Если электромонтажные работы производятся при повышенных температурах и высокой относительной влажности, данные значения уменьшаются в три раза.

В электроустановках с напряжением до 100 Вольт, которые глухо заземлены, или изолирована нейтраль, безопасные токи прикосновения следующие.

Переменный ток 50 Гц с разбросом напряжения от 550 до 20 Вольт и силой тока от 650 до 6 мА, переменный ток 400Гц с напряжением от 650 до 36 Вольт, и постоянный ток от 650 до 40 Вольт, не должен воздействовать на тело человека в пределах от 0,01 до 1 секунды.

Опасный переменный ток для человека

Считается, что для жизни человека, переменный электрический ток наиболее опасен. Но это при условии, если не вдаваться в подробности. Многое зависит от различных величин и факторов.

Факторы, влияющие на опасное воздействие:

  • Продолжительность контакта;
  • Путь прохождения электрического тока;
  • Сила тока и напряжение;
  • Какое сопротивление тела.

Согласно правилам ПУЭ, самый опасный ток для человека, это переменный с частотой, которая варьируется в пределах от 50 до 500 Гц.

Стоит отметить, что при условии, сила тока не превышает 9 мА, то любой, может сам освободиться от токоведущей части электроустановки.

Если данное значение превышено, то для того чтобы освободиться от воздействия электрического тока, человеку нужно стронная помощь. Связано это с тем, что ток переменный, намного сильнее способен возбуждать нервные окончания, и вызывать непроизвольные судороги мышц.

Например, при касании токоведущей части устройства внутренней частью ладони, мышечная судорога будет сильнее сжимать кулак, с течением времени.

Почему еще переменный ток опаснее? При одинаковых значениях силы тока, переменный в несколько раз сильнее воздействует на организм.

Самый опасный ток для человека, это переменный с частотой, которая варьируется в пределах от 50 до 500 Гц

Так как, переменный ток воздействует на нервные окончания и мышцы, то стоит понимать, что этим, том влияет и на работу сердечной мышцы. Из чего следует, что при контакте с переменным током, возрастает риск летального исхода.

Важным показателем, является сопротивление тела человека. Но при ударе переменным током с высокими частотами, сопротивление тела значительно снижается.

Какой величины опасен для человека постоянный ток

Опасным для человека, может быть и постоянный ток. Конечно переменный, в десятки раз опаснее. Но если рассматривать токи в различных величинах, то постоянный может быть намного опаснее переменного.

Воздействие постоянного тока на человека разделяют:

  • 1 порог;
  • 2 порог;
  • 3 порог.

При воздействии постоянного тока перового порога (ток ощутимый), начинают немного дрожать руки, и появляется легкое покалывание.

Второй порог (ток не отпускающий), в пределах от 5 до 7 мА, является наименьшим значением, при котором человек, не может освободиться от проводника самостоятельно.

Данный ток считается не опасным, так как сопротивление тела человека выше, чем его значения.

Третий порог (фибрилляционный), при значениях от 100 мА и выше, ток сильно воздействует на организм и на внутренние органы. При этом ток при данных значениях, способен вызвать хаотичное сокращение сердечной мышцы и привести к его остановке.

На силу воздействия, влияют и другие факторы. Например сухая кожа человека, обладает сопротивлением от 10 до 100 кОм. Но если касание произошло мокрой поверхностью кожи, то сопротивление значительно снижается.

Этот фактор относится и к повышенной влажности, которая влияет на особенности проведения электромонтажных работ.

Что такое постоянный и переменный ток: разница (видео)

Теперь, вы сможете понять, в чем разница между током постоянным и переменным. Конечно различий много, но становится понятно, что при наличии определенных факторов, опасность представляют оба вида.

Источник: http://6watt.ru/elektrosnabzhenie/postoyannyj-i-peremennyj-tok-raznitsa

Электроток переменного напряжения: его характеристики, источники и достоинства

Что опаснее постоянное или переменное напряжение

Абсолютное большинство современных бытовых и промышленных электроприборов работает на основе переменного тока. В отличие от постоянного, переменный электроток сложнее в расчетах и опаснее для жизни человека. Но есть и ряд преимуществ переменного напряжения и вызванного им тока, которые и обусловили его популярность в быту, на транспорте и на производстве.

Принципиальные отличия разных видов

Электроток — это поток движущихся заряженных частиц, чаще всего — электронов. Разница в количестве заряженных частиц между двумя точками вызывает напряжение электростатического поля. Под его действием при наличии проводника частицы с электрическим зарядом движутся от места с их избытком до места с их недостачей. Это и есть постоянный электроток.

Электроток переменного типа имеет совсем другую природу. Суть в следующем:

  • изменяющееся во времени магнитное поле вызывает движение заряженной частицы;
  • движение заряженной частицы в пространстве вызывает появление магнитного поля;
  • появившееся магнитное поле из-за движения заряженной частицы опять заставляет ее двигаться и т. д.

В этом заключается основное отличие постоянного напряжения от переменного. При этом, если постоянное напряжение имеет неизменяемую на определенном промежутке времени величину и полярность, то переменное напряжение меняет с большой частотой и свою величину, и полярность.

Основные характеристики электротока

Если некоторые физические явления можно увидеть или ощутить другими органами чувств, то постоянное и переменное напряжение (и вызванный ими электроток) потрогать не удастся. Но можно найти аналогию, которая поможет разобраться в этом явлении. Например, давление воды и ее напор в садовом шланге вполне видны, осязаемы и поддаются пониманию среднестатистического человека, не искушенного в вопросах физики. Можно провести такое относительное сравнение:

  • давление воды — это электрическое напряжение;
  • напор (или сила потока) — это сила тока;
  • диаметр шланга — это сопротивление проводника.

Вам это будет интересно  Все об законе Ома

Чем больше давление и меньше диаметр, тем больше напор и дальше бьет струя воды. Это заметно, если прикрыть пальцем выходное отверстие. И наоборот: чем больше диаметр шланга, тем меньше дальность исходящей струи.

По такому принципу описывается электроток постоянного типа: сила электротока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Этот закон был открыт Георгом Омом и получил его имя. Согласно теории, при протяженных проводниках получаются значительные потери в силе потока заряженных частиц.

Напряжение переменного тока периодически изменяется во времени, и природа его возникновения не такая, как у напряжения электротока постоянного типа. Это и обуславливает значительно меньшие потери при передаче электричества на значительные расстояния по проводникам. Теоретические основы электротока переменного типа значительно сложнее.

Немного исторических сведений

На рубеже XIX и XX столетий активно внедрялся в быт постоянный электроток. Его популяризатором выступал Томас Эдисон. Но он столкнулся с неразрешимой проблемой: требовалось строить значительное количество промежуточных электроподстанций, чтобы электричество дошло до потребителя с заданными параметрами. Через каждые 3−4 километра устанавливалась подстанция, что было очень затратным и нерентабельным делом.

