Что представляет собой вольт амперная характеристика

Полевые транзисторы — Вольт-амперная характеристика МДП-транзистора в области сильной и слабой инверсии

Что представляет собой вольт амперная характеристика

После того, как из решения уравнения Пуассона получена зависимость заряда свободных носителей Qn(ψs, φc) как функция поверхностного потенциала и квазиуровня Ферми, а из уравнения непрерывности — связь между поверхностным потенциалом и квазиуровнем Ферми, можно вернуться к выражению для тока канала (6.43) и получить в явном виде вольт-амперную характеристику МДП-транзистора.

В области сильной инверсии из (6.43), (6.67) и (6.69) следует, что

   (6.72)

После интегрирования и учета того, что для области сильной инверсии в уравнении непрерывности (6.65) в правой части доминирует последний член, получаем:

   (6.73)

Отметим, что для области сильной инверсии, т.е. в приближении плавного канала, ВАХ МДП-транзистора в виде (6.73) совпадает с ВАХ, полученной нами ранее в простейшем случае в виде (6.10).

В области слабой инверсии из (6.44), (6.57) и (6.67) следует, что

   (6.74)

После интегрирования (6.74) и учета того, что уравнение непрерывности (6.58) дает для этого случая

   (6.75)

получаем:

   (6.76)

Соотношение (6.76) представляет собой вольт-амперную характеристику МДП-транзистора для области слабой инверсии. На рисунках 6.11, 6.12 приведены проходные и переходные характеристики транзистора в этой области. Обращает на себя внимание тот факт, что в области слабой инверсии зависимость тока стока IDS от напряжения на затворе VGS — экспоненциальная функция, причем экспоненциальный закон сохраняется на много порядков.

Ток стока не зависит практически от напряжения на стоке, выходя на насыщение при напряжениях исток-сток VDS порядка долей вольта. Напомним, что при слабом захвате (Nss → 0) ток канала имеет диффузионный характер. Для случая, когда МДП-транзистор работает при напряжениях на затворе VGS больше порогового напряжения VT и напряжениях на стоке VDS больше напряжения отсечки VDS*, т.е.

в области насыщения тока стока, ситуация усложняется. Точка отсечки соответствует переходу от области сильной к области слабой инверсии. Слева к истоку от точки отсечки канал находится в области сильной инверсии, ток в канале дрейфовый, заряд свободных электронов постоянен вдоль канала.

Справа к стоку от точки отсечки область канала находится в слабой инверсии, ток в канале диффузионный, заряд свободных электронов линейно изменяется вдоль инверсионного канала. На рисунке 6.10 видно, что область перехода от сильной к слабой инверсии на зависимости ψs = φc выражается перегибом, что соответствует изменению соотношения между дрейфовой и диффузионными составляющими тока канала.

Таким образом, в области отсечки ток в канале вблизи истока в основном дрейфовый, при приближении к стоку в области отсечки резко возрастет диффузионная составляющая, которая при нулевом захвате равна у стока полному току канала.

Предыдущий анализ позволяет получить распределение вдоль инверсионного канала квазиуровня Ферми φc, его градиента dφc/dy и заряда свободных носителей Qn(у). За основу возьмем выражение для полного тока в канале в виде (6.44). Будем считать, что подвижность μn не меняется вдоль инверсионного канала. Из условия непрерывности тока следует, что произведение

   (6.77)

должно оставаться величиной, постоянной вдоль инверсионного канала. Заметим, что при больших величинах напряжения исток-сток VDS допущение о постоянстве подвижности μn = const может не выполняться. Физически зависимость подвижности μn от положения вдоль канала может быть обусловлена ее зависимостью от концентрации свободных носителей. Поэтому в дальнейшем будем считать напряжение исток-сток VDS малым, когда μn = const.

Рис. 6.12. Зависимость тока стока IDS от напряжения на стоке VDS в области слабой инверсии при различных предпороговых значениях напряжения на затворе VG. VT = 2,95 В

Для области слабой и сильной инверсий соотношения (6.57), (6.67), (6.58), (6.69) дают соответственно:

   (6.78)    (6.79)

где Qn0 — заряд электронов в канале при φc = 0 (или вблизи истока, или при равновесных условиях).

