Расчет мощности стабилизатора напряжения
02.08.2018
Как правильно определить необходимую мощность стабилизатора напряжения? – данный вопрос уже неоднократно рассматривался в опубликованных на нашем сайте статьях. Однако мы вернёмся к нему ещё раз, так как мощность – один из важнейших параметров любого стабилизатора и если она определена неверно, то прибор, независимо от топологии, точности и быстродействия, не сможет нормально функционировать и не справится со своими задачами:
- стабилизатор с выходной мощностью меньше необходимой будет постоянно отключаться или вообще не запустится, а возможно и выйдет из строя;
- приобретение устройства с мощностью, намного превышающей требуемое значение, – бесполезная трата средств. Прибор в процессе работы будет недозагружен, что снизит его КПД.
Для определения актуальной мощности стабилизатора рекомендуем действовать по следующему алгоритму: 1) выяснить мощность нагрузки; 2) к значению мощности, потребляемой нагрузкой, прибавить запас; 3) по итоговой величине подобрать подходящую модель стабилизатора.
В этой статье мы разберем три указанных пункта и проанализируем наиболее распространённые ошибки, сопутствующие каждому из них.
Как определить мощность нагрузки?
Мощность нагрузки на стабилизатор равняется сумме мощностей всех подключённых к стабилизатору устройств. Перед расчетом суммарного значения мощности необходимо выяснить энергопотребление каждого из потребителей. Это несложно: мощность электроприборов обычно указывается в технической документации и дублируется на заводской табличке, прикреплённой к изделию.
Несмотря на видимую простоту действия, на данном этапе можно совершить несколько серьёзных ошибок, которые повлекут за собой выбор стабилизатора, не подходящего под ваши задачи.
Особое внимание стоит обратить на оборудование, для которого указывается несколько мощностей: насосы, обогревательная, звуковая, климатическая техника и т.д. Важно различать мощность электрическую и мощность, выдаваемую изделием при выполнении своих прямых задач, то есть тепловую – для нагревательных котлов, охлаждения – для кондиционеров, звуковую – для аудиосистем и т.д.
При выборе стабилизатора следует опираться исключительно на величину мощности, потребляемой нагрузкой от электросети! В паспорте электроприбора данный параметр может быть назван: «потребляемая мощность», «присоединительная мощность», «электрическая мощность» и т.п. Всё перечисленное является отражением одной величины – активной мощности (измеряется в Ваттах (Вт или W)).
Обратите внимание! Производители обычно выстраивают модельный ряд своих стабилизаторов на основе другой величины – полной мощности (измеряется в Вольт-Амперах (ВА или VA)). Важно понимать, что Ватты и Вольт-Амперы не одно и то же, и соответственно 1000 Вт не равны 1000 ВА!
У устройств, конструкция которых содержит ёмкостные компоненты или электродвигатели, активная и полная мощности могут существенно различаться. Поэтому приобретение рассчитанного на 1000 ВА стабилизатора при нагрузке в 1000 Вт может стать неверным решением – прибор окажется перегружен со всеми вытекающими отсюда последствиями.
Во избежание данной ошибки, следует перевести Ватты в Вольт-Амперы и проанализировать не только активную, но и полную мощность нагрузки. Перевод из Ватт в Вольт-Амперы осуществляется делением значения в Ваттах на специальный параметр – коэффициент мощности или cos(φ):
ВА=Вт/cos(φ) (1).
Сos(φ) отражает зависимость активной мощности устройства от полной. Чем ближе величина cos(φ) к единице, тем меньше энергии рассеивается в виде электромагнитного излучения и тем больше преобразуется в полезную работу.
Численное значение cos(φ) обычно (но не всегда) указанно в технической документации прибора, потребляющего переменный ток (может обозначаться как «cos(φ)», «Power Factor» или «PF»).
Если производитель не предоставил информацию о коэффициенте мощности своего изделия, то для бытовой техники допустимо принять cos(φ) в пределах 0,7 — 0,8, кроме устройств, преобразующих электроэнергию в свет и тепло (лампы накаливания, электрочайники, утюги и т.д.), для них интервал значений коэффициента мощности – 0,9 — 1.
Современная техника, в первую очередь компьютеры, часто оснащается блоком питания с коррекцией коэффициента мощности, которая приближает данный параметр к единице – 0,95-0,99. Если уверенности в наличии такой функции (обозначается «PFC» или «ККМ») нет, то для cos(φ) рекомендуется применить значение из указанного в предыдущем абзаце типового диапазона.
Полную мощность нагрузки следует рассчитывать с использованием только значения коэффициента мощности оборудования, соответствующего этой нагрузке, а не с использованием значения входного коэффициента мощности стабилизатора!
Обратите внимание! Устройства, имеющие в своей конструкции электродвигатель, отличаются высокими пусковыми токами. К этой категории относятся: насосы, стиральные и посудомоечные машины, холодильники, кондиционеры, станки и компрессоры. Величина потребляемой из электросети энергии, в момент включения любого из названых приборов, может в несколько раз превысить величину, характерную для номинального режима работы.
Производители указанной техники иногда приводят максимальное энергопотребление непосредственно в характеристиках каждой модели, а иногда наоборот – дают только номинальное значение мощности, стараясь не привлекать внимание к неминуемым скачкам тока.