Решить эту проблему взялся молодой и талантливый физик Никола Тесла. К ней он подошел с новаторской идеей — использовать электроток с изменяемыми во времени показателями напряжения и направления движения. Проблема решалась просто и эффективно:

  • потери на сопротивление проводника снижались в несколько раз;
  • источники электротока переменного типа конструкции Тесла были проще и дешевле;
  • упрощались и сами бытовые приборы, работавшие от электротока с изменяемыми во времени показателями.

Но эта идея для Томаса Эдисона была неприемлема, так как полностью уничтожались его уже готовые разработки и ему грозили большие финансовые потери. Эдисон упорно продвигал свою идею электротока постоянного типа, проводя многочисленные публичные испытания и демонстрации.

Вам это будет интересно  Особенности расчета емкостного сопротивления

В прессе по его указке и при его финансировании была организована настоящая травля научного оппонента. Но история расставила все по своим местам: сегодня человечество должно благодарить Николу Тесла, так как без переменного тока цивилизация не достигла бы существующего уровня развития техники, науки и комфорта в быту.

Обзор источников электричества

Для получения электротока с неизменяемыми во времени значениями напряжения необходимо разделение заряженных частиц и накопление их в одном месте. Для этого используются различные физические явления.

Чаще всего для получения электрического постоянного тока применяются электролитические источники, в частности, обычные батарейки и аккумуляторы. За счет электрохимических реакций электроны накапливаются на катоде и возникает их нехватка на аноде.

При замыкании контактов протекает электроток.

В промышленных масштабах постоянный ток получают из переменного при помощи выпрямителей и стабилизаторов. Диодный мост пропускает только часть синусоиды переменного тока, а стабилизаторы сглаживают полученные пульсации. Городской электротранспорт (метрополитен, трамваи и троллейбусы) как раз и работает на таком выпрямленном токе.

Постоянный ток получается и в фотоэлементах, ставших основой для создания солнечных батарей. Под действием энергии фотонов в полупроводниковых микроэлементах возникает разница потенциалов, которая суммируется и в итоге образует постоянное напряжение.

Генераторы постоянного тока постепенно выходят из обихода ввиду их малой производительности. Затраты энергии для запуска их в работу значительно превосходят получаемую в итоге электрическую энергию. Их заменой стали инверторные источники постоянного тока, которые обладают высоким КПД, малым весом, небольшими размерами и надежностью. К их достоинствам можно отнести и отсутствие пульсаций в получаемом из переменного постоянном токе.

Основной источник переменного электротока — генератор. Схематично он состоит из намагниченного ротора и статора из проводников.

При вращении ротора магнитное поле меняет свой вектор по времени, что вызывает появление электродвижущей силы в обмотках проводника статора. С его контактов снимается полученное напряжение, при необходимости трансформируется и передается потребителю.

По своему устройству генераторы бывают асинхронными и синхронными. На параметры выдаваемого переменного тока это практически не влияет.

Вам это будет интересно  Схема блока АВР

Асинхронный тип более прост в конструкции, но чувствителен к кратковременным пиковым нагрузкам. Синхронные генераторы способны выдерживать пятикратные нагрузки. Их раньше использовали для питания электросварочных аппаратов переменного тока. Сегодня сварка переменным током теряет популярность из-за того, что ее качество ниже, чем сварка постоянным током. Сварочные аппараты постоянного тока становятся более доступными широким массам.

Электродвигатели переменного тока действуют по обратному принципу: протекание переменного электрического тока по обмоткам статора вызывает вращение ротора. Теоретически электродвигатель может выполнять функции генератора, а генератор может быть использован в роли электродвигателя.

Источник: https://rusenergetics.ru/ustroistvo/elektrotok-peremennogo-napryazheniya

Наведенное напряжение. Причины возникновения и опасность

Что опаснее постоянное или переменное напряжение

Наводка напряжения на линиях воздушной электропередачи возникает не так уж редко. Это наведенное напряжение также возникает в бытовых условиях и в электроустановках, связанных с линиями электропередач. Это явление создает такую же опасность для жизни человека, как и рабочее напряжение. Для того, чтобы правильно защитить себя от такого опасного явления, необходимо рассмотреть природу его появления.

Причины возникновения

Наведенное напряжение может появиться на воздушной линии электропередач, которая выведена в ремонт и отключена от питания, из-за воздействия на нее находящейся рядом действующей электроустановки, либо другой линии под напряжением. Действие оказывает не сама линия или электроустановка, а их электромагнитное поле.

Поэтому, воздушная линия, параллельно протянутая возле обесточенной линии, наводит внешний потенциал, представляющий большую опасность для ремонтного и обслуживающего персонала. Величина такого наведенного напряжения не является постоянной, и меняется в зависимости от длины участка линии, параллельной действующей, а также значения рабочего напряжения, тока нагрузки, удаленности фазных проводников, погодных условий.

Наведенное напряжение на линии электропередач разделяется по видам воздействия:

  • Электромагнитная часть. Возникает вследствие воздействия магнитного поля, появляющегося от течения электрического тока по действующей линии электропередач. Особенностью и отличием такой составляющей является фактор того, что при заземлении линии в разных нескольких местах, электромагнитное влияние не исчезает и ее величина остается прежней. Влияет разве что нахождение точки нулевого потенциала.
  • Электростатическая составляющая. Она отличается от электромагнитной тем, что исчезает путем подключения заземления на краях линии и в месте производства работы. Уменьшить значение наведенного напряжения можно путем заземления одной точки линии.

Разберемся, отчего возникает наводка, и каков его принцип действия. На рисунке изображен проводник А-А. При прохождении по нему переменного тока образуется электромагнитное поле, действие которого снижается по мере удаления от провода (окраска менее яркая).

Пульсации электромагнитного поля также изменяются при изменении величины электрического тока и его направления. Если в это поле попадает другой проводник, то в нем возникает наводка. На рисунке показаны провода с подсоединенными приборами измерения для контроля значения напряжения.

Необходимо определить, какая величина напряжения будет опасной для человека, обслуживающего линию электропередач. Принято считать, что наличие на отключенной воздушной линии наведенного напряжения не более 25 вольт, предполагает применение защитных мер обычного использования.

Если это значение будет превышено, то требуются специальные средства безопасности и осуществление мероприятий, создающих необходимую степень защиты от опасного действия потенциала напряжения. Такими мерами являются отключение заземления по концам линии, подключение заземления на рабочем участке воздушной линии, а также возможен разрез проводника на отдельные части.

Опасность наведенного напряжения

Это явление считается более опасным и уникальным в отличие от действующего рабочего напряжения, ввиду того, что защитные устройства на него не действуют. Если электромонтер попадет под наводка, то под его действием он будет находиться, пока не освободится от него. А при воздействии рабочего напряжения срабатывает устройство защиты и электричество автоматически отключается.

