Самая удобная и увлекательная подготовка к ЕГЭ
Если в раствор или расплав электролита опустить электроды и пропустить постоянный электрический ток, то ионы будут двигаться направленно: катионы к катоду (отрицательно заряженному электроду), анионы к аноду (положительно заряженному электроду).
На катоде катионы принимают электроны и восстанавливаются, на аноде анионы отдают электроны и окисляются. Этот процесс называют электролизом.
Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.
Электролиз расплавленных солей
Рассмотрим процесс электролиза расплава хлорида натрия. В расплаве идет процесс термической диссоциации:
$NaCl→Na{+}+Cl{-}.$
Под действием электрического тока катионы $Na{+}$ движутся к катоду и принимают от него электроны:
$Na{+}+ē→{Na}↖{0}$ (восстановление).
Анионы $Cl{-}$ движутся к аноду и отдают электроны:
$2Cl{-}-2ē→{Cl_2}↖{0}$ (окисление).
Суммарное уравнение процессов:
$Na{+}+ē→{Na}↖{0}|2$
$2Cl{-}-2ē→{Cl_2}↖{0}|1$
$2Na{+}+2Cl{-}=2{Na}↖{0}+{Cl_2}↖{0}$
или
$2NaCl{→}↖{\text»электролиз»}2Na+Cl_2$
На катоде образуется металлический натрий, на аноде — газообразный хлор.
Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осуществляется химическая реакция, которая самопроизвольно идти не может.
Электролиз водных растворов электролитов
Более сложный случай — электролиз растворов электролитов.
В растворе соли, кроме ионов металла и кислотного остатка, присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах необходимо учитывать их участие в электролизе.
Для определения продуктов электролиза водных растворов электролитов существуют следующие правила:
1. Процесс на катоде зависит не от материала, из которого сделан катод, а от положения металла (катиона электролита) в электрохимическом ряду напряжений, при этом если:
1.1. Катион электролита расположен в ряду напряжений в начале ряда по $Al$ включительно, то на катоде идет процесс восстановления воды (выделяется водород $Н_2$). Катионы металла не восстанавливаются, они остаются в растворе.
1.2. Катион электролита находится в ряду напряжений между алюминием и водородом, то на катоде восстанавливаются одновременно и ионы металла, и молекулы воды.
1.3. Катион электролита находится в ряду напряжений после водорода, то на катоде восстанавливаются катионы металла.
1.4. В растворе содержатся катионы разных металлов, то сначала восстанавливается катион металла, стоящий в ряду напряжений правее.
Катодные процессы
$Li K Ca Na Mg Al$ $Li{+} K{+} Ca{2+} Na{+} Mg{2+} Al{3+}$ | $Mn Zn Fe Ni Sn Pb$ $Mn{2+} Zn{2+} Fe{2+} Ni{2+} Sn{2+} Pb{2+}$ | $H_2$ $2H{+}$ | $Cu Hg Ag Pt Au$ $Cu{2+} Hg_2{2+} Ag{+} Pt{2+} Au{3+}$ |
Восстанавливается вода: $2H_2O+2ē=H_2+2OH{−};$$M{n+}$ не восстанавливается | Восстанавливаются катионы металла и вода: $M{n+}+nē=M0$ $2H_2O+2ē=H_2+2OH{−}$ | Восстанавливаются катионы металла: $M{n+}+nē=M0$ | |
$nē→$Усиление окислительных свойств катионов (способности принимать электроны) |
2. Процесс на аноде зависит от материала анода и от природы аниона.
Анодные процессы
Кислотный остаток $Ас{m–}$ | Анод | |
Растворимый | Нерастворимый | |
Бескислородный | Окисление металла анода $M{−}−nē=M{n+}$анод раствор | Окисление аниона (кроме $F{–}$) $Ac{m−}−mē=Ac0$ |
Кислородсодержащий | В кислотной и нейтральной средах: $2H_2O−4ē=O_2+4H{+}$ В щелочной среде:$4OH{−}−4ē=O_2+4H{+}$ |
2.1. Если анод растворяется (железо, цинк, медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона.
2.2. Если анод не растворяется (его называют инертным — графит, золото, платина), то:
а) при электролизе растворов солей бескислородных кислот (кроме фторидов) на аноде идет процесс окисления аниона;
б) при электролизе растворов солей кислородсодержащих кислот и фторидов на аноде идет процесс окисления воды (выделяется $О_2$). Анионы не окисляются, они остаются в растворе;
в) анионы по их способности окисляться располагаются в следующем порядке:
Попробуем применить эти правила в конкретных ситуациях.
Рассмотрим электролиз раствора хлорида натрия в случае, если анод нерастворимый и если анод растворимый.
1) Анод нерастворимый (например, графитовый).
В растворе идет процесс электролитической диссоциации:
Суммарное уравнение:
$2H_2O+2Cl{-}=H_2+Cl_2+2OH{-}$.
Учитывая присутствие ионов $Na{+}$ в растворе, составляем молекулярное уравнение:
2) Анод растворимый (например, медный):
$NaCl=Na{+}+Cl{-}$.
Если анод растворимый, то металл анода будет окисляться:
$Cu{0}-2ē=Cu{2+}$.
Катионы $Cu{2+}$ в ряду напряжений стоят после ($Н{+}$), по этому они и будут восстанавливаться на катоде.
Концентрация $NaCl$ в растворе не меняется.
Рассмотрим электролиз раствора сульфата меди (II) на нерастворимом аноде:
$Cu{2+}+2ē=Cu{0}|2$
$2H_2O-4ē=O_2+4H{+}|1$
Суммарное ионное уравнение:
$2Cu{2+}+2H_2O=2Cu{0}+O_2+4H{+}$
Суммарное молекулярное уравнение с учетом присутствия анионов $SO_4{2-}$ в растворе:
Рассмотрим электролиз раствора гидроксида калия на нерастворимом аноде:
$2H_2O+2ē=H_2+2OH{-}|2$
$4OH{-}-4ē=O_2+2H_2O|1$
Суммарное ионное уравнение:
$4H_2O+4OH{-}=2H_2+4OH{-}+O_2+2H_2O$
Суммарное молекулярное уравнение:
$2H_2O{→}↖{\text»электролиз»}2H_2+O_2$
В данном случае, оказывается, идет только электролиз воды. Аналогичный результат получим и в случае электролиза растворов $H_2SO_4, NaNO_3, K_2SO_4$ и др.
Электролиз расплавов и растворов веществ широко используется в промышленности:
- Для получения металлов (алюминий, магний, натрий, кадмий получают только электролизом).
- Для получения водорода, галогенов, щелочей.