Проведем интегрирование уравнения (6.77) с учетом (6.78) и (6.79) и с граничными условиями:

Предполагается, что длина канала L много больше области изменения легирующей концентрации вблизи стока и истока.

Получаем выражения для распределения квазиуровня Ферми вдоль канала в области слабой инверсии:

   (6.80)

Для градиента квазиуровня получаем после дифференцирования (6.80):

   (6.81)

Поскольку вдоль инверсионного канала произведение (6.77) остается постоянным, то, следовательно, заряд свободных электронов Qn линейно спадает вдоль канала, как вытекает из (6.81):

   (6.82)

Ha рисунке 6.13а, б приведены величины квазиуровня и его градиента ∂φc/∂y как функция координаты вдоль канала у в области слабой инверсии.

Источник: http://solidstate.karelia.ru/book/chapter6/part11.shtml

Вольт-амперная характеристика (ВАХ)

Что представляет собой вольт амперная характеристика

ВАХ – это вольт-амперная характеристика, а если точнее, зависимость тока от напряжения в каком-либо радиоэлементе. Это может быть резистор, диод, транзистор и другие радиоэлементы. Так как транзистор имеет более двух выводов, то он имеет множество ВАХ.

Думаю, не все, кто читает эту статью, хорошо учились в школе. Поэтому, давайте разберемся, что представляет из себя зависимость одной величины от другой. Как вы помните из школы, мы строили графики зависимости игрек (У) от икс (Х). Та переменная, которая зависит от другой переменной, мы откладывали по вертикали, а та, которая независима – по горизонтали. В результате у нас получалась система отображения зависимости “У” от “Х”:

Так вот, мои дорогие читатели,  в электронике, чтобы описать зависимость тока от напряжения, вместо “У”  у нас будет сила тока, а вместо Х – напряжение.  И система отображения у нас примет вот такой вид:

Именно в такой системе координат мы будет чертить вольт-амперную характеристику. И начнем с самого распространенного радиоэлемента – резистора.

Вах резистора

Для того, чтобы начертить этот график, нам потребуется пропускать через резистор напряжение и смотреть соответствующее значение силы тока тока. С помощью крутилки я добавляю напряжение и записываю значения силы тока для каждого значения напряжения. Для этого берем блок питания,  резистор и начинаем  делать замеры:

Вот у нас появилась первая точка на графике. U=0,I=0.

Вторая точка: U=2.6, I=0.01

Третья точка: U=4.4, I=0.02

Четвертая точка: U=6.2, I=0.03

Пятая точка: U=7.9, I=0.04

Шестая точка: U=9.6, I=0.05

Седьмая точка: U=11.3, I=0.06

Восьмая точка: U=13, I=0.07

Девятая точка: U=14.7, I=0.08

Давайте построим график по этим точкам:

Да у нас получилась почти прямая линия! То, что она чуть кривая, связана с погрешностью измерений и  погрешностью самого прибора. Следовательно, так как у  нас получилась прямая линия, то значит такие элементы, как резисторы называются элементами с линейной  ВАХ.

Вах диода

Как вы знаете, диод пропускает электрический ток только в одном направлении. Это свойство диода мы используем в диодных мостах, а также для проверки диода мультиметром.      Давайте  построим ВАХ для диода.  Берем блок питания, цепляем его к диоду (плюс на анод, минус на катод) и начинаем точно также делать замеры.

Первая точка: U=0,I=0.

Вторая точка: U=0.4, I=0.

Третья точка: U=0.6, I=0.01

Четвертая точка: U=0.7, I=0.03

Пятая точка: U=0.8,I=0.06

Шестая точка: U=0.9, I=0.13

Седьмая точка: U=1, I=0.37

 Строим график по полученным значениям:

Ничего себе загибулина :-). Вот это и есть вольт-амперная характеристика диода. На графике мы не видим прямую линию, поэтому такая вольт-амперная характеристика называется НЕлинейной. Для кремниевых диодов она начинается со значения 0,5-0,7 Вольт. Для германиевых диодов ВАХ начинается со значения 0,3-0,4 Вольт.

Вах стабилитрона

Стабилитроны  работают в режиме лавинного пробоя. Выглядят они  также, как и диоды.