При коротком замыкании на действующей линии осуществляется наводка на обесточенную линию, и ток возрастает в несколько раз. Это оказывает опасное воздействие на ремонтный персонал, работающий на обесточенной линии передач. Последствия таких наведений напряжения бывают очень серьезными: сильные ожоги тела, поражения током важных органов, летальные исходы. Поэтому необходимо соблюдать правила безопасности при работах на выключенных линиях электропередач.

Наведенное напряжение может достигать несколько десятков киловольт. Иногда приходится работать одновременно в нескольких местах. При работе с вышки, ее обязательно необходимо заземлить, при этом нельзя забывать о выравнивании потенциала провода заземления и корзины вышки, с которой производится работа.

При заземлении линии по ее концам, на участке работы напряжение может превысить допустимую величину, так как нулевой потенциал сместится в точку между заземлениями. Если возникла необходимость работы на линии в нескольких местах, то вся линия должна быть разделена на отдельные участки, электрически не связанные между собой.

На таком участке можно приступить к ремонту, заземлившись в одной лишь точке.

Для гарантии безопасности необходимо устанавливать на рабочем месте два заземления. Случится что-нибудь с одним заземлением – подстрахует второе. Это особенно необходимо, если предстоит разъединить провод. До разъединения провода заземление следует устанавливать с обеих сторон от места предполагаемого разрыва с обязательным подсоединением их к одному заземлению

Теперь можно разъединить шлейф, не опасаясь, что замкнете на себя уравнительный ток между концами провода. Заземлив линию в единственной точке на участке только на месте работы, можете быть уверены, что вашей жизни ничто не угрожает.

ЭТО ИНТЕРЕСНО:  Как проверить потребление электроэнергии

Нельзя забывать об основных мерах безопасности при осуществлении различных измерений на линии. Соединительные провода, вольтметр и рама разъединителя могут быть под напряжением, поэтому для безопасности необходимо перед измерением собрать схему измерений, а потом уже подключать ее к проводникам фаз.

Соединительные проводники должны иметь изоляцию, которая рассчитана на минимальное напряжение 1 кВ. Работники должны находиться в диэлектрических перчатках и ботах. Если при измерении напряжения будет нужно изменить пределы шкалы прибора, то сначала отключают от напряжения всю схему измерений от воздушной линии.

Наведенное напряжение в квартире

Явление наводки напряжения кроме воздушных линий может возникать и в бытовых условиях в квартире, либо собственном доме в бытовой сети. Наводка возникает в кабеле, находящемся рядом с проводником, подключенным к бытовой сети. Рассмотрим это на примере.

При отключенном выключателе на лампах освещения, которые имеют в своей конструкции светодиоды, может появиться слабое свечение. Это явление образуется вследствие расположенного рядом проводника питания фазного напряжения. Поэтому при воздействии электромагнитного поля возникает наведенное напряжение, хотя и незначительное, но достаточное для слабого свечения светодиодов.

Другим примером может служить наведенное напряжение в розетке. Она появляется в том случае, если образовался обрыв провода ноля. При этом, измеряя индикатором в розетке напряжение, обнаруживаются две фазы. На самом деле фаза одна. Вторая фаза исчезнет после устранения обрыва нулевого проводника.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/navedennoe-napriazhenie/

Какой ток опаснее и почему: постоянный или переменный, как защититься от его отрицательного воздействия

Несмотря на многочисленные научные эксперименты и теоретические выкладки, ученые до сих пор не знают, какой ток опаснее. Необъяснимость некоторых проявлений электричества, несмотря на давно разработанные меры защиты и профилактики, по-прежнему приводит к травматизму и гибели людей. Но большинство специалистов склоняется к мнению, что переменный ток все-таки смертоноснее постоянного.

Изучение электричества стоило жизни многим ученым — взять хотя бы друга Михайлы Ломоносова Георга Рихмана. Сейчас сказали бы, что причиной его смерти стало отсутствие заземления. Такой защитой, как и другими мерами профилактики поражения током, каким бы он ни был по характеристикам, пренебрегать не стоит. На производстве нужно обращать внимание на такие мероприятия:

  1. Отключение электропитания при проведении работ с обязательной проверкой напряжения.
  2. Использование запрещающих знаков, ограждение места работ.
  3. Организация заземления либо зануления.
  4. Изоляция опасных частей приборов и установок.
  5. Применение принудительных выключателей, прерывателей, сигнализации. Они срабатывают автоматически в случае незапланированного опасного напряжения.
  6. Монтаж силовых блоков в обычно труднодоступных для людей местах, например, на высоте.
  7. Индивидуальная и коллективная защита.

Нужно помнить, что токопоражение происходит, как правило, при неисправности механизмов и установок, пробоях изоляции или ее отсутствии, прикосновениях к приборам, которые находятся под напряжением. Риск опасности возрастает в помещениях с высокими температурными показателями воздуха и влажностью, наличием различных опасных паров, жидкостей, газов, пыли.

Меры профилактики в быту

Статистика говорит о том, что в обычной жизни от электричества страдает и гибнет даже больше людей, чем на производстве. Основную опасность здесь несут бытовые приборы, но и удар молнией может привести к летальному исходу. В быту также необходимо выполнять правила безопасности. Вот некоторые из них:

  1. Не пользоваться неисправными приборами.
  2. Отключать такие приборы перед их самостоятельным ремонтом (лучше вообще вынуть вилку из розетки).
  3. Следить за исправностью проводки, вилок, розеток.
  4. При прокладке новой проводки и других подобных работах обесточивать помещение и следить, чтобы никто случайно не подал напряжение в сеть.
  5. Использовать в быту розеточные ограничители даже на современных изделиях, если в доме есть маленькие дети.
  6. На территории частных домовладений устанавливать громоотводы.
  7. В грозу не пользоваться сотовой связью, не находиться на открытой местности.
  8. В случае купания или рыбалки при первых же признаках надвигающейся грозы покинуть водный объект и отойти от него подальше.
  9. Не подходить близко к столбам со свисающими до земли либо порванными проводами — ток может «разлиться» по земле. Покидать такое место нужно маленькими шагами.

Если приходится оказывать помощь кому-либо, попавшему под напряжение, делать это необходимо с соблюдением всех доступных мер предосторожности. Иначе вместо одного пострадавшего их может стать двое и более.

Опасное постоянство

В рассуждении о том, какой ток опаснее (постоянный или переменный), нужно учитывать, что ущерб здоровью и даже угрозу жизни человека несет любой из них. Риск при этом растет пропорционально увеличению пороговых значений, зависит от некоторых других факторов. Важными являются сила тока, его напряжение, условия и продолжительность воздействия.

Считается, что постоянный ток в 3 раза безопаснее переменного. Но здесь необходимо учитывать и такие факторы:

  1. Постоянный ток грозит судорогой. Если сила его высока, то растет риск сильного отброса человека, что может привести к тяжелым травмам.
  2. Особо опасен он при промышленном напряжении (свыше 500 вольт). Но люди ежедневно сталкиваются с ним в быту, значит, увеличивается риск поражений.
  3. Реакция на поражение электричеством у разных людей неодинакова. Она может отличаться в зависимости от уровня сопротивления тела и физиологических особенностей организма. Некоторые болезненнее реагируют на постоянный ток.