Рекомендуем внимательно изучить сопутствующую любому оборудованию документацию и поискать информацию о фактической мощности, потребляемой устройством при пуске и, вообще, в различных режимах работы.
Мощность нагрузки определяется с использованием наибольшего из приведённых для каждого устройства значений!
Помимо механизмов с электродвигателями, высокие пусковые токи характерны и осветительным приборам. Причем не только с галогенными лампами и лампами накаливания, но и с популярным в последнее время – светодиодными (светодиоды не имеют пусковых токов, но большинство светильников, реализованных на их базе, снабжены конденсаторами, включение которых вызывает резкое увеличение потребляемого тока).
При выборе стабилизатора для защиты крупной светотехнической системы следует учесть, что значение мощности, возникающее при запуске такой системы, может многократно превышать номинальное.
Какой запас мощности необходим стабилизатору?
Правильно выбранный стабилизатор должен иметь выходную мощность, превышающую мощность, необходимую для электропитания нагрузки. Разница между мощностью стабилизатора и фактическим энергопотреблением нагрузки называется запасом мощности. Рекомендуемый запас – 30% от величины энергопотребления нагрузки, такое значение позволит:
- подключить к устройству в процессе эксплуатации дополнительные приборы, мощность которых не учитывалась при изначальном расчёте нагрузки;
- избежать перегрузки в случае сильного падения напряжения в электросети. Дело в том, что мощность стабилизатора при выходе питающего напряжения из определённых пределов (рабочего диапазона) уменьшается. В частности, при 135 В в сети, стабилизатор вместо заявленных 500 ВА выдаст только 400 ВА и, соответственно, не сможет запитать предельную к его номиналу нагрузку.
Для некоторого оборудования рекомендуется заложить запас мощности свыше 30%. Это, например, кондиционеры или IT-техника. В первом случае, данное решение объясняйся ростом потребляемой кондиционером мощности в процессе эксплуатации устройства (вызвано неизбежным загрязнением фильтрующей сетки). Во втором случае – тенденцией к постоянному увеличению мощностей телекоммуникационного оборудования.
Как подобрать модель стабилизатора?
Для определения подходящей по мощности модели необходимо сверить мощностной ряд предлагаемых производителем стабилизаторов с энергопотреблением нагрузки – ближайшее в большую сторону значение в мощностном ряду и будет необходимой мощностью стабилизатора.
Обратите внимание! Выбор стабилизатора со значением мощности, ближайшим к энергопотреблению нагрузки в меньшую сторону либо снизит заложенный ранее запас по мощности, либо, в худшем случае, приведёт к приобретению стабилизатора с несоответствующими нагрузке выходными параметрами.
Обратите внимание! Для трехфазного стабилизатора нагрузка на каждую фазу должна составлять не более 1/3 от номинальной. Например, трехфазный стабилизатор с номиналом 6000 ВА запитает трехфазную нагрузку в 4200 ВА (мощность потребляемая от одной фазы составит 1400 ВА), но подключение к отдельной фазе этого стабилизатора нагрузки в 2500 ВА вызовет перегрузку, так как максимально допустимое значение по одной фазе составляет: 6000/3=2000 ВА.
Практический пример расчета мощности стабилизатора
Стабилизатор приобретается для одновременной защиты трех однофазных потребителей. Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3.
Согласно заводским паспортам:
- номинальная мощность потребителя 1 – 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
- коэффициент мощности потребителей 1 и 2 – 0,7, потребителя 3 – 0,95.
1. Определение мощности нагрузки.
Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную, согласно технической документации, – 1800 Вт. Используя формулу (1), переведём мощность каждого потребителя из Вт в ВА:
1800/0,7=2571,4 ВА – для потребителя 1; 130/0,7=185,7 ВА – для потребителя 2;
700/0,95=736,8 ВА – для потребителя 3.
Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:
1800 +130+ 700= 2630 Вт;
2571,4+185,736,8=3493,9 ВА.
Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная –2630 Вт (обратите внимание на разницу значений в Вт и ВА).
2. Определение запаса мощности.
Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:
2630•0,3=789 Вт – запас активной мощности;
34,939•0,3=1048,17 ВА – запас полной мощности.
Следовательно мощность нагрузки с учётом запаса составит:
263089=3419 Вт;
3493,9+1048,17= 4542,07 ВА.
3. Выбор модели стабилизатора с необходимой мощностью.
3.1 Однофазный стабилизатор. Выберем подходящий для электропитания вычисленной нагрузки (с учетом запаса) однофазный стабилизатор, используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:
350 | 300 | 6000 | 5400 |
550 | 400 | 8000 | 7200 |
1000 | 750 | 10000 | 8000 |
1500 | 1125 | 15000 | 13500 |
2500 | 2000 | 20000 | 16000 |
3500 | 2500 |
Ближайшая с большей стороны к расчётным значениям мощность – 6000 ВА и 5400 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.
Если взять модель с мощностью, ближайшей к расчетному значению в меньшую сторону (3500 ВА/ 2500 В), то стабилизатор окажется перегружен, так как выходная активная мощность устройства окажется меньше потребляемой активной мощности нагрузки: 2500 Вт
Источник: https://www.shtyl.ru/support/articles/raschet-moshchnosti-stabilizatora-napryazheniya/
Как рассчитать реактивную мощность генератора?
Лекция № 16
План.
-
Общие положения.