- Для очистки металлов — рафинирования (очистку меди, никеля, свинца проводят электрохимическим методом).
- Для защиты металлов от коррозии (хрома, никеля, меди, серебра, золота) — гальваностегия.
- Для получения металлических копий, пластинок — гальванопластика.
Источник: https://examer.ru/ege_po_himii/teoriya/elektroliz_rasplavov_i_rastvorov
Задачи 1,3,7-10,13,14,16-21,23 к § 28.3
Ответ:Электролиз — окислительно-восстановительная реакция,происходящая в растворах или расплавах электролитов при
прохождении электрического тока.
3. Почему положительно заряженные ионы называются катионами, а отрицательно заряженные — анионами?
Ответ:Катионы — положительно заряженные ионы, анионы —
отрицательно заряженные ионы.
7. Какие процессы происходят на электродах при электролизе расплава хлорида кальция?
Решение:Происходят следующие процессы:
К: Ca 2+ + 2e − = Ca0
A: 2Cl − + 2e− = Cl20.
8. Какое вещество выделяется на катоде при электролизе расплава бромида калия? А водного раствора этой соли?
Решение:При электролизе расплава:
К: К0 + е− = К0
А: 2Br − + 2e − = Br2−
9. Напишите уравнение реакции натрия с водой. Является ли она окислительно-восстановительной? Если да, то составьте электронно-ионное уравнение. Укажите окислитель и восстановитель. Если нет, то вспомните определение окислительно-восстановительных реакций
Решение:Уравнение реакции выглядит так:
2Na0 + 2H2O = 2NaOH + H2
Восстановитель Na0, окислитель — вода (Н2О).Ответ:Данные элементы находятся правее марганца. В электро-химическом ряду напряжений соответствующие химические
элементы находятся в начале периодической системы.
13. Какое вещество выделяется на катоде при электролизе водного раствора серной кислоты? а на аноде?
Решение:Уравнение реакции:
К: 2Н0+ + 2е − = Н20
А: 4ОН0− − 4е = 2Н2О + О20.
14. Какое вещество выделяется на катоде при электролизе водного раствора гидроксида калия? а на аноде?
Решение:Уравнение реакции:
К: 2Н + + 2е − = Н20
А: 4ОН − + 4е − = 2Н2О + О20
16Т. Водород не может быть получен электролизом водного раствора вещества А) KI Б) CuSO4 В) H2SO4 Г) NaOH
Ответ:
Б) CuSO4.
На катоде в данном случае будет восстанавливаться медь.
18Т. При наименьшем напряжении в водном растворе будет разряжаться катион А) Fe2+ Б) Cu2+ В) Cr3+ Г) Ni2+
Ответ:
Б) Cu 2+.
У меди самый низкий из представленных металлов окисли-тельно-восстановительный потенциал.Ответ:
В) Cr 2+.
21Т. На аноде не выделяется кислород при электролизе водного раствора вещества А)Na2SO4 Б) Na2S В) NaOH Г) Na2CO3
Ответ:
Б) Na2S.
На аноде будет образовываться сера.
23. Сформулируйте закон электролиза Фарадея
Ответ:Закон Фарадея для электролиза гласит: количество выде-ляемого при электролизе вещества прямо пропорционально
количеству, пошедшего через раствор электричества.
← Задачи 1,2,9-12 к § 28.1
Источник: https://5terka.com/node/356
Анод и катод: что это такое, как их определить, применение
Для корректной работы полупроводниковых приборов, работающих в цепях с постоянным током, электроды радиоэлементов необходимо подключать с учетом их полярности. Неправильное подключение может привести к выходу из строя радиоэлемента либо к отказу в работе электронного прибора. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.
Часто эти электроды обозначаются на схемах соответствующими символами «+» или «–», либо определяются по схематическому изображению радиоэлемента. На корпусах деталей иногда проставляется точка или другая метка, позволяющая определить направление тока на конкретном электроде. Иногда полярность выводов приходится определять по специальным таблицам или с помощью измерительного прибора.
Понятие анода и катода
Для лучшего понимания терминов дадим определения этих понятий.
Анод
Под данным термином будем подразумевать электрод, по которому электрический ток втекает в разглядываемый прибор. При этом подразумевается, что электрический ток образуется потоком положительных зарядов. В действительности, по металлическим проводникам перемещаются электроны (носители отрицательных зарядов), которые движутся в сторону положительного полюса источника электрического тока.
Проще говоря, положительным электродом будем считать анод, а отрицательным электродом – катод. При подключении радиоэлементов следует соблюдать их полярность, руководствуясь обозначениями на схемах.
Катод
Это электрод, по которому электрический ток вытекает с прибора (подразумевается конвенциальное понимание тока, в виде потока положительных зарядов). Таким образом, если к аноду подключается провод с положительным потенциалом, то к катоду – клеммы с отрицательными потенциалами.
Вышеуказанные термины применяются по отношению к гальваническим элементам. В гальванике анод – это электрод, на поверхности которого проходит реакция окисления металла. Названия электродов встречаются:
- в химии;
- физике;
- электротехнике;
- радиоэлектронике.
При монтаже радиодеталей очень важно не перепутать электроды. Для этого необходимо знать, как определить их назначение.
Как определить, где анод, а где катод?
При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.
Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.
На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.
Рис. 1. Электролиз
При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.
Обратите внимание на рисунок 2, где изображена схема гальванического элемента.
Рис. 2. Гальванический элемент
Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.
Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу.
То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления.
Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.
При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.
На назначение электродов указывает:
- форма корпуса (рис. 3);
- длина выводов (для светодиодов) (рис. 4);
- метки на корпусах приборов или знака анода;
- различная толщина выводов диода.
Рис. 3. Диод Рис. 4. Электроды светодиода
Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.
Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).
Рис. 5. Транзистор на схемах и его электроды
Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.
Анод и катод: где плюс, а где минус?
Из сказанного выше следует, что ток всегда течет в направлении от анода к катоду. Вывод один – на анод поступает плюс, а катод подсоединяется к минусу. Придерживаясь этого правила можно безошибочно определить, где плюс, а где минус.
Вот так можно запомнить:)
В гальванотехнике на катоде происходит реакция восстановления. То есть положительные ионы из раствора оседают на катоде. По этому признаку определяем знак минус.
Как определить катод и анод радиодеталей мы рассмотрели выше. Если есть схема устройства то по ней довольно легко можно указать направление тока, и, соответственно, назначение электродов. При отсутствии схемы пользуйтесь признаками и метками на корпусах деталей.
Примечание: по отношению к стабилитрону некорректно применять термин катод и анод, так как он проводит ток в разных направлениях.