С каким бы электричеством ни приходилось сталкиваться, для гарантии безопасности нужно полностью избегать открытых контактов с источниками тока и его проводниками, которые могут нести угрозу.

Переменная угроза

И все-таки чаще люди страдают от переменного тока. Опасность же его определяется как более высокая в области отрицательного воздействия на организм. Он оказывает более заметное негативное влияние на сердечно-сосудистую, мышечную, дыхательную и нервную системы человека. В этом отношении нужно знать и помнить:

  1. Порог сопротивления организма переменному току ниже, чем постоянному.
  2. Поражения от него имеют, как правило, более серьезные последствия.
  3. Освободиться, оторваться от источника поражения переменным током значительно сложнее.
  4. Летальные исходы встречаются чаще.

Косвенным доказательством того, почему переменный ток опаснее постоянного, можно считать использование электрического стула в качестве орудия казни. Его работа построена на применении именно этого вида тока с определенными параметрами. При прохождении через организм воздействие его на живые клетки действует убийственно.

Есть люди, на которых ток не оказывает какого-либо заметного воздействия. Но их следует отнести к уникумам и в любом случае не повторять трюков. Да, без электричества цивилизацию представить сложно, оно даже лечит, но обычному человеку вести себя с ним необходимо предельно аккуратно.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/tok/postoyannyy-i-peremennyy-tok-kakoy-opasnee.html

Какой ток опаснее постоянный или переменный

Наша жизнь немыслима без электричества — оно освещает города и квартиры, приводит в движение поезда, руководит работой мобильных гаджетов. Но порой электричество представляет прямую угрозу жизни и здоровью человека. Попробуем разобраться, какой ток опаснее, постоянный или переменный, и как он может повлиять на организм.

Постоянный

Для создания потока электронов необходима цепь постоянного электрического тока

Постоянным током называется направленное движение заряжённых частиц от отрицательного полюса к положительному, которое не изменяется по величине и направлению. В проводнике не возникает свободных зон или зон скопления заряда, так как электроны сменяются другими по мере их движения.

Постоянный ток стабилен, а потому везде используется в электронике. Большинство современных устройств работает на постоянном токе, получая его из встроенных аккумуляторов или генерируя из сетевого переменного тока. Кроме того, постоянным током питается бортовая электроника автомобилей, самолётов и кораблей, а некоторые виды транспорта используют его в качестве основной движущей силы.

Переменный

Переменный ток применяется в устройствах связи (радио, телевидение, проволочная телефония) и это благодаря тому, что напряжение и силу переменного тока можно преобразовывать почти без потери энергии

Переменный ток изменчив, он заставляет электроны проводника двигаться хаотично, не имеет стабильной величины и направления. На графике переменное электрическое поле подобно синусоиде, в которой равные «пики» чередуются равными «провалами». Расстояние между ними определяется частотой тока. Общепринятый на постсоветском пространстве стандарт частоты — 50 Гц.

Основная сфера применения переменного тока — снабжение электричеством бытовых и промышленных сетей. В первом случае используется напряжение 220 В, во втором — 380 В. Переменный ток высокого напряжения генерируется на электростанциях и передаётся по высоковольтным ЛЭП, а затем преобразуется в понижающих трансформаторах. На железнодорожном транспорте используется переменный ток напряжением около 25 кВ.

Какой ток опаснее?

Переменный ток протекает в розетках и распределительных коробках, поэтому его опасность более актуальна

До сих пор законы воздействия электричества на человеческий организм мало изучены. На характер и тяжесть поражения влияет множество факторов, самыми значимыми из которых являются:

  1. Напряжение. В диапазоне от нуля до 400 В более опасным считают переменный ток. На отметке в 500 В у обоих видов тока равная поражающая сила, а при напряжении в 600 В и выше постоянный ток превращается в злейшего врага. То есть при высоком вольтаже переменный ток менее опасен, чем постоянный.
  2. Частота (для переменного тока). Ток частотой до 500 Гц считается относительно безопасным, как и ток частотой свыше 1 тыс. Гц. Самые опасные значения — 600–900 Гц.
  3. Сила тока. Серьёзные травмы организму способен нанести переменный ток в 20 мА и выше, а также постоянный ток силой не менее 100 мА. При равной силе тока переменный опаснее.
  4. Зона воздействия. Поражения конечностей не так опасны, как поражения туловища и головы.

Выделяют четыре степени тяжести при поражении электрическим током:

  1. Первой свойственны исключительно судорожные сокращения мышц.
  2. На второй добавляется потеря сознания.
  3. Третья стадия приводит к нарушениям в работе сердца и дыхательной системы.
  4. Четвёртой является клиническая смерть.

Любая стадия может сопровождаться более или менее сильными ожогами.

Будьте внимательны и осторожны, следите за исправностью электроприборов, соблюдайте правила техники безопасности, и тогда поражение электрическим током вам не грозит.

Источник: https://elektro.guru/osnovy-elektrotehniki/kakoy-tok-opasnee-postoyannyiy-ili-peremennyiy.html

Чем отличается постоянный ток от переменного. Разница между постоянным и переменным напряжением

Несмотря на то, что электричество прочно вошло в нашу жизнь, подавляющее большинство пользователей этого блага цивилизации не имеют даже поверхностного понимания, что такое ток, не говоря о том, чем отличается постоянный ток от переменного, какая между ними разница, и что такое ток вообще. Первым, кого ударило током, стал Алессандро Вольта, после чего он посвятил этой теме всю жизнь. Давайте и мы уделим внимание этой теме, чтобы иметь общее представление о природе электричества.

Томас Эдисон немного освежился в Нью-Йорке с уличными фонарями и его постоянным током. Переменный ток периодически меняется взад и вперед. Через секунду электричество в нашей электрической сети движется в 50 раз! После того, как были изобретены постоянный ток и переменный ток, оба изобретателя гарантировали друг друга. Не с оружием, а со словами. У них даже есть собаки, подключенные к электрической сети, чтобы показать, насколько опасно другое электричество.

Нам нужны оба типа электроэнергии, потому что оба имеют свои преимущества и недостатки. Он идеально подходит для зарядки аккумуляторов и аккумуляторных батарей. Им нужен постоянный ток для зарядки, потому что ток всегда должен чередоваться в одном направлении.

Это также относится к некоторым бытовым приборам. Просто все, что связано с батареями и перезаряжаемыми батареями, требует постоянного тока для зарядки. Например, фонарик или ноутбук, в котором есть батареи. И такие устройства нуждаются в постоянном токе, т.е.

постоянном токе.

Откуда берётся ток и почему он разный?