ЭТО ИНТЕРЕСНО:  Для чего нужен анод в нагревателе

Мы подключаем стабилитрон как диод в обратном направлении: на анод минус, а на катод – плюс. В результате, напряжение на стабилитроне остается  почти таким же, а сила тока может меняться в зависимости от  подключаемой нагрузки на стабилитроне. Как говорят электронщики, мы используем  в стабилитроне обратную ветвь ВАХ.

Источник: https://www.ruselectronic.com/vakh/

Вольт-амперная характеристика

Что представляет собой вольт амперная характеристика

Вольт-амперная характеристика – это зависимость тока в конкретной электрической цепи-многополюснике от напряжения в ней. Она показывает зависимость падения напряжения от протекающего тока.

Термин «двухполюсник», или «многополюсник» применяется к таким цепям, которые имеют минимум две точки соединения с другими электрическими цепями. Это может быть электрическая (хотя не обязательно) система с двумя и более входами и выходами (контактами).

С помощью данной характеристики можно описывать поведение многополюсника с протекающим через него постоянным током. Для этого используют функцию ВАХ и её график. Если сопротивление определённого участка цепи не зависит от электрического тока, то ВАХ на графике представляется в виде прямой линии, проходящей через начало координат.

Вольт-амперная характеристика для нелинейных элементов

Чаще всего данная характеристика применяется для описания различных нелинейных элементов. Только они представляют интерес для изучения, в отличие от линейных «собратьев» с графиком в виде прямой линии, подчиняющемуся закону Ома.

В список разнообразных элементов с нелинейной вольт-амперной характеристикой входят:

  • Диод;
  • Стабилитрон;
  • Тиристор и т.д.

В данном случае описаны наиболее простые из них. Но фактически сюда можно отнести большое количество радиоэлементов, от самых элементарных, до достаточно сложных. Каждый из них обладает какими-то своими особенностями работы.

В случае с трёхполюсными элементами график получается довольно сложным. Он отличается как раз наличием третьего контакта для подключения к другой электрической цепи.

К таким элементам можно отнести:

  • Триод (ламповый триод);
  • Тиристор;
  • Транзистор и т.д.

Они используются в разнообразных устройствах и выполняют определённую задачу, обеспечивая работоспособность электрической цепи и всего прибора.

Построение графика и его разновидности

Каким образом происходит построение графика ВАХ?

Для этого берётся график с осями координат «Сила тока» и «Напряжение». После этого необходимо снимать показания с прибора и отмечать их на системе координат.

Чтобы построить график для любого элемента, например, резистора, необходимо пропускать через него напряжение и следить за значениями силы тока. Прибавляя и убавляя напряжения, можно наблюдать за всеми изменениями. На основе этих замеров выстраивается график и определяются характеристики устройства.

Резистор является простым элементом, поэтому график для него будет в виде прямой.

Диод обладает иными свойствами: он пропускает ток только в одном направлении. Для него график вольт-амперной характеристики будет более сложным.

При проведении измерений учитываются конкретные параметры того или иного элемента. В первую очередь это максимально напряжение и максимальная частота.

Кроме того, специалисты отмечают, что в реальной ситуациях работа происходит чаще всего на границах возможностей, поэтому график чаще всего отличается от так называемой «идеальной» или лабораторной ВАХ. В дело вмешиваются инерционные свойства элементов и многое другое.

Использование вольт-амперной хараткеристики на практике

Практически всегда при работе с различными приборами и отдельными радиоэлементами учитывается ВАХ. На основе этого происходит построение и соединение сложных электрических цепей. Проще говоря, данная характеристика позволяет оценить возможности того или иного элемента и отдельного контакта. А это в свою очередь гарантирует исправное функционирование в течение длительного отрезка времени.

Источник: http://solo-project.com/articles/10/volt-ampernaya-harakteristika.html

0ПС1: особенности проверки и применения

  • 22 июня 2012 г. в 17:40
  • 176

«Варисторные ограничители импульсных перенапряжений 0ПС1 давно и с успехом используются для построения защит и предотвращения повреждений сетей электропитания и электроустановок от опасных перенапряжений. Прошу рассказать подробнее, каким образом работает эта защита и что представляет собой варистор?»

Олег КАЛИКА, г. Мариуполь, Украина

0ПС1 относится к устройствам защиты от импульсных перенапряжений (УЗИП) и применяется для защиты электросети от кратковременных, чрезвычайно высоких для данной электросети напряжений, возникающих между фазами либо между фазой и землей. Причины возникновения импульсных перенапряжений могут находиться как внутри электросети, так и вне нее.