-
Регулирующий эффект нагрузки.
-
Потребители реактивной мощности.
-
Генерация реактивной мощности генераторами ЭС.
Общие положения
Из баланса реактивноймощности в энергосистеме следует, чтов случае, когда генерация реактивноймощности превышает ее потребление,напряжение в сети возрастает. Придефиците реактивной мощности – напряжениеуменьшается. Этот вывод мы уже получали,когда рассматривали векторную диаграммулинии электропередачи напряжением 110кВ. Емкостный ток ЛЭП, работающей нахолостом ходу, или, другими словами,мощность, генерируемая ЛЭП, повышаетнапряжение в конце ЛЭП.
В отличиеот баланса активной мощности, балансреактивной мощности не может в полноймере определить требования, которыепредъявляются к источникам реактивноймощности. Если активную мощностьвырабатывают только генераторыэлектростанций, то реактивную мощностьможно получить от дополнительныхисточников, которые могут устанавливатьсявблизи потребителей. Эти дополнительныеисточники называются компенсирующимиустановками.
При проектированииэлектрической сети нужно проверятьбаланс реактивной мощности как в целомпо энергосистеме, так и в отдельных еечастях. При этом следует учитывать инеобходимость резерва реактивноймощности.
Баланс реактивноймощности следует предусматриватьотдельно для каждого режима сети.Характерными режимами в системе являются:
- режим наибольшей реактивной нагрузки. Для режима характерно наибольшее потребление реактивной мощности и наибольшая мощность компенсирующих устройств;
- режим наибольшей активной нагрузки. Режим связан с наибольшей загрузкой генераторов активной мощности при наименьшей выработке реактивной мощности;
- режим наименьшей активной нагрузки. В этом режиме часть генераторов отключают. Выработка реактивной мощности генераторами электро-станций уменьшается;
- послеаварийные и ремонтные режимы. В этих режимах наибольшие ограничения по передаче реактивной мощности.
Если в энергосистеменаблюдается дефицит активной мощности,то он покрывется за счет избытка активноймощности в других системах. Для покрытиянедостатка реактивной мощности ееэкономичнее генерировать компенсирую-щимиустройствами, которые устанавливаютсяв данной энергосистеме, а не передаватьиз соседних систем.
Регулирующий эффект нагрузки
Изменение активнойи реактивной от напряжения происходитпо статическим характеристикам (рис.16.1). Рассмотрим, каким образом реагируетнагрузка на изменение режима в простейшейсистеме (рис. 16.2).
Внормальном режиме работы на шинахнагрузки поддерживается номинальноенапряжение. Потребитель берет из сетимощность равную P2+ jQ2.
При постоянномнапряжении в начале ЛЭП, напряжение наее конце может быть рассчитано сле-дующимобразом:
Предположим,что напряжение в конце ЛЭП уменьшается.В соответствии со статическимихарактеристиками, активная и реактивнаямощности потребителя, будут уменьшаться.
Следовательно,будут уменьшаться мощность в конце ЛЭПи потеря напряжения ,а напряжение в конце ЛЭП будет увеличиваться.
Этот выводсправедлив, когда напряжение в концеЛЭП будет больше критического напряжения:
.
Критическоенапряжение составляет (0,7 – 0,8) от Uном.
Таким образом, принапряжениях больших чем критическое,нагрузка, изменяя свою мощность, стремитсяподдержать неизменным напряжение насвоих шинах. В этом случае говорят оположительном регулирующем эффектенагрузки.
При напряженияхменьших чем критическое проявляетсяотрицательный регулирующий эффектнагрузки. Активная мощность потребителяв соответствии со статическимихарактеристиками уменьшается. Потреблениереактивной мощности начинает возрастать.Причем, значение реактивной мощностиувеличивается в большей степени, чемснижение активной. Следовательно,активная мощность в конце ЛЭП уменьшается,реактивная мощность увеличивается .
Потеря напряжения на участке увеличивается,а напряжение на шинах нагрузки снижаетсяЭто приводит к увеличению потребленияреактивной мощности и дальнейшемуснижению напряжения и т.д. Возникает явление, котороеназывается лавиной напряжения. Притакой аварии тормозятся асинхронныедвигатели.
Реактивная мощность асинхронныхдвигателей растет, баланс реактивноймощности нарушается, причем потреблениереактивной мощности в значительноймере превышает выработку:
.
Это в свою очередьприводит к понижению напряжения.Остановить снижение напряжения приэтой аварии можно, лишь отключив нагрузку.
Чтобы напряжениене снижалось ниже критического нагенераторах и мощных синхронныхдвигателях устанавливаются автоматическиерегуляторы возбуждения (АРВ). Под ихдействием генераторы и синхронныедвигатели увеличивают выработкуреактивной мощности.
Источник: https://1000eletric.com/kak-rasschitat-reaktivnuyu-moschnost-generatora/
Активная мощность электрического тока
Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.
Мощность в цепи переменного электрического тока
Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.
Мощность – физическая величина, отражающая скорость преобразования или передачи электрической энергии.
В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.
Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.
При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.
Понятие активной мощности
Активная “полезная” мощность – это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).
Рассчитывается по формуле: P = U⋅I⋅cosφ,
где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.
ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73
Понятие реактивной мощности
Реактивная “вредная” мощность – это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.
Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.
Обозначается эта величина латинской буквой Q.
ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).
Рассчитывается по формуле:
где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.
ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.
Емкостные и индуктивные нагрузки
Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.
Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.
ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.
Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.
ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.
Коэффициент мощности cosφ
Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.
Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.
ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.
Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.
Источник: https://vemiru.ru/info/aktivnaja-moshhnost-jelektricheskogo-toka/
Активная, реактивная и полная (кажущаяся) мощности
Активная мощность (P)
Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть
P = U I
потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.
Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:
P = U I Cosθ
В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.
Формулы для активной мощности
P = U I — в цепях постоянного тока
P = U I cosθ — в однофазных цепях переменного тока
P = √3 UL IL cosθ — в трёхфазных цепях переменного тока
P = 3 UPh IPh cosθ
P = √ (S2 – Q2) или
P =√ (ВА2 – вар2) или
Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или
кВт = √ (кВА2 – квар2)
Реактивная мощность (Q)
Также её мощно было бы назвать бесполезной или безваттной мощностью.
Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).
Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.
Реактивная мощность определяется, как
Q = U I sinθ
и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.
Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.
Формулы для реактивной мощности
Q = U I sinθ
Реактивная мощность = √ (Полная мощность2 – Активная мощность2)
вар =√ (ВА2 – P2)
квар = √ (кВА2 – кВт2)
Полная мощность (S)
Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.
Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.
Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.
Формула для полной мощности
Источник: https://khomovelectro.ru/articles/aktivnaya-reaktivnaya-i-polnaya-kazhushchayasya-moshchnosti.html
Что такое реактивная мощность и её компенсация
17.08.2017
Асинхронные двигатели, трансформаторы, газоразрядные и люминесцентные лампы, индукционные и дуговые печи и т.д.
в силу своих физических свойств вместе с активной энергией потребляют из сети также и реактивную энергию, которая необходима для создания электромагнитного поля.
В отличие от активной энергии, реактивная не преобразуется в другие виды – механическую или тепловую – и не выполняет полезной работы, однако вызывает потери при ее передаче. На Рис.1 изображены направления протекания тока при работе с реактивными нагрузками.
Рис.1. Полная мощность.
Наличие в сети реактивной мощности (Q, Вар) характеризуется коэффициентом мощности (PF, cos ф) и является соотношением активной (P, Вт) к полной (S, ВА). Ниже можно увидеть зависимость полной мощности от ее составляющих как на векторной диаграмме, так и на более житейском уровне – бокале пива, где пиво является активной составляющей, а пена – реактивной. Никто же не хочет иметь бокал только с пеной?
Рис.2. Треугольник мощностей. Расчет коэффициента мощности.
При низких значениях коэффициента мощности в сети будет возникать ряд нежелательных явлений, которые могут привести к существенному уменьшению срока службы оборудования. Рекомендуется иметь cos ф не менее 0,9 (например, в Чехии за cos ф менее 0,95 штрафуют). Для этого разработан ряд мероприятий по регулированию баланса реактивной мощности в сети – компенсация реактивной мощности.
Компенсация реактивной мощности (КРМ).
Следует понимать, что реактивная мощность бывает двух характеров – индуктивная и емкостная. Нас интересует компенсация только первого типа, т.к. второй встречается редко. В нашем случае – сетях с индуктивной нагрузкой – для увеличения cos ф требуется устанавливать компенсационные конденсаторы. Но как это сделать?
Выбор способа компенсации предполагает определение места установки конденсаторов (зачастую в составе конденсаторной установки (далее КУ)). Существует три основных варианта:
- Индивидуальная компенсация
Размещение конденсаторов у устройств с низким cos ф и включение одновременно с последними.
Размещение конденсаторов у группы устройств (например, пожарных насосов).
- Централизованная компенсация
Предусматривает установку КУ на главном распределительном щите. Если предыдущие варианты могли быть как регулируемыми, так и нет, то этот, как правило, регулируемый.
Рис.3. Способы компенсации.
При правильном подборе КУ мероприятия по компенсации реактивной мощности позволяют:
- существенно уменьшить нагрузку на трансформаторах, а следовательно уменьшить их нагрев и увеличить срок службы
- при включении КУ в расчет при проектировании новых объектов, существенно уменьшить сечение проводников
- при включении КУ в уже существующие сети, разгрузить их, повышая пропускную способность без реконструкции
- снизить расходы на электроэнергию за счет снижения потери в проводниках
- повысить стабильность напряжения (все) и качество электроэнергии (при использовании ФКУ)
Где мы можем сэкономить видно невооруженным глазом, но для начала придется и потратиться.
Во-первых, необходимо заказать проект, который следует доверить проверенной организации. Которая в свою очередь проведет ряд измерений или сделает расчеты для новых объектов и исходя из них даст рекомендации по способу компенсации, типу КУ и их параметрам.
Во-вторых, следует выбрать организацию-сборщика, которая соберет, установит и настроит наши КУ.
Что может входить в состав КУ?
Рассмотрим максимально возможную комплектацию конденсаторной установки:
-
Вводное устройство – автоматический выключатель, разъединитель предохранительный или выключатель нагрузки (при наличии еще одного вводного устройства, например, в ГРЩ).
-
Защитные устройства ступеней – большинство производителей (например, ZEZ Silko) рекомендуют использовать плавкие вставки с характеристикой gG (см. таблицу ниже), но нередко можно встретить и защиту автоматическими выключателями.