Мы попробуем избежать сложной физики, и будем использовать для рассмотрения этого вопроса метод аналогий и упрощений. Но перед этим напомним старый анекдот про экзамен, когда честный студент вытащил билет «Что такое электрический ток».

Извините профессор, я готовился, но забыл — ответил честный студент. — Как Вы могли! Упрекнул его профессор, Вы же единственный человек на Земле, который это знал! (с)

Но и телевидение или радио нуждаются в постоянном токе. Они не могут запускаться с переменным напряжением, которое всегда требует постоянного тока. Опять же, есть устройства, которые не имеют значения, что вы используете. Лампочки, например, просматривают этот сайт.

Лампочка — это только провод, который нагревается, и текущее направление не имеет значения. Переменный ток используется с электродвигателями, то есть со всеми вращающимися устройствами. Например, блендер вращается.

Или плита плиты также может работать с переменным током, который не поворачивается, однако он должен быть нагрет, а затем он как с лампочкой, в нем есть провод и тепло.

Это конечно шутка, но в ней огромное количество правды. Поэтому не станем искать Нобелевских лавров, а просто разберёмся, переменный ток и постоянный, в чём разница, и что принято считать источниками тока.

За основу мы примем допущение, что ток — это не движение частиц (хотя движение заряженных частиц тоже переносит заряд, а значит, создаёт токи), а движение (передача) избыточного заряда в проводнике от точки большого заряда (потенциала) к точке меньшего заряда. Аналогия — водохранилище, вода всегда стремится занять один уровень (уравнять потенциалы).

Если открыть в плотине отверстие, вода начнёт течь под уклон, возникнет постоянный ток. Чем больше отверстие — тем больше воды будет протекать, сила тока вырастет, как и мощность, и количество работы, которую способен выполнить этот ток. Если не управлять процессом, вода разрушит плотину и немедленно создаст зону затопления с поверхностью одного уровня.

Это короткое замыкание с выравниваем потенциалов, сопровождающееся большими разрушениями.

Но переменный ток имеет решающее преимущество, его можно производить в больших количествах на электростанциях, и его можно транспортировать намного лучше, чем постоянный ток, поскольку потери на больших расстояниях намного меньше.

Таким образом, вне электростанции, перемените переменный ток в больших количествах на сухопутную линию, затем в распределительные коробки . Оттуда переменный ток распространяется на домашние хозяйства, и то, что мы тогда использовали, решает это устройство.

Миксер будет напрямую использовать переменный ток.

Компьютер или телевизор сначала преобразуют переменный ток в постоянный ток. Это работает с так называемым преобразователем напряжения без проблем. Только благодаря преобразователю напряжения мы можем подключить телевизор к обычным источникам питания. Трансформатор напряжения уже установлен для всех устройств, которые требуют постоянного тока.

Таким образом, постоянный ток появляется в источнике(как правило, за счёт химических реакций), в котором возникает разница потенциалов в двух точках. Движение заряда от более высокого значения «+» к низкому «-» выравнивает потенциал, пока длится химическая реакция. Итог полного выравнивая потенциала, мы знаем — «батарейка села».

Отсюда следует понимание, почему постоянное и переменное напряжение значительно отличаются по стабильности характеристик . Батарейка (аккумулятор) расходуют заряд, поэтому напряжение постоянного тока снижается со временем. Для поддержания его на одном уровне используют дополнительные преобразователи.

Изначально человечество долго решало, чем отличается постоянный ток от переменного для повсеместного использования, т.н. «Война токов». Она закончилась победой переменного тока не только потому, что меньше потери при передаче на расстояние, но и генерация постоянного тока из тока переменного оказалась проще.

Очевидно, что постоянный ток, получаемый таким образом (без расходуемого источника) имеет куда более стабильные характеристики. Фактически в этом случае переменное и постоянное напряжение жёстко связаны, и по времени зависят только от генерации энергии и количества расхода.

Электрическое сопротивление является мерой того, какое напряжение требуется для прохождения определенного тока через проводник. Это также означает, что определенное напряжение падает на каждый резистор в цепи. На практике существует три типа резисторов.

Резисторы сопротивления сопротивления в системах переменного тока.. На данный момент нас интересует только первый. Когда мы используем резистор как компонент, мы обычно говорим о омическом сопротивлении, т.е. о сопротивлении, которое не зависит от температуры, тока или напряжения. Таким образом, мы имеем постоянное сопротивление, и это позволяет использовать следующие примеры приложений.

Таким образом, постоянный ток по своей природе — это возникновение неравномерного заряда в объёме (химическая реакция), который можно перераспределить при помощи проводов, соединив точку высокого и низкого заряда (потенциала).

Остановимся на таком определении как общепринятом. Все остальные постоянные токи (не батарейки и аккумуляторы) являются производными от источника переменного тока. Например, на этой картинке синяя волнистая линия наш постоянный ток, как итог преобразования переменного.

Если бы мы подключили его непосредственно к источнику напряжения, он был бы сломан. Мы только что рассмотрели понижающую регуляцию напряженности, а также нашли решение. Только это решение имеет серьезную слабость: текущий. Если он изменяется, напряжение, которое падает через резистор, также изменяется. Но есть и решение для этого: делитель напряжения. Вот как это выглядит.

Почему высоковольтные кабели работают на 300 кВ?

Это вопрос, который задавал себе каждый раз или должен был ставить. Ответ следует из закона Ома и формулы для власти. Мощность определяет, сколько энергии требуется за время. Это означает, что для нашего источника питания 220 В используется ток.

Теперь мы подключаем наше устройство с очень длинным силовым кабелем с этим разъемом. Мы включаем его, и это происходит: ничего. Здесь стоит упомянуть вышеупомянутую «внутреннюю реставрацию».

Длинная линия подключения к источнику питания имеет такое высокое сопротивление, скажем так, что из-за падения напряжения на выходе для потребителя нет напряжения.

ЭТО ИНТЕРЕСНО:  Что понимается под изолированной нейтралью

Обратите внимание на комментарии к картинке, «большое количество контуров и коллекторных пластин». Если преобразователь будет другим, картинка будет другой. Та же синяя линия ток почти постоянный, но пульсирующий, запомним это слово. Здесь, кстати, чистый постоянный ток — красная линия.

Поскольку мощность не изменяется из-за более высокого напряжения на линии соединения, это означает, что ток протекает там, поэтому это наше падение напряжения и, следовательно, предельное. И это также является причиной того, что высоковольтные кабели также ведут 100 кВ — 300 кВ.

Из-за высокого напряжения и связанного с ним более низкого тока влияние иногда очень высоких внутренних сопротивлений кабелей сводится к минимуму.

Общее: Определение — это количество, указывающее, сколько работы или энергии необходимо для перемещения носителя заряда с определенным электрическим зарядом в электрическом поле.