Внутренними источниками импульсных перенапряжения являются, как правило, коммутации реактивных нагрузок, электростатический разряд, пробой изоляции и т.п. Особенную опасность при этом представляют импульсы, возникающие при отключении индуктивной нагрузки, так как при коммутации вся запасенная энергия «выбрасывается» в сеть в виде высоковольтного импульса.

Электростатический же разряд опасен главным образом тем, что при работе технологического оборудования он накапливается, и при достижении критической энергии может разрядиться в непредсказуемом месте, чем вызовет импульс перенапряжения.

Существует несколько типов устройств защиты от импульсных перенапряжений: разделительные трансформаторы, разрядники, защитные диоды.

Если говорить о самом распространенном УЗИП для бытового применения в распределительных щитах, вводных распределительных устройствах жилых и промышленных помещений, то это, несомненно, устройства на базе варисторов.

Основным преимуществом такого типа УЗИП являются небольшие габаритные размеры, отсутствие выброса горячего газа при срабатывании защиты, а также простота применения.

Что такое варистор?

Варистор — это полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Одна из особенностей варис-тора — это нелинейная симметричная вольт-амперная характеристика (ВАХ) (см. рис. 1).

То есть при приложении к варистору небольшого напряжения, ток через варистор не протекает, но если постепенно повышать напряжение, то наступит момент, при котором ток через варистор начинает проходить. Именно эту особенность варистора и используют для защиты от импульсных перенапряжений.

Для изготовления варисторов используются полупроводниковые материалы с высокой стабильностью при повышенных температруах, так как при работе варистора вся мощность выделяется в малом объеме.

Существуют несколько типов варисторов, однако самыми распространенными являются два типа: варисторы, изготавливаемые с применением карбида кремния SiC и варисторы, изготавливаемые с применением оксида цинка ZnO.

Варисторы, изготовленные на основе оксида цинка, обладают вольт-амперной характеристикой с высокой нелинейностью, однако значительно более сложны в изготовлении по сравнению с варисторами на основе карбида кремния.

Принцип работы варистора

Чтобы лучше понять, как работает варистор, рассмотрим технологию его изготовления на примере карбид-кремниевых варисторов (так как, напомню, технология изготовления варисторов с оксидом цинка существенно сложнее).

Для изготовления карбид-кремниевых варисторов используют полупроводниковый карбид кремния SiC с нелинейной вольт-амперной характеристикой. Карбид кремния размалывают в порошок до размеров кристаллов в несколько десятков микрометров, и этот порошок используют в качестве основы варистора.

Сам по себе порошок уже обладает нелинейной ВАХ, однако эта нелинейность крайне нестабильна, и сильно зависит от степени сжатия порошка, размера частиц порошка, меняется при тряске и т. п. Для стабилизации параметров порошок скрепляют связующим веществом — глиной, стеклом, смолой.

Порошкообразный карбид кремния и связующее вещество запрессовывают в форму и спекают при высоких температурах. Поверхность прессованного образца металлизируют и припаивают к ней выводы. Внешне варисторы оформляются в виде стержней или дисков.

Нелинейность вольт-амперной характеристики варистора связана с процессами, происходящими при протекании тока в местах контактов поверхностей кристаллов карбида кремния. Поверхности кристаллов имеют разнообразную форму и расположены хаотично.

При небольшом приложенном напряжении ток протекает только через участки кристаллов которые, соприкасаются друг с другом.

При повышении напряжения пропорционально увеличивается ток, протекающий через эти соприкасающиеся участки, и начинает протекать ток между участками кристаллов с малыми зазорами между поверхностями, при этом участки пропускающие ток начинают разогреваться. Новые проводящие цепочки кристаллов включаются параллельно, их становится все больше.

Чем выше напряжение, тем больший ток проходит через кристаллы, что влечет за собой еще больший разогрев в местах их соприкосновения. Повышение температуры полупроводникового карбида кремния приводит к уменьшению сопротивления, то есть при определенном приложенном напряжении сопротивление варистора уменьшится настолько, что через него начет проходить ток.