Отдельно заострю ваше внимание на элементах питания. Обычно «+» указывается на гальванических устройствах, а на аккумуляторах часто маркируются обе клеммы. В аккумуляторах автомобильного типа плюсовую клемму делают толще. По этому признаку также можно определить полярность полюсов.
В качестве выводов см. рисунок 6.
Рис. 6. Выводы
Цифрами обозначено:
- 1– анод;
- 2 – электролит;
- 3 – катод;
- 4 – источник тока.
Применение
Электроды в качестве анода и катода наиболее часто применяются:
- в электрохимии;
- вакуумных электронныхприборах;
- полупроводниковыхэлементах.
Рассмотрим в общих чертах сферы применения анодов и катодов.
В электрохимии
в данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. такие реакции называют электролизом. использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.
методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. гальваническое покрытие эффективно защищает металл от коррозии.
в вакуумных электронных приборах
примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. они работают по одному и тому же принципу: разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.
образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.
добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. такие вакуумные лампы используются в качестве усилителей сигналов. в данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.
в полупроводниковых приборах
электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. они почти вытеснили вакуумные лампы из употребления. выводы полупроводниковых приборов традиционно называют анодами и катодами.
при всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». в усилителях большой мощности эти шумы становятся заметными. в качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.
электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с led подсветкой. они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.
поясняющее видео
Источник: https://www.asutpp.ru/anod-i-katod.html
Электролиз растворов солей
Электролизом — окислительно-восстановительные реакции, проходящие на электродах при пропускании постоянного электрического тока через раствор или расплав электролита. На отрицательном электроде (катоде) происходит процесс восстановления, на положительном (аноде) — процесс окисления.
1. Электролиз расплава соли (на примере КСl)
При расплавлении электролит диссоциирует на ионы:
NaCl → Na+ + Cl–
На катоде происходит восстановление ионов Na+:
На аноде — окисление ионов Cl–:
Уравниваем число электронов:
Суммарный процесс:
2. Электролиз водных растворов
В растворах электролитов помимо ионов, образуемых электролитами, имеются ионы, образующиеся в результате диссоциации воды: H2O ↔ H+ + OH–
которые также могут принимать участие в электролизе. Легкость восстановления катионов на катоде соответствует ряду активности металлов. Чем правее в этом ряду находится металл, тем легче идет его восстановление.
Если металл находится левее водорода в ряду активности, то происходит также восстановление ионов водорода из воды, если же металл находится левее алюминия, то он в водном растворе восстановлен быть не может — идет только восстановление воды.
На аноде происходит окисление анионов. По уменьшению легкости их окисления они располагаются в следующий ряд: I–, Вг–, S2–, Сl–, ОН–, анионы кислородосодержащих кислот.
Поэтому в водных растворах в первую очередь происходит окисление ионов галогенов или серы, а если их нет, то про-исходит окисление ионов гидроксила из воды до кислорода:
или
Примеры электролиза водных растворов:
1). NaCl:
NaCl ↔ Na+ + Cl–;
H2O ↔ H+ + OH–
Катод:
Анод:
Суммарный процесс:
2). CuCl2:
CuCl2 ↔ Cu2+ + 2Cl–;
H2O ↔ H+ + OH–
Катод:
Анод:
Суммарный процесс:
3). CuSO4:
CuSO4 ↔ Cu2+ + SO42–;
H2O ↔ H+ + OH–
Катод:
Анод:
Суммарный процесс:
4). NiSO4:
NiSO4 ↔ Ni2+ + SO42–;
H2O ↔ H+ + OH–
Катод:a)
б)
эти два процесса идут одновременно и независимо друг от друга. Соотношение между ними зависит от соотношения концентраций ионов никеля и ионов водорода, а также от напряжения и силы тока.
Объясняется это тем, что никель – металл средней активности, его электродный потенциал имеет незначительное отрицательное значение (-0,25 В), как и потенциал водородного электрода (-0,41 В). Поэтому продуктами электролиза будут металлический никель и газообразный водород. При электролизе раствора сульфата никеля протекают процессы восстановления ионов Ni2+ и молекул H2O.
Сначала преимущественно идет процесс восстановления ионов никеля, но затем концентрация ионов никеля в растворе уменьшается, а концентрация ионов водорода увеличивается и усиливается интенсивность процесса восстановления воды.
Суммарный процесс:
5). NaOH, KOH, H4SO4, NaSO4, K2SO4 — в этих случаях идет только электролиз воды:
Катод:
Анод:
Суммарный процесс:
При этом на электродах будут выделяться газы, на катоде водород, а на аноде — кислород.
Источник: http://buzani.ru/raznoe/metodika/678-elektroliz-reaktsii-okisleniya-vosstanovleniya
Электролиз расплавов и растворов
Электролиз – совокупность окислительно-восстановительных процессов, происходящих на поверхности электродов при прохождении электрического тока через раствор или расплав электролита.
Процессы окисления и восстановления протекают на различных электродах: аноде и катоде.
Катод – это электрод, на котором происходит процесс восстановления.
При электролизе катод заряжен отрицательно. Анод – это электрод, на котором происходит процесс окисления. При электролизе анод заряжен положительно.
Различают электролиз растворов и электролиз расплавов. Отличие этих процессов в наличии или отсутствии растворителя. При электролизе растворов, кроме ионов самого вещества, в процессе могут участвовать частицы растворителя.
При электролизе расплава — только ионы самого вещества — электролита.
Электролиз расплавов
Процесс на катоде: Любой катион металла восстанавливается до металлического состояния: M(n+) + ne(-) = M
Процесс на аноде:
● бескислородный анион окисляется до простого вещества:
Ас(m-) – me(-) = Ac, где (Ас = F, Cl, Br, I, S). Если элемент в форме простого вещества образует многоатомные молекулы, то образуются многоатомные молекулы простого вещества (Hal2, S8). ● при окислении кислородсодержащего аниона с высшей степенью окисления неметалла на аноде образуется кислород и высший устойчивый оксид соответствующего элемента.
Пример: 2Na2SO4 = 4Na + 2SO3 + O2
При этом могут протекать побочные реакции, например:
H2SO4 + SO3 = H2S2O7 (олеум)
Но сюда следует внести некоторые уточнения. Важно учитывать свойства конкретных солей! Некоторые соли разлагаются при нагревании, не начиная плавиться. Для таких солей электролиз расплава невозможен.Например, это некоторые нитраты, карбонаты, оксалаты, формиаты и др.
Электролиз растворов
Сразу следует отметить, что электролизом растворов можно получать металлы только из тех солей, которые растворимы и являются электролитами, т.к. соль должна диссоциировать на ионы.