Взаимосвязь магнетизма и электричества

Теперь посмотрим, чем отличается переменный ток от постоянного тока, который зависит от материала. Самое главное — возникновение переменного тока не зависит от реакций в материале . Работая с гальваническим (постоянным током), быстро было установлено, что проводники притягиваются друг к другу как магниты.

Следствием стало открытие, что магнитное поле при определённых условиях генерирует электрический ток. То есть, магнетизм и электричество оказались взаимосвязанным явлением с обратным преобразованием. Магнит мог дать ток в проводник, а проводник с током мог быть магнитом.

На этой картинке моделирование опытов Фарадея, который, собственно говоря, и обнаружил это явление.

Источник: https://redcomrade.ru/materinskie-platy/chem-otlichaetsya-postoyannyi-tok-ot-peremennogo-raznica-mezhdu/

Какой ток опасен – переменный или постоянный? Результаты исследований

Напряжение 220 В «заходит» в любую современную квартиру, а далее расходится по розеткам. Следовательно, у людей в квартирах всегда есть опасность поражения током.

Однако ток в розетке всегда является переменным, и его направление потока электронов меняется 100 раз в секунду, то есть меняются полюса «плюс» и «минус» местами. В большинстве случаев человека ударяет током именно переменного типа.

Постоянный ток необходим для работы любых бытовых приборов в доме, и он становится постоянным после трансформации в блоке питания. Давайте разберемся, какой ток опасен – переменный или постоянный.

Результат исследований

Благодаря углубленному изучению электротравм, ученым удалось выяснить, какой ток опасен – переменный или постоянный. Ученые Академии наук Киргизии в ходе лабораторных экспериментов на собаках смогли получить новые данные о соотношении опасности постоянного и переменного тока при напряжениях 12, 36, 120 В.

Оказалось, что при стандартной ситуации, когда электроды находятся на конечностях человека, опасность поражения при напряжении 120 В постоянного тока равна опасности поражения при напряжении 42 В переменного тока. Также постоянный ток в сети с напряжением 108 В может поразить человека, равно как и ток в сети с напряжением 36 В.

Все это позволяет понять, какой ток опасен – переменный или постоянный. Оба вида могут нанести вред человеку, вот только в случае с постоянным током напряжение в сети должно быть более высоким. Следовательно, шанс получить ожог или другой урон от постоянного тока намного ниже.

Расположение электродов

Однако еще в 1903 году было установлено, что опасность в большей степени зависит от полюсов источника постоянного тока.

В тех случаях, когда электрод с отрицательным полюсом подключен к верхней части тела человека, а электрод с положительным полюсом – к нижней, то опасность поражения намного выше, чем при обратном расположении.

Ученый Ажибаев развил это утверждение, и его исследования на собаках подтвердили, что фибрилляция наступает раньше именно при расположении электрода с отрицательным полюсом вверху. Впрочем, реакция у разных животных может проявляться по-разному.

В 1970-1972 гг. были проведены исследования Гудэрски, которые заключались в сравнении оценки действия постоянного тока промышленной частоты. В ходе исследования ученые плавно увеличивали напряжение от нуля, в результате тяжесть поражения животных при постоянном токе была намного ниже (в несколько раз) по сравнению с тяжестью поражения при переменном (частота при этом была равна 50-60 Гц). Это еще раз дает понять, какой ток более опасен – переменный и постоянный.

Кратковременная подача напряжения

Если подавать напряжение обоих видов токов кратковременно, то различия в эффекте будут весьма существенными. Это позволяет ученым утверждать, что мнение о меньшей опасности постоянного тока является ошибочным, по крайней мере для момента образования электрической цепи, проходящей через тело человека, то есть для момента «включения».

Судорожные реакции

Ученые Гудэрски и Тересяк предпринимали попытки объяснить разницу в действии на человека переменного и постоянного тока. Они пришли к выводу, что последний не вызывает судорожных реакций, которые обязательно имеют место при поражении человека переменным током.

Также не существует предельных значений постоянного неотпускающего тока и нет биофизических обоснований для формирования защитных мероприятий для защиты человека от поражения именно постоянным током.

Впрочем, даже так называемый неотпускающий ток способен вызвать парез мышц рук.

Казалось бы, что теперь предельно ясно, какой ток опаснее. Переменный и постоянный оказывают разное вредное воздействие на человека. И хотя постоянный ток может вызвать судорогу, напряжение сети при этом должно быть настолько высоким, что обеспечить комплекс защитных мер просто невозможно.

Если сила постоянного тока будет очень высокой, то есть другая опасность – отброс пострадавшего от ведущих частей, которые находятся под напряжением. Такая особенность при переменном токе наблюдается исключительно редко. В результате отброшенный может получить даже физическую травму, которая в зависимости от условий падения человека может оказаться смертельной.

Это окончательно запутывает людей и не дает возможности точно определить, какой ток опасен – переменный или постоянный.

Также стоит отметить, что при прикосновении к токоведущим частям (к примеру, на выпрямителе), где имеет место пульсирующий ток, может привести даже к судорожным реакциям, так как там есть переменная составляющая.

Переменный ток опаснее

К сожалению, ученые до сих пор не могут точно ответить, какой ток опасен – переменный или постоянный, и почему. Эта задача решена сегодня недостаточно, однако попытки ее изучить предпринимаются, ведь ликвидация данного пробела позволит более глубоко изучить биофизику электротравмы, а в дальнейшем эффективнее ее лечить, не говоря уже о возможности создания защитных мер для предотвращения удара человека постоянным током.

Впрочем, можно смело говорить о том, что при плавном росте напряжения опасность постоянного тока для человека гораздо меньше. Удар от него можно получить при напряжении в сети не менее 120 В, в то время как переменный ток способен нанести вред человеку всего лишь при напряжении в сети 42 В. Также ученые в ходе исследований пришли к выводу, что вероятность образования опасной электрической цепи в теле человека выше при поражении переменным током.

В заключение

Теперь мы понимаем, почему и какой ток опасный – переменный или постоянный. Однако постоянный ток наносит меньший вред только в бытовых условиях (дома), а поражение человека постоянным током при очень высоком напряжении может просто сильно отбросить его, что нанесен механическую травму.

Источник: https://fb.ru/article/354168/kakoy-tok-opasen-peremennyiy-ili-postoyannyiy-rezultatyi-issledovaniy

Какой прибор преобразует переменный ток в постоянный?

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках?  Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток — трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали — остается загадкой. Зато известно точно, что батарейка уже «села».

Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию.

Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток — alternating current (AC). Постоянный ток — direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе — отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 — это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей — война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Источник: https://1000eletric.com/kakoy-pribor-preobrazuet-peremennyy-tok-v-postoyannyy/

Что будет, если подать в электросеть постоянный ток

Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.

Подавляющее большинство энергосетей работают на переменном токе. Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.

Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.

Автоматы

И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь.

Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.
источник картинки: выключатель-автоматический.

рф

Дополнения от Bronx и AndrewN:

Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше. Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.

УЗО

Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него. Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь.