Рис. 1. Нелинейная вольт-амперная характеристика варистора

ЭТО ИНТЕРЕСНО:  Нужно ли платить за подключение электроэнергии

Таким образом, при построении защиты от импульсных перенапряжений необходимо выбирать такие варисторы, которые не будут пропускать через себя ток при номинальном напряжении электроустановки. А при повышении напряжения будут «открываться», пропуская опасный импульс напряжения через себя, тем самым защищая установку.

При длительной работе варистора в составе ограничителя импульсных перенапряжений неизбежна деградация рабочих характеристик и изменения вольт-амперной характеристики.

Причинами таких изменений являются длительное приложение номинального напряжения и импульсные воздействия.

При режиме длительного приложения номинального напряжения изменение характеристик обусловлено длительной работой варистора на номинальном напряжении и номинальной частоте. За изменения характеристик варистора при таком режиме работы отвечает связующее вещество, которое связывает кристаллы карбида кремния.

Импульсные воздействия на варистор. В процессе эксплуатации ограничитель и входящий в состав варистор, неоднократно подвергаются грозовым и коммутационным воздействиям, что, несомненно, приводит к ухудшению вольт-амперной характеристики. При этом импульс напряжения не обязательно должен быть выше порога срабатывания варистора, практика показывает, что основное изменение ВАХ происходит на участках малых токов.

Испытание классификационного напряжения

Измерение классификационного напряжения является надежным способом отслеживания изменения вольт-амперной характеристики варистора. Классификационное напряжение 11к -это напряжение на выводах, при котором через варистор начинает протекает заданный ток. Как правило, для варисторов указывается классификационное напряжение, при котором через него проходит ток 1 мА.

То есть то напряжение, при котором варистор «открывается» и пропускает через себя опасный импульс напряжения, к примеру, для ВАХ варистора, изображенной на рис. 1, классификационное напряжение будет составлять 60 В.

В измерении классификационного напряжения нет ничего сложного. К ограничителю прикладывают напряжение и постепенно поднимают его до значения, при котором через варистор начнет протекать ток 1 мА. Таким образом, измерение классификационного напряжения является контролем, не разрушающим работоспособности варистора. И проводить его можно как на новых варисторах, так и на варисторах в процессе эксплуатации.

Специалистами Технического департамента Группы компаний IEK были проведены статистические измерения классификационного напряжения для ограничителей 0ПС1торовой марки IEK®. Выборка составляла по 100 штук каждого типоисполнения 0ПС1: 0ПС1-В, 0ПС1-С, OnCl-D.

Измерение классификационного напряжения производилось двумя способами. Во-первых, на испытательном стенде для измерения классификационного напряжения 0ПС1 завода-изготовителя. На этом стенде завод проводит стопроцентный контроль работоспособности всех изготавливаемых ограничителей перенапряжения. И, во-вторых, с помощью прибора Е6-24 производства НПФ «Радио-Сервис».

Прибор представляет собой переносной мегаомметр с функцией измерения классификационного напряжения. Прибор производит измерение классификационного напряжения варисторов в автоматическом режиме, при подаче и плавном повышении постоянного напряжения и постоянном контроле тока, протекающего через варистор.

Таким образом, при помощи Е6-24 можно проводить проверку работоспособности 0ПС1 с минимальными трудозатратами.

Рис. 2. Плотность вероятности классификационного напряжения

По результатам проведенных измерений классификационного напряжения были построены графики плотности вероятности значения классификационного напряжения для каждого типа 0ПС1 (рис. 2).

Различие в измеренных значениях классификационного напряжения двух приборов не превышает 1 процента и обусловливается погрешностями измерительного оборудования, входящего в состав приборов.

Усредняя полученные данные и упрощая проведение проверки работоспособности 0ПС1 для потребителя, можно принять следующие значения классификационного напряжения: 0ПС1-В — 710 В, 0ПС1-С — 670 В и 0nCl-D — 420 В.

Александр ИЛИНИЦКИЙ
Вестник ИЭК апрель – июнь 2012

Источник: https://www.elec.ru/articles/0ps1-osobennosti-proverki-i-primeneniya/

Характеристика намагничивания трансформатора тока, снятие вольт-амперной характеристики ВАХ

Одной из важнейших характеристик трансформатора тока является его характеристики намагничивания. Это зависимость напряжения на выводах вторичной обмотки от тока, протекающего по ней. Поэтому характеристику еще называют вольт-амперной (ВАХ).