Рассмотрим процессы, происходящие на катоде при электролизе растворов солей, щелочей и кислот. Так как на катоде идет процесс восстановления, т.
е прием электронов окислителем, то в первую очередь должны реагировать наиболее сильные окислители. То есть прежде всего на катоде будут восстанавливаться ионы, которые имеют наибольший положительный потенциал.
Немного о потенциале: непосредственно измерить потенциал отдельного металла невозможно.
Поэтому электродные потенциалы измеряют относительно стандартного водородного электрода, потенциал которого принимают равным нулю. Металлы, расположенные в порядке возрастания алгебраического значения их стандартного электродного потенциала, составляют ряд стандартных электродных потенциалов, или электрохимический ряд напряжений.
Значение электродного потенциала количественно характеризует восстановительную способность металлов (способность отдавать электроны) в водном растворе в стандартных условиях. Восстановительная способность металлов в ряду напряжений металлов слева направо ослабевает.
Перейдём к самому процессу на катоде при электролизе: ● Если катион электролита в ряду напряжений находится после водорода (Cu, Ag, Hg), то на катоде идёт процесс восстановления ионов металла, на катоде будет выделяться сам металл: M(n+) + ne(-) = M Это можно объяснить тем, что эти металлы имеют большее алгебраическое значение электродного потенциала, чем водород; они более сильные окислители.
● Если катион электролита находится в ряду напряжений до алюминия (включая сам Al), на катоде идёт процесс восстановления воды, выделяется водород: 2H2O + 2e(-) = H2 + 2OH(-) У этих металлов стандартный электродный потенциал много меньше, чем у водорода. Как было уже сказано, на катоде прежде всего будут восстанавливаться наиболее сильные окислители, а это ионы водорода, входящие в состав воды.
Также восстановление металлов в данном случае невозможно из-за взаимодействия этих металлов с водой. ● Если катион электролита находится в электрохимическом ряду напряжений между алюминием и водородом, то на катоде одновременно восстанавливаются и ионы металла, и молекулы воды: выделяется и металл, и водород (два конкурирующих процесса).
Металл преимущественно восстанавливается в концентрированных растворах солей, в которых рост потенциала пары металла и его катиона достигается за счёт увеличения концентрации катиона металла (уравнение Нернста в школьной программе не рассматривается). Также это становится возможным благодаря низкой химической активности металлов и их неспособности реагировать водой.
M(n+) + ne(-) = M и 2H2O + 2e(-) = H2 + 2OH(-)
● при электролизе растворов кислот на катоде восстанавливаются катионы водорода, выделяется водород.
Электрохимический ряд напряжений металлов (ряд активности металлов):
Li/Li(+); Rb/Rb(+); K/K(+); Ba/Ba(2+); Sr/Sr(2+); Ca/Ca(2+); Na/Na(+); Mg/Mg(2+); Al/Al(3+); Mn/Mn(2+); Zn/Zn(2+); Cr/Cr(3+); Fe/Fe(2+); Cd/Cd(2+); Co/Co(2+); Ni/Ni(2+); Sn/Sn(2+); Pb/Pb(2+); H2/H(+); Sb/Sb(3+); Cu/Cu(2+); Hg/Hg(2+); Ag/Ag(+); Pt/Pt(2+); Au/Au(3+)
Стоит отметить, что электрохимический ряд напряжений металлов отражает термодинамическую возможность и преимущественность процессов электролиза. Металлы до алюминия (включая алюминий) нельзя получить электролизом растворов солей, т.к. эти металлы реагируют с водой. Таким образом, термодинамически выгодное состояние — раствор катионов металла, а не металлическое состояние.
При электролизе растворов солей металлов между алюминием и водородом на катоде протекают конкурирующие процессы восстановления металлов и водорода, и преимущественность (какой процесс наиболее термодинамически выгоден) конкретного процесса зависит от концентрации катионов металла и pH раствора (уравнение Нернста не рассматривается в рамках школьной программы).
Восстановление металлов после водорода более термодинамически выгодно, чем восстановление водорода, поэтому на катоде восстанавливается металл.
Электрохимический ряд напряжений рассчитан ТОЛЬКО НА ВОДНЫЕ РАСТВОРЫ в стандартных условиях! При его помощи НЕВОЗМОЖНО определить возможность протекания той или иной реакции в НЕводной среде!
Также электрохимический ряд напряжений не всегда указывает на то, какой металл более энергично (с более высокой скоростью) взаимодействует с тем или иным веществом-окислителем, например, с водой и кислотами.
Ряд напряжений показывает ТОЛЬКО термодинамические характеристики (стандартный электродный потенциал) пары металла и соответствующего ему катиона! Чтобы оценить скорость взаимодействия металла с водой, нужно учесть не только термодинамический фактор, но и кинетический: в первую очередь, это радиус атома. Например: литий находится в ряду напряжений левее, чем цезий.
Это означает, что взаимодействие лития с водой и цезия с водой термодинамически выгодно, но лития с водой — более выгодно. То есть термодинамика разрешает оба процесса. Проблема заключается в том, что термодинамика изучает только ВОЗМОЖНОСТЬ ПЕРЕХОДА ИЗ НАЧАЛЬНОГО СОСТОЯНИЯ В КОНЕЧНОЕ, то есть говорит нам: «оба перехода возможны»! То есть и литий, и цезий взаимодействуют с водой.
Но термодинамика не изучает промежуточные состояния, то есть то, как происходит этот самый переход. Именно поэтому нужно обязательно учитывать кинетический фактор: у цезия радиус атома выше, чем у лития! Значит внешний электрон цезия слабее связан с ядром (закон Кулона), и ему проще этот электрон отдать. Таким образом, цезий реагирует с водой намного быстрее, чем литий.
В пределах группы в периодической системе химических элементов Д.И.Менделеева радиус атома возрастает сверху вниз.
Иногда в качестве кинетического фактора следует учитывать кристаллическую решётку конкретного металла или образование малорастворимых соединений (например, оксидной или хлоридной плёнки).
Но это (текст после ряда напряжений) было небольшим, но важным отступлением от темы. Вернёмся к электролизу!
Процесс на аноде
Процесс на аноде зависит от материала анода и от природы аниона.
Если анод неинертный или растворимый (т.е. изготовлен из вещества, потенциал которого ниже, чем потенциал разряда частиц раствора), то идет процесс растворения анода.
При этом, если анод металлический, то образовавшиеся ионы металла переходят в раствор и перемещаются к катоду, на котором восстанавливаются.
Окисление металла анода: M(анод) — ne = M(n+)
Последующее восстановление этого же металла на катоде: M(n+) + ne = M(катод)
Суммарный процесс: M(анод) → M(катод)
Этот процесс используется для очистки металлов или для нанесения защитного слоя металла на изделие.