-
Коммутационное устройство (для статической компенсации НН) – контактор с токоограничевающей приставкой (контакты предварительного включения с сопротивлениями). Важно выбрать качественного производителя, т.к. через контактор при включении ступени проходят огромные токи (до 200Iе), обусловленные зарядом конденсатора, например, Benedict-Jager или Eaton (Moeller).
-
Антирезонансные дроссели (реакторы) – используются для защиты от перегрузки токами конденсаторов при наличии в сети высших гармоник.
-
Компенсационные конденсаторы – главный компонент всей установки – емкостной элемент. о применении, конструкции и монтаже низковольтных цилиндрических компенсационных конденсаторов в предыдущей статье.
-
Регулятор реактивной мощности – своего рода анализатор сети с функцией управления ступенями. В зависимости от модели разные регуляторы кроме основных параметров (U, I, P, cos ф, количество подключенных ступеней) контролируют и ряд дополнительных (нелинейные искажения, температура и т.д). Также могу быть и дополнительные функции, например, коммуникация или автонастройка.
* Рассмотрена только основная комплектация без оболочек и микроклимата, защиты вторичных цепей.
2,9 | 2 | 2,5 | 8 |
3,6 | 2,5 | 2,5 | 8 |
4,5 | 3,15 | 2,5 | 10 |
5,8 | 4 | 2,5 | 10 |
7,2 | 5 | 2,5 | 16 |
9 | 6,25 | 2,5 | 16 |
11,5 | 8 | 4 | 20 |
14,4 | 10 | 4 | 25 |
18,1 | 12,5 | 6 | 32 |
21,7 | 15 | 6 | 40 |
28,8 | 20 | 10 | 50 |
36,1 | 25 | 10 | 63 |
43,4 | 30 | 16 | 80 |
50,5 | 35 | 16 | 100 |
57,7 | 40 | 25 | 100 |
72,2 | 50 | 25 | 125 |
86,6 | 60 | 35 | 160 |
115,5 | 80 | 70 | 200 |
144,3 | 100 | 95 | 250 |
Таблица 1. Подбор предохранителей и проводников.
В заключение хочется напомнить, что неверно спроектированные, собранные и настроенные компенсационные установки или из материалов сомнительного происхождения имеют обыкновение громко выходить из строя.
Коммерческое предложение действительно на 21.06.2020 г.
Источник: https://lsys.by/news/articles/chto-takoe-reaktivnaya-moshchnost-i-eye-kompensatsiya.html
Активная мощность
В цепях постоянного тока не разделяют мощность на разные составляющие, такие как активная и реактивная, поэтому используют простое выражение P=U*I. Но с переменным током дело обстоит иначе. В этой статье мы рассмотрим, что такое активная, реактивная и полная мощность электрической цепи.
Определение
Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:
P=U*I
P=I2*R
P=U2/R
По этой же формуле определяется полная мощность в цепи переменного тока.
Нагрузку разделяют на два основных типа:
- Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
- Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).
Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.
Смысл реактивной нагрузки
В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости).
Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока).
Давайте рассмотрим каждый из них.
В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».
В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.
В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.
Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.
Треугольник мощностей и косинус Фи
Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.
Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:
Буквой P – обозначена активная мощность, Q – реактивная, S – полная.
Формула полной мощности имеет вид:
Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.
Единицы измерения:
- P – Вт, кВт (Ватты);
- Q – ВАр, кВАр (Вольт-амперы реактивные);
- S – ВА (Вольт-амперы);
Расчёты
Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:
А для потребителя:
Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:
Источник: https://chipstock.ru/remont/aktivnaya-moshhnost.html
Активная мощность формула – , ,
- Понятие о реактивных и активных мощностях и нагрузках: формула и единицы измерения
- формула, как определить — Asutpp
- Определение
- Расчет
- Компенсация
- Активная реактивная и полная мощность
- 3.5. Активная, реактивная и полная мощности
- Активная, реактивная и полная мощность
- Что такое активная, реактивная и полная мощность.
Активная мощность формула
- Активная мощность — Все формулы
- Реактивная мощность — Все формулы
- Что такое активная, реактивная и полная мощность нагрузки стабилизатора?
В технической литературе и сопроводительной документации применяют разные обозначения электрических параметров. Реактивная мощность определяет часть процессов при подключении индуктивных (емкостных) нагрузок.
Вместе с активной (рабочей) составляющей она формирует полные энергетические характеристики цепи переменного тока.
Наглядная демонстрация физических понятий
Мощность активная, реактивная и полная
Перечисленные понятия рассматривают с учетом особенностей нагрузки. Активная мощность потребляется обычным проводником. При увеличении силы тока энергия расходуется на повышение температуры (ТЭН чайника) или световое излучение (нить лампы накаливания).
Индуктивная нагрузка и конденсатор потребляют реактивную мощность. Энергия в этих вариантах преобразуется в магнитное (электрическое) поле, соответственно. Суммарная величина – полная мощность.
Смысл реактивной нагрузки
Любая реактивная нагрузка создает временной сдвиг между фазами тока и напряжения. Эту величину измеряют в градусах. Наиболее наглядным является векторное представление электрических параметров. Если подключить индуктивность, напряжение будет опережать ток. Угол между ними обозначают в формулах буквой «ϕ» («Фи» греч.).