При этом выводы первичной обмотки остаются разомкнутыми, а напряжение на вторичную обмотку подается от независимого источника с регулируемым выходом.

Характеристики эти снимают как при приемо-сдаточных испытаниях, так и в процессе эксплуатации.

Цель проверки: выявить возможные витковые замыкания во вторичной обмотке проверяемого трансформатора. Обычное измерение сопротивления этот дефект выявить не может, так как замыкание нескольких витков между собой изменяют общее сопротивление настолько незначительно, что это соизмеримо с погрешностью проведенных измерений.

Проверка производится для всех трансформаторов тока без исключения: и на напряжение до 1000 В, и высоковольтных. При наличии у трансформатора нескольких обмоток, использующихся для разных целей (релейной защиты, измерения, учета электроэнергии) ВАХ снимается для каждой из них.

Оборудование и схема для проверки вольт-амперной характеристики трансформаторов тока

В качестве регулируемого источника напряжения для снятия ВАХ используется лабораторный автотрансформатор (ЛАТР), или устройства, содержащие его в своем составе. Напряжение должно быть абсолютно синусоидальным, поэтому тиристорные источники питания для испытаний непригодны.

Для фиксации величин токов и напряжений потребуются лабораторный амперметр и вольтметр.

При использовании встроенных в источник питания приборов важно учесть, что амперметр должен измерять среднеквадратичное значение, а вольтметр – средневыпрямленное.

Важен и порядок включения приборов в измерительную цепь. Амперметр должен измерять только ток непосредственно в проверяемой обмотке. Вольтметр подключается до него, ток через обмотку прибора не должен учитываться, чтобы не вносить в измерения дополнительную погрешность.

Самым точным вариантом измерений является подключение измерительного комплекса непосредственно к выводам трансформатора тока.

Но, если это невозможно, допускается вариант с использованием специальных токовых клемм на панелях ячейки с проверяемым трансформатором тока.

Измерение с клеммников, находящихся на значительном удалении и соединенных с объектом измерения контрольными кабелями, недопустимо. В этом случае к сопротивлению обмотки добавляется сопротивление жил кабельной линии, соизмеримое с ней по величине.

Проверить трансформатор тока на напряжение до 1000 В с помощью одного только ЛАТРа не представляется возможным.

Слишком при малых напряжениях у них начинается горизонтальный участок характеристики, поэтому насыщение наступит уже при незначительном повороте рукоятки ЛАТРа.

Поэтому между источником регулируемого напряжения и проверяемой обмоткой можно подключить разделительный трансформатор 220/36 В или любой другой. При этом предел регулирования расширяется.

В целях безопасности в цепи подключения ЛАТРа к сети питающего напряжения должен быть защитный аппарат – автоматический выключатель. А также предусмотрена возможность создания видимого разрыва при переключениях между трансформаторами или их обмотками. Достаточно вилки, которая втыкается в розетку удлинителя, положение которой видно с границ рабочего места.

Интересное видео о снятии ВАХ с ТТ с помощью ретома-21 смотрите ниже:

Порядок снятия вольт-амперной характеристики (ВАХ)

Перед подачей напряжения на испытательную установку рукоятка управления ЛАТРом должна находиться в крайнем положении, соответствующем нулевой величине напряжения на выходе. Затем, после включения питания, нужно размагнитить железо трансформатора.

Для этого рукояткой управления ЛАТРом ток через обмотку несколько раз плавно увеличивают до номинальной величины и снова опускают до нуля.

 После этого начинается процесс снятия ВАХ.

Оптимальным является работа в бригаде из двух человек. Один поднимает напряжение и фиксирует ток амперметра в нормируемых точках. Второй при этом снимает показания с вольтметра и записывает в заранее заготовленную таблицу.

Ток во вторичной обмотке нужно поднимать очень плавно.

Когда начинается участок насыщения, малому приращению напряжения от источника будет соответствовать резкое увеличение тока. На этом этапе нормируемые точки для измерения легко проскочить. Возвращать ручку ЛАТРа назад с целью снять показания вольтметра поточнее нельзя. Нужно плавно сбросить напряжение до нуля и начать процесс сначала.

Разрешается снимать не всю характеристику полностью, а ограничится для проверки лишь тремя ее точками. Поднимать напряжение на обмотке выше 1800 В не допускается.