Рассмотрим анодные процессы при электролизе растворов, если анод инертный (нерастворимый).
Так как на аноде идет реакция окисления, т.е. отдача электронов восстановителем, то в первую очередь должны реагировать наиболее сильные восстановители. На аноде прежде всего протекает реакция с наиболее отрицательным потенциалом анионов.
Ряд активности анионов:
S(2-); I(-); Br(-); Cl(-); OH(-), H2O; SO4(2-); NO3(-); CO3(2-); PO4(3-); F(-)
Можно заметить, что этот ряд коррелирует с рядом электроотрицательности элементов:
F O N Cl Br I S C Se P As H B Cu Pb Si Sn Fe Al Li K
● при электролизе щелочей, кислородсодержащих кислот и их солей с высшей степенью окисления неметалла, а также фтороводорода и фторидов на аноде разряжаются молекулы воды с выделением кислорода: 2H2O — 4e = O2 + 4H(+) Это можно объяснить тем, что потенциал окисления воды ниже, чем кислородсодержащих анионов с высшей с.о. неметалла и фторид-иона.
Также невозможность выделения фтора из водного раствора можно объяснить взаимодействием фтора с молекулами воды. ● при электролизе сульфидов, йодидов, бромидов, хлоридов на аноде будут окисляться сами анионы с выделением простых веществ, т.к.
потенциал окисления этих анионов ниже, чем воды: Ас(m-) – me = Ac, где (Ас = Cl, Br, I, S) (если полученные простые вещества состоят из многоатомный молекул, то получаются многоатомные молекулы: Cl2, Br2 и др.) Электролиз широко применяется в промышленности. С помощью электролиза водного раствора NaCl получают три важнейших химических продукта: хлор, водород и гидроксид натрия (хлоралкалиновое производство).
Катодной процесс: 2Н2О + 2е = Н2 + 2ОН(-) Анодный процесс: 2Cl(-) — 2e = Cl2 Суммарное уравнение: 2NaCl + 2H2O = H2 + Cl2 + 2NaOH
Но мы можем получить такие продукты, если только катодное и анодное пространства разделены диафрагмой. Если же диафрагмы нет, то полученные продукты взаимодействуют друг с другом с образованием хлората натрия:
NaCl + 3H2O → NaClO3 + 3H2 (электролиз без диафрагмы)
Также важное промышленное значение имеет получение активных металлов электролизом расплавов их солей.
Алюминий же получают электролизом Al2O3 в расплаве криолита Na3[AlF6]:
2Al2O3 = 4Al + 3O2
Обычно для этой реакции используют неинертный графитовый анод:
2Al2O3 + 3C(анод) = 4Al(катод) + 3CO2(анод)
Металлы, находящиеся в ряду активности до алюминия (включая алюминий) можно получить электролизом только из расплавов солей. Металлы после алюминия можно получить электролизом растворов солей. Как уже говорилось раннее, необходимо учитывать свойства конкретных солей: термическую устойчивость (при электролизе расплавов) и растворимость (при электролизе растворов).
В органической химии для получения углеводородов используется реакция Кольбе. Реакция Кольбе — метод получения углеводородов электролизом водных растворов солей карбоновых кислот (электрохимический синтез).
На аноде протекает процесс окисления аниона карбоновой кислоты:
Источник: https://vk.com/@chemistry_100-electrochem1
Электролиз воды
Вообще, электролиз — это процесс, в котором постоянный электрический ток, пропускаемый через ионизированный раствор или расплав вещества (электролит), используется для инициирования химической реакции на электродах (положительно заряженном аноде+ и отрицательном катоде-), приводящей к диссоциации вещества на положительные ионы-катионы на стороне катода и отрицательные ионы-анионы на стороне анода. При электролизе воды, при прохождении через нее постоянного электрического тока, на стороне анода происходит диссоциация воды с образованием молекул кислорода O2 и выделением положительно заряженных ионов водорода H+ и имеющих отрицательный заряд электронов e-. На катоде-, ионы водорода H+ принимают электроны, образуя газообразный водород H2:
Анод: 2H2O → O2 + 4H+ + 4e-
Катод: 4H+ + 4e- → 2H2
В целом, реакцию диссоциации при электролизе воды можно записать следующим образом:
2H2O → 2H2 + O2
Электролит
Аппарат для электролиза воды XIX века
Нажмите для увеличения
Вышеописанный электролиз чистой воды без чрезмерных затрат энергии проходит очень медленно или не проходит совсем. Для того, чтобы эффективно проводить элетролиз воды, в нее добавляют электролит — или растворимый в воде, или твердый — увеличивающий электрическую проводимость воды.
При выборе электролита необходимо, чтобы между катионами (положительно заряженными ионами) электролита и катионами, которые может отдать вода, то есть H+, не было конкуренции — иначе, не будет произведен водород.
Для этого, катион электролита должен иметь меньший электродный потенциал, чем катион H+ (стандартный электродный потенциал E°В=0); на роль катиона подходят Li+, Rb+, K+, Cs+, Ba2+, Sr2+, Ca2+, Na+, and Mg2+.
Чаще всего, используются электролиты с катионами
Li+: -3,0401
K+: -2,931 и
Na+: -2,71
Также, в роли электролита можно рассматривать и кислоты, т.к. при их диссоциации образуется ион H+, как и при диссоциации воды — и конкуренции между ними нет.
Так же, для исключения конкуренции аниона (отрицательно заряженного иона) электролита и гидроксильного иона OH- анион электролита должен иметь больший электродный потенциал, чем анион OH-, E°(В) = . Обычно, в качестве электролита используется щелочь, то есть, анионом является тот же самый гидроксильный ион OH-, но если используется кислота с катионом H+, то в качестве аниона обычно используется сульфатный ион SO42-, имеющий при окислении до S2O8 стандартный электродный потенциал -2,01 В.
Обычно, в качестве электролита для электролиза воды используются сильные щелочи: гидроксид калия KOH и едкий натр NaOH. Иногда, используется сильная кислота, как правило, серная кислота H2SO4.
Протоннообменные мембраны
Кроме растворов электролитов, для элетролизного производства воды могут использоваться и твердые электролиты, например Nafion — фторполимерный материал, обладающий способностью проводить катионы, то есть, в данном случае ионы H+, иначе назваемые протонами. Электролитические мембраны на основе нафиона получили название протоннообменных мембран.
Еще одни способо электролиза воды является электролиз при помощи твердого оксида.