Временные и векторные диаграммы показывают, как изменяются основные параметры при подключении индуктивных (емкостных) элементов
На картинке показано, что при подключении емкостной нагрузки вектора «меняются» местами. В идеальных условиях сдвиг между векторами равен 90°. В действительности следует учитывать влияние электрического сопротивления цепи, несовершенство конструкций. С учетом особенностей элементов следует напомнить, что в индуктивности (емкости) при сохранении параметров источника питания плавно изменяется ток (напряжение), соответственно.
Почему в сети напряжение переменное
Для объяснения настоящей ситуации надо сделать краткий экскурс в историю. Электричество известно человеку сотни (по некоторым данным, тысячи лет). Однако действительно массовое использование этой энергии началось сравнительно недавно – в конце 19 века. Именно тогда (1879 г.) Эдисон запатентовал первый функциональный прибор, который помогал решать проблемы освещения. Для питания лампочек он стал монтировать сети постоянного тока.
Через десять лет Тесла создал генераторы переменного тока. После ожесточенной конкурентной борьбы именно его способ передачи энергии на расстояния одержал победу. Этот результат был обеспечен скорее рыночными методами, чем внимательным сравнением потребительских характеристик.
К сведению. Метрополитен Нью-Йорка до сих пор функционирует с подключением к сети постоянного тока.
Выгода от переменного напряжения
Важные для потребителей преимущества этого варианта приведены в следующем перечне:
- простая конструкция генераторов/ электродвигателей;
- минимальные потери при передаче электроэнергии на сравнительно небольшие расстояния;
- простота преобразования напряжения с применением трансформатора;
- поддержание стабильности оборотов электрических приводов без лишних трудностей;
- отсутствие полярности.
Каждый из пунктов можно рассмотреть подробно. Генератор (электромотор) переменного тока, например, нетрудно создать без токосъемных щеток и постоянных магнитов. Простота конструкции обеспечивает:
- разумную стоимость;
- минимальные затраты при обслуживании и ремонте;
- долговечность;
- надежность.
Обороты мощных электродвигателей регулируют изменением частоты. Это значит, что в обычных условиях эксплуатации обеспечивается поддержание расчетных параметров без дополнительных схем управления и контроля. В частности, отмеченные особенности идеально подходят для создания насосной станции.
Для повышения/ уменьшения напряжения в сетях переменного тока используют типовые сравнительно недорогие конструкции. Изменяя количество витков обмотки на едином сердечнике, можно получить необходимый коэффициент трансформации с высокой точностью. В процессе работы дополнительная настройка не требуется.
Постоянное напряжение снижают с применением электрического сопротивления, которое в данном случае не выполняет никаких полезных функций. Для повышения – применяют сложные схемы с промежуточным преобразованием в переменный сигнал.
Какой из способов предпочтительнее, можно определить после перечисления преимуществ сетей постоянного тока:
- возможность подключения непосредственно к источнику питания светодиодов, гальванических ванн, иных потребителей;
- простая зарядка аккумуляторных батарей;
- отсутствие необходимости согласования нагрузок;
- высокая точность измерений;
- минимальные потери при передаче электроэнергии на большие расстояния;
- применение «однопроводной» линии питания (метро, трамвай).
Убытки от переменного напряжения
Формулы расчетов активной и реактивной мощностей подробно рассмотрены в следующих разделах статьи. Однако для изучения потерь в сетях переменного тока необходимо привести определение поправочного коэффициента cosϕ (косинус Фи). Это значение производители указывают в технических паспортах и на бирках корпусов мощных моторов, сварочных аппаратов, другой техники.
Потери в электрической схеме а) с диаграммой полной б) и частичной в) компенсации
В этом примере рассмотрена приближенная к реальной ситуация, когда подключены активные нагрузки вместе с реактивными. Если cosϕ=0,75, то при одной и той же потребляемой мощности номинальный ток в цепи (100 А) увеличится следующим образом:
I = Ia/ cosϕ = 100/0,75 ≈ 133 А.
При этом на повышение температуры будет расходоваться мощность, пропорциональная квадрату тока. Считать ее можно по формуле:
Pнагр = I2 * Rc.
Соответствующие потери увеличатся в 1,77 раза.
Следует отметить! Изменения силы тока сопровождаются колебаниями напряжения. Иные потребители, подключенные к этой же сети, будут работать в неблагоприятных режимах. При этом счетчик будет показывать неизменное потребление энергетических ресурсов.
Понятной является ситуация, когда ИБП или другой источник питания начинает выдавать ток, превышающий расчетные параметры. Перегревается не только генератор, но и проводка. Значительно возрастает риск аварий, поломок.
Активная, реактивная и полная мощности в формулах
Чтобы рассчитать или измерить мощность: полную, активную и реактивную, служат основные формулы:
- активная мощность = полная * cosϕ;
- реактивная = напряжение * ток * sinϕ.
Для упрощения можно начать с примера на основе цепи постоянного тока, где действительна известная формула:
Pa = U * I.
Это активная (рабочая, полная) мощность. Единицы измерения – ватт (Вт), киловатт (кВт), другие производные. При подключении сопротивления (R) ее можно вычислить следующим образом:
Простота исчезает при рассмотрении сигналов синусоидальной формы. Именно такими параметрами отличаются стандартные сети питания (220/380V). Активная мощность в этом случае зависит от фазового сдвига между векторами тока и напряжения.