Чувствительный элемент УЗО — дифференциальный трансформатор. У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет. Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО.

На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.

Счетчик

Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки. Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение.

ЭТО ИНТЕРЕСНО:  Сколько ампер нужно для электрода 3

Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск. Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен. Электронный счетчик устроен по-другому.

Он напрямую измеряет напряжение (через резистивный делитель) и ток (при помощи шунта или датчика Холла), оцифровывает их, а затем микропроцессор пересчитывает полученные данные в киловатт-часы. В принципе, ничто не мешает такой схеме работать с постоянным током, но во всех бытовых счетчиках постоянная составляющая программно отфильтровывается и на показания не влияет.

Счетчики постоянного тока существуют в природе, их ставят, например, на электровозы, но в квартирном щитке вы такой не найдёте. Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.

Нагревательные приборы

Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.

Лампы накаливания

Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период. При питании постоянным током этого неприятного явления не будет.

Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса. Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль.

Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке. Именно так и работает диммер. При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора.

Тогда лампа не загорится совсем. В любом случае, диммер будет бесполезен.

Люминесцентные лампы

Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой.

Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой: Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой.

Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно.

Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление. Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток.

Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.

Лампы с электронным ПРА

Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА). Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип.

Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу. В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.
источник картинки: aliexpress.

com Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон. Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.

Светодиодные лампы

Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.
источник картинки: bigclive.com

Источник: https://habr.com/ru/post/372749/

Смертельный ток для человека

По мнению опытных электриков, электроток опасен тем, что он невидим. Электричество, воздействующее на человеческий организм, вызывает тяжелые последствия, вплоть до смертельного исхода. Установили, что ток 50-100 мА опасен для жизни, а более 100 мА – смертелен. Речь идет о токах, проходящих через человека. В этой статье разберемся, почему переменный ток опаснее постоянного.

Исход поражения электротоком

Ситуации бывают различными, поэтому исход от удара током наблюдается разнообразный. При получении сильного электрического удара вызываются проблемы с кровообращением и дыханием. Тяжелые случаи характеризуются сердечной фибрилляцией: мышцы сердца хаотично подергиваются. Фактически сердце перестает нормально функционировать, поэтому в такой ситуации требуется скорейшее медицинское вмешательство.

Зачастую поражение электротоком имеет силу до 1000 В. Ожоги возникают, если сила превышает 1 А. Наиболее частая причина – несоблюдение человеком правил техники безопасности.

Элемент, по которому проходит электричество, находится вблизи человеческого тела, в результате чего возникает искровой разряд, приводящий к ожогам различной степени. При случайном получении искрового разряда ток, контактирующий с телом, нагревает ткань до 60 градусов Цельсия.

Начинает сворачиваться белок, а впоследствии на пораженном участке появляется ожог. Электрические ожоги опасны, так как вылечить их довольно проблематично.

Удар электротоком может иметь различные последствия

Опасные величины тока

Поражение электричеством бывает разным, на что влияет три фактора:

  • Какова частота: постоянный или переменный;
  • Сила;
  • В каком направлении движется, проходя через тело.

Нормативы потребления электроэнергии на человека без счетчика

Электроток делят также, в зависимости от того, как он влияет на человеческое здоровье:

  • Ощутимый – только раздражает кожу. Безопасная величина – не более 0.6 милиампер;
  • Неотпускающий – переменный с периодическими импульсами, из-за которых человек «прилипает» к источнику электричества. Случается, если сила тока превышает 0.025 ампер;
  • Фибрилляционный – из-за него вызывается фибрилляция внутренних органов, в первую очередь, сердца. Если сила электричества превышает 0.1 ампер, орган может остановиться.

Необходимо знать! Человеческий организм сопротивляется электричеству. Сила удара зависит от многих факторов: состояние здоровья потерпевшего во время удара, психическое состояние и даже качество обуви. Отталкиваясь от величин электрического сопротивления, выводят показания напряжения тока, опасные для человека.

Отталкиваясь от техники безопасности, опасные следующие показатели напряжения:

  • 65 вольт – жилые помещения и общественные здания, которые отапливаются и имеют внутреннюю влажность до 60%;
  • 36 вольт – помещения с повышенным уровнем влажности (до 75%). Это подвальные помещения, кухни и так далее;
  • 12 вольт – очень влажные пространства (100%): бассейн, баня, прачечная, котельная и так далее.

Обратите внимание! Частота электротока также играет роль. Опасным для человека считается значение от 50 до 60 герц.

Опасность переменного и постоянного тока

Дифференциальный автомат надежная защита электрических цепей и человека

Известно, что электроток бывает постоянный и переменный, но не каждый житель понимает между ними разницу и знает, какой оказывает более серьезное воздействие на организм. На вопрос, какой ток опаснее, специалисты отвечают – переменный.

Объясняется это тем, что постоянный электроток должен быть в три раза мощнее переменного, чтобы быть смертельно опасным для человеческого здоровья. Переменный – более быстрый и сильный, что больше сказывается на нервных окончаниях и мышечной ткани (в первую очередь, сердечной).

Электрическое сопротивление людей покрывает мощность постоянного тока (силой не выше 50 милиампер). В случае с переменным электротоком граница опускается до 10 милиампер. Если электрическое напряжение достигает 500 вольт, то оба вида тока оказывают одинаковый вред.

Если показатель повышается, более опасный в такой ситуации постоянный электроток.

Биологическое действие электричества напрямую зависит от того, с какой интенсивностью организм ему подвергается, а это важный фактор, из-за которого возникает фибрилляция желудочков сердца. Смертельный электрический ток для человека – длительное прикосновение к электропроводникам с силой 0.25-80 мА. При этом вызываются судороги дыхательных мышц и как следствие – острая асфиксия.

Электричество распространяется по организму лишь в том случае, если есть точка входа и выхода тока. То есть одновременно нужно прикоснуться к двум электродам. Речь идет о двуполюсном включении или соприкосновении с одним электродом. Если часть тела человека заземлена, то такое включение называют однополюсным.

Бывает и частичное включение, при котором изолированный от земли человек прикасается к разноименным полюсам. В таком случае он пройдет через включенный отрезок руки, а это, как правило, не опасный ток.

Если имеет место высокое напряжение, то электротоком может поразить, даже если нет прямого контакта с проводником: то есть на расстоянии, посредством дугового контакта, который возникает, если к нему приблизиться. Ионизация воздуха является причиной того, что человек контактирует с установками или проводами, по которым проходит электроэнергия.

Ток электричества опасный для человека особенно в сырую погоду, так как электропроводимость воздуха повышена. В случае со сверхвысоким напряжением величина электрической дуги достигает длины в 35 см.

Электрический ток опасен для человеческого организма, поэтому нужно соблюдать элементарные требования техники безопасности. Сам он бывает постоянным и переменным, каждый по-своему воздействует на человека. Безопасная работа с электроустановками – соблюдение всех правил и использование средств защиты.