Источник: http://www.ndva.ru/gazi/elektroliz_vodi.html
Глава 6. Основы электрохимии
Электролиз — это совокупность процессов, происходящих на поверхностях электродов, погруженных в раствор или расплав электролита, при пропускании через них электрического тока. При электролизе электрическая энергия от внешнего источника тока превращается в энергию окислительно-восстановительных реакций.
При электролизе внешний источник тока подключен к электродам — катоду и аноду: при этом к катоду подключен отрицательный полюс источника тока, а к аноду — положительный. Электроды погружаются в раствор или расплав электролита.
Так как в растворах электролитов имеются ионы, то под действием внешнего электрического поля они движутся к противоположно заряженным электродам (положительные ионы-катионы движутся к катоду, а отрицательные ионы-анионы движутся к аноду) и на поверхности их окисляются (на аноде) или восстанавливаются (на катоде) до чистых (элементарных) веществ (рис.2). Устройство, в котором происходит процесс электролиза называется электролизером.
Наиболее простым является электролиз расплавов электролитов, так как эта система содержит только ионы, образующиеся из молекул электролита.
Пример: рассмотрим электролиз расплава NaCl.
При расплавлении NaCl происходит распад молекул на ионы, которые движутся в электролизере к соответствующим электродам
NaCl ® Na+ + Cl- | |
на катод | на анод |
На поверхности электродов будут протекать окислительно-восстановительные реакции:
Катодный процесс: Na+ + 1e ® Nao
Анодный процесс: 2Cl- — 2e ® Cl2
То есть на катоде выделяется чистый натрий, а на аноде — газообразный чистый хлор.
6.3.3 Электролиз растворов
Электролиз растворов электролитов — более сложный процесс, так как помимо самого электролита в данной системе содержатся молекулы воды. Рассмотрим процессы, происходящие на поверхности инертных электродов, в этом случае.
Характер катодных процессов определяется величиной электродного потенциала того металла, ионы которого движутся к катоду.
1. Если ЕМе < -1,6В (а к таким металлам относятся Na, K, Ca, Mg, Al), то ион этого металла не может восстановиться на катоде, а вместо него восстанавливаются молекулы воды
а на катоде выделяется газообразный водород.
2. Если -1,6В < ЕМе < 0В (к таким металлам относятся Zn, Fe, Sn, Cr, Ni, Pb), то
на катоде одновременно восстанавливаются ионы металла и молекулы воды
Men+ + ne ® Meo
то есть на катоде выделяется чистый металл и газообразный водород.
3. Если ЕМе > 0В (к таким металлам относятся Cu, Ag, Hg, Au), то на катоде выделяется чистый металл
Men+ + ne ® Meo.
Характер анодных процессов определяется строением анионов (к ним относятся ионы кислотных остатков и ион ОН-), а также материалов, из которого изготовлен анод. В данном случае возможны следующие варианты:
1. Анионы простого строения (Cl-, Br-, I-, S2-) непосредственно окисляются на поверхности анода да чистого вещества.
Например:
2Сl- — 2e ® Cl2.
2. Анионы сложного строения (кислородсодержащие ионы SO42-, CO32-, PO43- и т.д.) на аноде не изменяются, а вместо них окисляются молекулы воды
и при этом выделяется газообразный кислород.
3. Если анод выполнен не из инертного (уголь, графит, платина) материала, то в процессе электролиза происходит окисление металла анода и переход ионов металла в раствор (то есть анод разрушается)
Meo — ne ® Men+.
Таким образом, при электролизе растворов на катоде можно получить чистые металлы и (или) газообразный водород, на аноде — чистые неметаллы (галогены и серу) или газообразный кислород.
Например: разобрать схему электролиза раствора медного купороса CuSO4.
Решение:
При растворении медного купороса в воде происходит распад соли на ионы, которые в электролизере направляются к противоположно заряженным электродам
CuSO4 = Cu2+ + SO42- | |
на катод | на анод |
Ион металла движется на катод, но так как. ЕCuо > 0 в, то на катоде будет выделяться читый металл (см. характер катодных процессов). Ион кислотного остатка движется на анод и так как ион SО42- является сложным ионом, то на аноде будет в чистом виде выделяться кислород (см. характер анодных процессов). То есть на электродах будут протекатьследующие реакции
Катодный процесс: Cu2+ + 2e = Cuo
Анодный процесс:
6.3.4 Законы электролиза
Законы электролиза (иначе их называют законами Фарадея) позволяют количественно оценивать электрохимические превращения, протекающие в системе при электролизе расплавов или растворов.
1-ый закон электролиза: масса превратившегося на электроде вещества прямо пропорциональна величине электрохимического эквивалента вещества и количеству пропущенного через систему электричества.
Электрохимический эквивалент определяется по формуле
(6.7) |
где: k — электрохимический эквивалент, г/(моль·кулон);
mэкв — эквивалентная масса вещества, г/моль;
F — постоянная Фарадея, F = 96500 кулон;
A — атомная (мольная) масса вещества, превращающаяся на электроде;
n — заряд иона вещества или степень окисления (по модулю).
Количество электричества Q ( в кулонах), прошедшего через систему, определяется по известной в курсе физике формуле
Q = I·t
где: I — сила тока электролиза, А;
t — время электролиза, с.
Таким образом, полное математическое выражение для 1-го закона электролиза имеет вид
или
(6.8) |
Нетрудно определить, что если Q = F, то m = A/n = mэкв, то есть физический смысл постоянной Фарадея F — это количество электричества, которое необходимо пропустить через систему при электролизе, чтобы на электроде выделилась масса вещества, равная его эквивалентной массе (F = 96500 кулон).
Например : определить массу вещества, которая выделится на аноде при электролизе раствора Н3РО4 током 10А в течение 965 с.
Решение:
1. Рассмотрим схему электролиза раствора Н3РО4 и определим вещество, которое будет выделяться на аноде при электролизе данного раствора:
Н3РО4 ® 3Н+ + РО43- | |
на катод | на анод |
Так как ион РО43- является сложным анионом, то согласно характеру анодных процессов, на аноде будет выделяться газообразный кислород (атомная масса кислорода по таблице Д.И.Менделеева равна 16, степень окисления равна -2).
2. Определим массу выделившегося вещества, согласно 1-му закону электролиза
m = A·I·t / (n·F) = 16·10·965/(2·96500) = 0,8 г.
Ответ: на аноде выделится 0,8 г О2.
2-ой закон электролиза: при последовательно включенных в электрическую цепь электродах, массы выделившихся при электролизе веществ относятся друг к другу, как их эквивалентные массы, то есть
m(1) / m(2) = mэкв(1) / mэкв(2)
где: m(1) и m(2) — массы выделившихся на электродах веществ;
mэкв(1) и mэкв(2) — эквивалентные массы этих веществ.