Соответствующие зависимости выражают следующим образом:
Pa = U * I * cosϕ.
Эта формула подходит для расчета обычной сети 220V, которой пользуется большинство рядовых потребителей. Мощные насосы и станки подключают к трехфазным источникам питания 380 V. Для этого варианта нужна коррекция:
Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.
Реактивная мощность (Pq) не только потребляется нагрузкой, но и возвращается обратно в источник питания. Ее значение определяют следующим образом:
Pq = U * I * sinϕ.
К сведению. Измеряется эта величина в реактивных вольт-амперах (вар).
Для вычисления полной мощности формула содержит перечисленные выше компоненты:
Источник: https://biysk-tv.ru/raznoe-2/aktivnaya-moshhnost-formula.html
Реактивная мощность это – как найти, формула расчёта, в чем измеряется
- как найти, формула расчёта, в чем измеряется
- Реактивная мощность — это Что такое Реактивная мощность?
- Активная и реактивная мощность. За что платим и работа
-
- Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.
- Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается.
-
- Понятие о реактивных и активных мощностях и нагрузках: формула и единицы измерения
- Реактивная мощность — это Что такое Реактивная мощность?
-
- Смотреть что такое «Реактивная мощность» в других словарях:
-
- Что такое реактивная мощность и её компенсация
- Реактивная мощность | Домашний электрик
Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.
Понятие полной мощности. Треугольник мощностей
Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.
Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.
Источник: https://i-flashdrive.ru/raznoe/reaktivnaya-moshhnost-eto-kak-najti-formula-raschyota-v-chem-izmeryaetsya.html
Активная и реактивная мощность генератора
Потребители, приобретая ДГУ, зачастую не задумываются о многих технических характеристиках оборудования. Касается это и такого понятия, как коэффициент мощности генератора. Параметр является важным, поскольку самым серьезным образом влияет на подачу электроэнергии.
Что представляет собой мощность генератора?
Электроприборы, подключенные к генератору, потребляют активную и реактивную мощность, которые в сумме образуют общую мощность.
- Активная мощность используется для работы всех приборов. Ее называют «полезной».
- Реактивная мощность, называемая «пустой», возникает вследствие особенности оборудования и законов физики. Мощность циркулирует между источником электроснабжения и подключенными потребителями.
Каждый генератор имеет свой коэффициент мощности, демонстрирующий количество активной мощности от полной. При выборе ДГУ для собственных нужд важно обратить внимание на этот параметр, убедившись в том, что оборудование справится с возложенными на него задачами.
Оптимальным коэффициентом мощности можно считать показатель 0.8. Это значит, что электроприборы получают 80% активной мощности от 100% общей мощности, вырабатываемой генератором.
Что такое компенсация реактивной мощности?
Чрезмерное большое количество реактивной мощности ухудшает работу всей электросети. Так, генератор потребляет слишком много топлива, быстро изнашивается и в электросети требуется задействовать провода с увеличенным сечением.
Закажите дизельный генератор в ООО «ЭК Прометей» оформив заявку онлайн или позвонив по контактному телефону:
(812) 748-27-22
Для снижения реактивной мощности используется компенсация. Она может быть нескольких видов:
- Индивидуальная. В данном случае задействуются конденсаторные установки для определенных потребителей.
- Групповая. Применение общей конденсаторной установки позволяет компенсировать реактивную мощность сразу для нескольких приборов.
- Централизованная. Это наиболее удобный способ компенсации, применяемый для широкого диапазона изменений мощности.
Главное преимущество компенсации реактивной мощности в том, что таким образом удается значительно сократить расходы топлива. Также это позволяет снизить нагрузку на оборудование.
Способ компенсации мощности в электросети следует подбирать грамотно. В некоторых случаях может потребоваться комплексное решение, включающее улучшение тока при помощи фильтров гармоник.
Особенно важная компенсация реактивной мощности на промышленных предприятиях. Она необходима для эффективного использования существующего электроснабжения.
Источник: https://prometey-energy.ru/articles/chto-takoe-reaktivnaya-moschnost-generatora.html
Основные понятия
Когда на уроке физики учитель рассказывает про закон Ома, он оперирует с активными составляющими тока и напряжения. Значит, их сдвиг фаз равен нулю. И мощность выходит активная. Вычисляется как произведение тока на напряжение. На уроке физики мощность превращается в тепло на абстрактном сопротивлении. В жизни это, как правило, негативный эффект потери энергии на проводах. Полезными считаются:
- Превращение тока в движение ротора двигателя.
- Обогрев помещений.
- Иллюминация (освещение).
- Розжиг конфорки плиты.
- Формирование на выходе блока питания нормативных напряжений.
Примеров масса. К примеру, трансформатор подстанции считается нагрузкой для ГЭС. На ЛЭП теряются тепло и звук, часть мощности отражается. Последняя носит название реактивной, описывает реакцию цепи, содержащей индуктивности (в случае трансформатора) или ёмкости, на внешнее воздействие. Некоторое время элементами мощность накапливается, потом отдаётся в обратном направлении. Возникает вопрос – зачем использовать подобные “вредящие” реактивные элементы.
- Реактивные элементы преобразуют виды энергии, что часто требуется. К примеру, для гальванической развязки цепей разного вольтажа применяется трансформатор. Без катушек индуктивности собрать его нет возможности. Аналогичным образом конденсаторы нужны для фильтрации.