Источник: https://amperof.ru/bezopasnost/smertelnyj-tok-dlya-cheloveka.html

Какой ток опаснее — постоянный или переменный? Результаты исследований

  • 14 Ноября, 2019
  • Электричество
  • Юлия Толок

Вопрос, какой ток опаснее — постоянный или переменный, стоял достаточно остро на протяжении десятилетий.

В знаменитой «войне токов» между Николой Теслой и Томасом Эдисоном одним из основных аргументов последнего была смертельная опасность переменного.

Это подтверждается на практике – низкочастотный переменный ток, который можно наблюдать в бытовой розетке, действительно может нанести значительный вред здоровью даже при сравнительно низком напряжении, около 50 Вольт.

При тех же значениях постоянного тока удар может пройти совершенно незамеченным. Но переменный ток проще транспортировать, менять его напряжение, при этом наблюдаются меньшие энергетические потери. Кроме того, он оптимально подходит для питания электродвигателей. Именно поэтому он и используется в бытовых сетях, хотя остается смертельно опасным.

В чем разница между постоянным током и переменным

Прежде чем понять, какой ток опаснее — постоянный или переменный, следует разобраться, в чем же между ними разница. Основное отличие в том, что в случае с постоянным током движение электронов происходит направленно, тогда как при переменном токе они движутся хаотично.

В бытовых условиях переменный ток чаще всего используется при питании электролампочек, он протекает в розетках и на распределительном щитке. Постоянный ток можно встретить в светодиодной подсветке. В электроприборах переменный ток обычно преобразуют в постоянный, особенно если дело касается цифровой электроники, так как с помощью него легче передавать сигналы внутри самой техники.

Опасные значения для человека

Однозначно ответить на вопрос, какой ток опаснее — постоянный или переменный, нельзя. Это зависит от многих параметров, например напряжения, частоты и тока в цепи. Следует рассмотреть возможные диапазоны этих величин:

  • Частота. В бытовой электросети она составляет 50 Гц. При значениях 10-500 Гц переменный ток приблизительно одинаково опасен, но при значениях от 500 до 1000 Гц эта опасность значительно возрастает. А вот ток с частотой выше 1000 Гц уже значительно безопаснее. Следует отметить, что постоянный ток будет намного менее опасным (в 3-4 раза), если частота переменного составляет 50 Гц или около того.
  • Напряжение. Какое напряжение — постоянное или переменное — опаснее, можно понять, только оценив его величину. Если напряжение в сети менее 400 Вольт, то можно говорить об однозначной более высокой опасности переменного тока. От 400 до 600 Вольт обе разновидности представляют приблизительно одинаковую опасность. При напряжении, значительно превышающем 500 Вольт, опасность постоянного тока растет.
  • Сила тока. Для переменного тока безопасным считается, если в сети протекает ток менее 10 мА, для постоянного тока эта величина примерно в 5 раз выше.

Отдельные случаи

С уверенностью сказать, что постоянный ток безопасен, можно только при условии, если он имеет низкое напряжение. Как пример, можно взять всем известную медицинскую процедуру – электрофорез.

Она применяется для воздействия на кожу или слизистые оболочки органов человека для усиления всасывания лекарств. При электрофорезе используется напряжение 60 Вольт, а ток в сети достигает 50 мА, при этом человек чувствует только легкое покалывание.

Если же при этой процедуре использовать переменный ток, то он может повлиять на здоровье человека и вызвать сбои в его сердечном ритме.

Если говорить о высоком напряжении, то ответ на вопрос о том, какой электрический ток опаснее, будет уже не так однозначен. Известны случаи, когда к серьезному нарушению сердечного ритма приводил разряд конденсатора при напряжении на электродах около 500 Вольт. Поэтому опасность постоянного тока не меньшая, если он имеет высокое напряжение. А вот переменный ток с высоким напряжением может быть безопасным, если он имеет высокую частоту.

В свое время в целях демонстрации Тесла пропускал через себя переменный ток с напряжением 100 кВ и остался невредим. Это произошло благодаря тому, что частота такого тока составляла более 100 кГц. Считается, что переменный ток при частоте более 20 кГц является безопасным, даже при условии высокого напряжения.

Опасность поражения для человека

Основная опасность заключается в том, что при поражении током повреждаются не только участки воздействия, но и органы, которые находятся у него на пути. Воздействие вызывает некоторые потенциально небезопасные рефлекторные реакции (такие, как сокращения мышечных тканей), приводит к поражению нервной системы и многим другим необратимым последствиям.

Пути прохождения тока

Вне зависимости от того, какой ток опаснее — постоянный или переменный, степень повреждений довольно сильно будет зависеть от пути его прохождения. Наиболее уязвимыми считаются сердце, легкие, спинной или головной мозг. Но и при поражении других органов могут наступить серьезные последствия. Есть разные пути прохождения. Основными из них считаются:

  • Рука — рука. Примерно 40 % всех случаев. Около 83 % людей при прохождении тока из бытовой сети по этому пути теряют сознание.
  • Правая рука — ноги. Пятая часть всех случаев, нарушение сознания у 87 %.
  • Левая рука — ноги. 17 % всех случаев. Потеря сознания в 80 %.
  • Голова — ноги. Всего 5 % всех случаев. Очень опасный путь, в 88 % случаев человеку, скорее всего, понадобятся реанимационные мероприятия.
  • Голова — руки. 4 % случаев, в 90 % — потеря сознания.

Потенциальные опасности

Прежде чем завершить обсуждение того, какой ток более опасен — переменный или постоянный, нужно разобраться, как происходит удар током. Чтобы человек подвергся поражению электрическим током, он должен каким-то образом стать одним из звеньев цепи. Случиться это может несколькими способами.

Наиболее распространенный — касание предметов, которые находятся под напряжением. Это могут быть оголенные провода, неисправные розетки или приборы, металлические приборы с нарушением изоляции. Также опасность представляет одновременное касание заземленных предметов, например отопительных труб.

Причем непосредственное воздействие — необязательное условие поражения. Проблемы могут возникнуть и при близком приближении к источнику опасности, особенно если влажность в помещении достаточно высокая. В этом случае может возникнуть электрическая дуга.

Еще одну потенциальную опасность представляют собой обрывы линии электропередачи, лежащие на земле. Зона потенциального воздействия располагается в радиусе 10 метров от такого провода. Не следует подходить к таким проводам. Между двумя ногами может возникнуть достаточный потенциал для поражения. Причем чем ближе человек находится к источнику напряжения, тем опаснее. Если случайно удалось попасть в такую зону, то для собственной безопасности следует передвигаться гуськом или на одной ноге.

Источник: https://samvsestroy.ru/478123a-kakoy-tok-opasnee---postoyannyiy-ili-peremennyiy-rezultatyi-issledovaniy

Понравилась статья? Поделиться с друзьями:
Электро Дело
Сколько ватт в холодильнике

Закрыть