Из данного закона можно выделить очень важное следствие: массы веществ, выделившихся на катоде и аноде, при электролизе относятся друг к другу, как их эквивалентные массы, то есть
m(к) / m(а) = mэкв(к) / mэкв(а)
где: m(к) и m(а) — массы выделившихся на катоде и аноде веществ;
mэкв(к) и mэкв(а) — эквивалентные массы этих веществ.
Применяя 2-ой закон электролиза, можно определить массу выделившегося на электроде вещества, если известна масса вещества, выделившаяся на другом электроде.
Пример: определить массу выделившегося на катоде вещества при электролизе раствора К2СО3, если на аноде при этом выделилось 4 г вещества.
Решение:
1. Определим вещества, выделяющиеся на электродах при электролизе раствора К2СО3
К2СО3 ® 2К+ + СО32- | |
на катод | на анод |
По характеру катодных и анодных процессов определяем, что на катоде выделяется газообразный водород Н2, а на аноде — газообразный кислород О2.
2. Используем 2-ой закон электролиза для определения массы вещества, выделившегося на катоде:
m(к) / m(а) = mэкв(к) / mэкв(а), следовательно
m(Н2) = mэкв(Н2)·m(О2) / mэкв(О2).
Так как mэкв(Н2) = А(Н2) / n(Н2) = 1/1 = 1г/моль
и mэкв(О2) = А(О2)/n(О2) = 16/2 = 8 г/моль,
то имеем
m(Н2) = mэкв(Н2)·m(О2) / mэкв(О2) = 1·4/8 = 0,5 г.
Ответ: на катоде выделилось 0,5г Н2.
Источник: https://cde.osu.ru/courses2/course93/g6_3.html
Электролиз и гидролиз солей
Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.
Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют гидролизом солей.
Для получения высокоактивных металлов (натрия, алюминия, магния, кальция и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов:
1. Электролиз расплава хлорида меди (II).
Электродные процессы могут быть выражены полуреакциями:
на катоде K(-): Сu2+ + 2e = Cu0 — катодное восстановление
на аноде A(+): 2Cl– — 2e = Cl2 — анодное окисление
Общая реакция электрохимического разложения вещества представляет собой сумму двух электродных полуреакций, и для хлорида меди она выразится уравнением:
Cu2+ + 2 Cl– = Cu + Cl2
При электролизе щелочей и солей оксокислот на аноде выделяется кислород:
4OH– — 4e = 2H2O + O2
2SO42– — 4e = 2SO3 + O2
2. Электролиз расплава хлорида калия:
Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.
На катоде «-» источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем».
На аноде «+» происходит отдача электронов анионами, поэтому анод является «окислителем».
При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.
При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:
на аноде — окисление анионов и гидроксид-ионов,
на катоде — восстановление катионов и ионов водорода.
При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются:
на аноде — окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода;
на катоде — восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.
При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила:
1. На аноде могут образовываться следующие продукты:
а) при электролизе растворов, содержащих в своем составе анионы SO42-, NО-3, РО43-, а также растворов щелочей на аноде окисляется вода и выделяется кислород;
А+ 2H2O — 4e- = 4H+ + O2
б) при окислении анионов Сl-, Вr-, I- выделяются соответственно хлор, бром, иод;
А+ Cl- +e- = Cl0
2. На катоде могут образовываться следующие продукты:
а) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl3+, на катоде восстанавливается вода и выделяется водород;
К- 2H2O + 2e- = H2 + 2OH-
б) если ион металла расположен в ряду напряжений правее водорода, то на катоде выделяется металл.
К- Men+ + ne- = Me0
в) при электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между Al+ и Н+ , на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.
Пример: Электролиз водного раствора нитрата серебра на инертных электродах
Диссоциация нитрата серебра:
АgNО3 = Аg+ + NO3-
При электролизе водного раствора АgNО3 на катоде происходит восстановление ионов Аg+, а на аноде — окисление молекул воды:
Катод: Аg+ + е = А g
Анод: 2Н2О — 4е = 4Н+ + О2
Суммарное уравнение:______________________________________________
4AgNО3 + 2Н2О = 4Ag + 4НNО3 + О2
Составьте схемы электролиза водных растворов: а) сульфата меди; б) хлорида магния; в) сульфата калия.
Во всех случаях электролиз проводится с использованием угольных электродов.
Пример: Электролиз водного раствора хлорида меди на инертных электродах
Диссоциация хлорида меди:
CuCl2 ↔ Сu2+ + 2Cl-
В растворе находятся ионы Си2+ и 2Сl-, которые под действием электрического тока направляются к соответствующим электродам:
Катод- Cu2+ + 2e = Cu0
Анод+ 2Cl- — 2e = Cl2
_______________________________
CuCl2 = Cu + Cl2
На катоде выделяется металлическая медь, на аноде — газообразный хлор.
Если в рассмотренном примере электролиза раствора CuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl0 и выделения хлора протекает окисление анода (меди).
В этом случае происходит растворение самого анода, и в виде ионов Сu2+ он переходит в раствор.
Электролиз CuCl2 с растворимым анодом можно записать так:
Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.
Пример: Электролиз водного раствора хлорида магния на инертных электродах
Диссоциация хлорида магния в водном растворе:
MgCl2 ↔ Mg2++2Сl-
Ионы магния не могут восстанавливаться в водном растворе (идет восстановление воды), хлорид-ионы — окисляются.
Схема электролиза:
Пример: Электролиз водного раствора сульфата меди на инертных электродах
В растворе сульфат меди диссоциирует на ионы:
СuSО4 = Сu2+ + SO42-
Ионы меди могут восстанавливаться на катоде в водном растворе.
Сульфат-ионы в водном растворе не окисляются, поэтому на аноде будет протекать окисление воды.
Схема электролиза:
Электролиз водного раствора соли активного металла и кислородсодержащей кислоты (К2SО4) на инертных электродах
Пример: Диссоциация сульфата калия в водном растворе:
К2SО4 = 2К+ + SO42-
Ионы калия и сульфат-ионы не могут разряжаться на электродах в водном растворе, следовательно, на катоде будет протекать восстановление, а на аноде — окисление воды.
Схема электролиза:
или, учитывая, что 4Н+ + 4ОН- = 4Н2О (осуществляется при перемешивании),
H2O 2H2 + O2
Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются.
На катоде выделяется водород, а на аноде — кислород, и электролиз сводится к электролитическому разложению воды.