По достижении конечной точки для измерений напряжение ЛАТРа плавно уменьшают до нуля, после чего проверочную установку отключают от сети.

Ещё одно интересносе видео о Ретоме 21 и снятии ВАХ с ТТ от профессионального энергетика:

Анализ полученной характеристики ВАХ

Полученные данные сравниваются с характеристикой, снятой для данного трансформатора тока в заводских условиях.

ЭТО ИНТЕРЕСНО:  Что такое квар в электрике

Допускается сравнение с ранее снятой характеристикой данной обмотки этого же трансформатора.

При отсутствии каких-либо данных для сравнения анализ производится с использованием типовой характеристики для устройства того же типа, имеющего тот же коэффициент трансформации, класс точности и кратность насыщения.

Все перечисленные характеристики оказывают влияние на полученную характеристику.

Более того, у одинаковых трансформаторов тока не бывает абсолютно идентичных ВАХ.

 Влияние на это оказывает не только сопротивление вторичной обмотки, но и качество материала, из которого выполнен сердечник трансформатора.

Отличаться полученная характеристика от вышеперечисленных не должна более, чем на 10%.

Если полученный график расположен ниже образцового на большую величину, в подопытном образце присутствует витковое замыкание. Его нужно заменить исправным, или отказаться от установки, вернув на предприятие-изготовитель.

Но перед этим еще раз проверьте правильность проведенных измерений: витковые замыкания в трансформаторах тока не такое уж и частое явление.

Источник: https://pue8.ru/relejnaya-zashchita/933-kharakteristika-namagnichivaniya-transformatora-toka-snyatie-volt-ampernoj-kharakteristiki-vakh.html

Характеристики ВАХ

Для проверки качества приборов и их свойств проводятся испытания: зарядные устройства, трансформаторы и электронные элементы подвергаются тщательному анализу, проверяется соответствие их параметров заявленным величинам при выпуске заводом-изготовителем.

Вольты и Амперы: что это?

Вольты – это единица измерения напряжения, а работа, которая совершается для переноса заряда из одной точки в другую – есть само напряжение.

Для образного понимания представим трубу, по которой течёт вода: силы трения, возникающие при движении – это сопротивление; объём жидкости – сила тока, а давление, которое жидкость оказывает на стенки трубы – это напряжение.

При этом в процессе трения труба нагревается, и выделяется тепловая мощность. Проводник – это та же труба, только вместо воды ток.

Испытания приборов

При строительстве подстанций и модернизации существующих аналогов производится испытание электрооборудования. Важно убедиться, что состояние приборов соответствует заявленному производителем.

Блоки питания, трансформаторы тока, диоды, тиристоры и прочие элементы подвергаются глубокому анализу. Основным показателем исправности является характеристика зависимости напряжения от тока. С помощью устройства РЕТОМ или обычного ЛАТРа на вход устройства подаётся напряжение.

Если цепь замкнута, то в ней появится ток, который начнёт изменяться в зависимости от подаваемой величины.

Разберём на примере. Перед монтажом трансформаторов тока необходимо убедиться в их работоспособности. Для этого на вторичную обмотку трансформатора подаётся напряжение равное 0,25 мВ. В цепи появится ток равный 0,5 А, с увеличением напряжения до 0,4 В ток изменится и станет равным 0,75 А. Таким образом, изменяя разность потенциалов получаем вольт-амперную характеристику.

Какой должна быть вольт-амперная характеристика?

Снятые показания записываются в отдельную таблицу, и согласно им строится график. По оси X откладываются токи, по Y – напряжение. Характеристика трансформатора тока зависит от того, насколько сердечник намагничен, а по мере его насыщения ток растёт медленнее. Другими словами, при увеличении напряжения ток лишь в начале эксперимента будет расти интенсивно. Такая характеристика считается нелинейной.

Линейная вольт-амперная характеристика может быть у нагревательного элемента, к примеру, у лампочки: по мере увеличения напряжения прямо пропорционально ему будет увеличиваться и ток. ТЭНы, различные сопротивления и потенциометры так же относятся к устройствам с линейной ВАХ.