Электролиз расплава гидроксида натрия
Электролиз воды проводится всегда в присутствии инертного электролита (для увеличения электропроводности очень слабого электролита — воды):
Закон Фарадея
Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея:
где m — масса образовавшегося при электролизе вещества (г);
Э — эквивалентная масса вещества (г/моль);
М — молярная масса вещества (г/моль);
n — количество отдаваемых или принимаемых электронов;
I — сила тока (А); t — продолжительность процесса (с);
F — константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества (F = 96 500 Кл/моль = 26,8 Ач/моль).
Гидролиз неорганических соединений
Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют гидролизом солей.
Если рассматривать соль как продукт нейтрализации основания кислотой, то можно разделить соли на четыре группы, для каждой из которых гидролиз будет протекать по-своему.
1. Соль, образованная сильным основанием и сильной кислотой KBr, NaCl, NaNO3), гидролизу подвергаться не будет, так как в этом случае слабый электролит не образуется. Реакция среды остается нейтральной.
2. В соли, образованной слабым основанием и сильной кислотой FeCl2, NH4Cl, Al2(SO4)3, MgSO4) гидролизу подвергается катион:
FeCl2 + HOH → Fe(OH)Cl + HCl
Fe2+ + 2Cl- + H+ + OH- → FeOH+ + 2Cl- + Н+
В результате гидролиза образуется слабый электролит, ион H+ и другие ионы. рН раствора < 7 ( раствор приобретает кислую реакцию).
3. Соль, образованная сильным основанием и слабой кислотой (КClO, K2SiO3, Na2CO3, CH3COONa) подвергается гидролизу по аниону, в результате чего образуется слабый электролит, гидроксид ион и другие ионы.
K2SiO3 + НОH → KHSiO3 + KОН
2K+ +SiO32- + Н+ + ОH- → НSiO3- + 2K+ + ОН-
рН таких растворов > 7 ( раствор приобретает щелочную реакцию).
4. Соль, образованная слабым основанием и слабой кислотой ( СН3СООNН4, (NН4)2СО3, Al2S3) гидролизуется и по катиону, и по аниону. В результате образуется малодиссоциирующие основание и кислота. рН растворов таких солей зависит от относительной силы кислоты и основания.
Алгоритм написания уравнений реакций гидролиза соли слабой кислоты и силиного основания
Различают несколько вариантов гидролиза солей:
1. Гидролиз соли слабой кислоты и сильного основания: (CH3COONa, KCN, Na2CO3).
Пример 1. Гидролиз ацетата натрия.
или CH3COO– + Na+ + H2O ↔ CH3COOH + Na+ + OH–
CH3COO– + H2O ↔ CH3COOH + OH–
Так как уксусная кислота слабо диссоциирует, ацетат-ион связывает ион H+, и равновесие диссоциации воды смещается вправо согласно принципу Ле Шателье.
В растворе накапливаются ионы OH- ( pH >7)
Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.
Если соль образована многоосновной кислотой, то гидролиз идет ступенчато.
Например, гидролиз карбоната: Na2CO3
I ступень: CO32– + H2O ↔ HCO3– + OH–
II ступень: HCO3– + H2O ↔ H2CO3 + OH–
Na2CO3 + Н2О = NaHCO3 + NaOH
( pH >7)
Практическое значение обычно имеет только процесс, идущий по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей.
Равновесие гидролиза по второй ступени значительно смешено влево по сравнению с равновесием первой ступени, поскольку на первой ступени образуется более слабый электролит (HCO3–), чем на второй (H2CO3)
Пример 2 . Гидролиз ортофосфата рубидия.
1. Определяем тип гидролиза:
Rb3PO4 ↔ 3Rb+ + PO43–
Рубидий – щелочной металл, его гидроксид — сильное основание, фосфорная кислота, особенно по своей третьей стадии диссоциации, отвечающей образованию фосфатов, — слабая кислота.
Идет гидролиз по аниону.
2. Пишем ионное уравнение гидролиза, определяем среду:
PO3-4+ H–OH ↔ HPO2-4 + OH–.
Продукты — гидрофосфат- и гидроксид-ионы, среда – щелочная.
3. Составляем молекулярное уравнение:
Rb3PO4 + H2O ↔ Rb2HPO4 + RbOH.
Получили кислую соль – гидрофосфат рубидия.
Алгоритм написания уравнений реакций гидролиза соли сильной кислоты и слабого основания
2. Гидролиз соли сильной кислоты и слабого основания: NH4NO3, AlCl3, Fe2(SO4)3.
Пример 1. Гидролиз нитрата аммония.
NH4+ + NO3– + H2O ↔ NH4OH + NO3– + H+
NH4+ + H2O ↔ NH4OH + H+
(pH
Источник: http://examchemistry.com/content/lesson/himreakcii/electrolizgidroliz.html
Электролиз
Электролиз (греч. elektron — янтарь + lysis — разложение) — химическая реакция, происходящая при прохождении постоянного тока через электролит. Это разложение веществ на их составные части под действием электрического тока.
Процесс электролиза заключается в перемещении катионов (положительно заряженных ионов) к катоду (заряжен отрицательно), и отрицательно заряженных ионов (анионов) к аноду (заряжен положительно).
Итак, анионы и катионы устремляются соответственно к аноду и катоду. Здесь и происходит химическая реакция. Чтобы успешно решать задания по этой теме и писать реакции, необходимо разделять процессы на катоде и аноде. Именно так и будет построена эта статья.
Примеры решения
В процессе тренировки вам могут попадаться металлы, которые пропущены в ряду активности. На этапе обучения вы можете пользоваться расширенным рядом активности металлов.
Теперь вы точно будете знать, что выделяется на катоде
Итак, потренируемся. Выясним, что образуется на катоде и аноде при электролизе растворов AgCl, Cu(NO3)2, AlBr3, NaF, FeI2, CH3COOLi.
Иногда в заданиях требуется записать реакцию электролиза. Сообщаю: если вы понимаете, что образуется на катоде, а что на аноде, то написать реакцию не составляет никакого труда. Возьмем, например, электролиз NaCl и запишем реакцию:
NaCl + H2O → H2 + Cl2 + NaOH
Натрий — активный металл, поэтому на катоде выделяется водород. Анион не содержит кислорода, выделяется галоген — хлор. Мы пишем уравнение, так что не можем заставить натрий испариться бесследно Натрий вступает в реакцию с водой, образуется NaOH.
Запишем реакцию электролиза для CuSO4:
CuSO4 + H2O → Cu + O2 + H2SO4
Медь относится к малоактивным металлам, поэтому сама в чистом виде выделяется на катоде. Анион кислородсодержащий, поэтому в реакции выделяется кислород. Сульфат-ион никуда не исчезает, он соединяется с водородом воды и превращается в серую кислоту.