Снимать характеристику необходимо для того, чтобы проверить результаты испытаний, которые проводили специалисты завода-изготовителя. Данные поставляются вместе с оборудованием и отражены в сопутствующей документации. Важно убедиться в соответствии всех величин, так как в процессе транспортировки не исключены повреждения.

Источник: https://www.notestore.ru/page.php?id=19

Вольт-амперная характеристика тиристора

Особенности вольт-амперной характеристики тиристоров (динисторов, тринисторов, симисторов, диаков, триаков) (10+)

Вольт-амперная характеристика тиристора

Оглавление :: ПоискТехника безопасности :: Помощь

Снятие вольт-амперной характеристики тиристора

Для съема вольт-амперной характеристики тиристоров применяются следующие схемы:

(A) — схема для триодного тиристора, (B) — схема для диодного тиристора.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Тиристоры относятся к приборам, управляемым силой тока. Так что снятие вольт-амперной характеристики производится путем задания силы тока анод — катод тиристора с некоторым шагом и измерения напряжения на нем.

В схемах применяются регулируемые источники стабильного тока. Чтобы иметь возможность достоверно получить всю вольт-амперную характеристику, нужно использовать именно источники тока в цепи анода.

Применение вместо них переменных резисторов является распространенной ошибкой и приводит к тому, что данные на участке отрицательного дифференциального сопротивления получаются недостоверными. В результате бытует мнение, что рабочую точку тиристора вообще нельзя выбрать на этом участке. А это не так.

Убедиться в том, что тиристоры прекрасно работают на этом участке можно, собрав две простые схемы: усилитель сигнала и генератор синусоидальных колебаний на динисторе.

Дело в том, что в случае применения переменного резистора в цепи анода на участке отрицательного сопротивления полное сопротивление, подключенное к источнику питания, резко изменяется при изменении силы тока. Что в свою очередь влияет на эту самую силу тока. В результате задать нужное значение силы тока через тиристор на этом участке не удается.

Для триодных тиристоров (тринисторов / симисторов / триаков) кроме задания силы тока анод — катод, нужно задать силу тока управляющего электрода. Здесь тоже можно использовать источник тока, как это показано на схеме (A), но можно подключить вместо него резистор, так как падение напряжения управляющий электрод — катод практически не зависит от силы тока управляющего электрода и силы тока анода.

Динистор

Как мы видим из графика, постепенное увеличение силы тока через динистор от нуля приводит к постепенному росту напряжения на нем, пока сила тока не достигает тока отпирания (Io). При этом напряжение на динисторе становится равным напряжению отпирания (Uo). Участок графика от нулевого значения силы тока до Io отражает закрытое состояние динистора.

Когда сила тока превышает Io, напряжение на динисторе начинает снижаться. Таким образом наблюдается отрицательное сопротивление, то есть рост электрического тока через элемент на этом участке приводит к снижению падения напряжения на нем. Этот участок графика называется участком с отрицательным сопротивлением. Тиристоры относятся к приборам с отрицательным сопротивлением с характеристикой S — типа.

Когда сила тока достигает тока удержания (Ih), то напряжение становится равным напряжению запирания (Uc). Это напряжение еще называют напряжением насыщения при токе удержания. Далее рост силы тока через динистор приводит к росту напряжения на нем по логарифмическому закону.

Ток отпирания редко приводится в справочниках. Но он обычно составляет около половины от тока удержания.

Если рассмотреть поведение динистора при электрическом токе обратной полярности, то мы видим, что небольшой рост электрического тока приводит к быстрому росту напряжения вплоть до напряжения пробоя (Ubr). После пробоя напряжение на динисторе растет по логарифмическому закону в зависимости от силы тока.

Тринистор обратно-непроводящий

Отличие вольт-амперной характеристики триодного тиристора от диодного состоит в том, что по мере роста силы тока управляющего электрода, падает напряжение отпирания (синяя линия).

Тринистор обратно-проводящий

У обратно-непроводящих тринисторов и динисторов напряжение пробоя обычно соизмеримо с напряжением отпирания или больше него. У обратно-проводящих тринисторов и динисторов напряжение пробоя составляет единицы или десятые доли вольта.

Симистор (диак / триак)

Симисторы диодные (диаки) и симисторы триодные (триаки) обладают симметричной относительно начала координат вольт-амперной характеристикой.

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/tiristor-v-a

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как правильно хранить литий ионные аккумуляторы

Закрыть