- Использование реактивных элементов не всегда во вред. Считается хорошим тоном, если предприятие потребляет отражённую собственным оборудованием мощность. За превышение лимита над разрешённым уровнем реактивной мощности возможен штраф за перегрузку ЛЭП и трансформаторов подстанции. Чтобы подобного избежать, индуктивное сопротивление двигателей уравнивают ёмкостным сопротивлением конденсаторных установок. Образуется колебательный контур, реактивная мощность циркулирует исключительно по цепям предприятия, нанося немалый урон, по большей части, осаждаясь теплом на проводке.
Всё, написанное выше, даёт понятие в простейшем виде о происходящих в сети процессах. Учащиеся не в силах объяснить рассматриваемые понятия. Допустим, процесс заряда конденсатора. Напряжение на нем отстаёт от тока. Реактивная ли мощность? Если после заряда конденсатор отключится, завод не оштрафуют. Но мощность все-таки реактивная – у тока и напряжения разная фаза:
P = IU cosφ, где φ – угол сдвига фаз между напряжением и током.
Что такое угол сдвига фаз
Никола Тесла видел мир, как эфир, заполненный колебаниями разных частот. Из гармоник образуется материя. Тесла напророчил, к примеру:
- Появление сети интернет.
- Центральные выпуски новостей по радио и телевидению.
- Охват планеты энергетическими сетями.
Это сегодня кажется окружающий мир простым. Тесла предвидел мир спустя сотню лет. Колебание в физике и радиотехнике удобно представить в виде вектора (направленного отрезка), вращающегося вокруг начала координат со скоростью, равной собственной частоте. Круговая частота находится, как ω = 2 Пи f. Параметр применяется в ряде формул.
Когда источник тока формирует мощность, ток и напряжение вращаются синхронно с нулевым сдвигом фаз. Разумеется, реальность сильно отличается от идеала, но происходящее понятно. Для напряжения вторичной обмотки трансформатора записывается выражение:
E2 = I2R2 + U2 + I2 2 Пи L, где:
- I2 – ток вторичной обмотки, чуть отстаёт от напряжения, но не на 90 градусов;
- U2 – выходное напряжения на обмотке, вместе с I2 поставляется предприятиям и иным потребителям;
- I2R2 – потери теплом на омическом сопротивлении вторичной обмотки (находится по закону Ома);
- I2 2 Пи L – реактивная составляющая напряжения, как видно из рисунка, откладывается перпендикулярно току, становясь причиной наличия сдвига фаз.
Итак, индуктивное сопротивление приводит к тому, что потребителям отгружается некачественная энергия. Чтобы выправить ситуацию, ставят на подстанции блоки конденсаторов. Тогда реактивные сопротивления уравновесят друг друга, и реактивная мощность станет циркулировать лишь по территории подстанции. Это плохо, но таков принцип действия электромагнитной индукции. Потребителям поставщик отгрузит чистую активную мощность без сдвигов фаз.
Как уже говорилось выше, предприятия потребят часть мощности, но неизбежно влияние паразитных эффектов. Пора вспомнить определение, данное вначале. Отдельные источники утверждают, что активная мощность преобразуется в прочие виды энергии. Когда компенсаторная установка наберётся реактивной мощности, потом отдаёт её на индуктивности не до бесконечности. Реактивная мощность рассеивается постепенно в виде тепла на кабелях. Некорректно говорить о неких превращениях. Подытожим:
- В промышленности реактивной мощностью называют энергию, отдаваемую обратно по цепи питания. Эффект от начала и до конца сегодня негативный.
- В физике реактивная мощность появляется немедленно при возникновении сдвига фаз. Не всегда паразитный эффект.
Два определения тесно связаны, нераздельно присутствуют в литературе. Осталось добавить, что не всегда компенсаторные установки требуется ставить на подстанции. Сопротивление ЛЭП носит ярко выраженный ёмкостной оттенок. Негативный эффект уравновешивается при умелом проектировании. Присутствует иногда необходимость в установке реакторов, чтобы избежать ряда негативных моментов.
Активная мощность трёхфазного тока
Активная мощность трёхфазной сети равна сумме по каждой из фаз. Величина выражается через линейные величины. При симметричном потреблении ток через нейтраль не наблюдается, мощность выражается соотношениями, представленными на скрине. Формулы простые для понимания. В симметричной системе токи по фазам равны, как и напряжения, прямо суммируются. Возникает коэффициент 3.
В свою очередь линейное напряжение при включении треугольником, составляющее в обычном случае 380 В, больше фазного в корень из трёх раз. Для токов отличий нет, они равны фазным. Схема звезда обусловливает равенство линейного напряжения фазному, когда токи больше фазных. Поэтому в последней формуле коэффициент равен корню из трёх.
Знатоки заметят, что схема звезда работает при пониженных напряжениях, следовательно, потребляемый ток уменьшится. Но речь здесь идёт о выводе соотношений для одинаковой мощности. В этих условиях, если уменьшилось напряжение, повышается ток.
Для вычисления реактивной мощности представленное выражение нужно умножить на синус угла, а не на косинус. Полная мощность равна гипотенузе треугольника, ограниченного указанными величинами.
Вычисляется простым перемножением напряжения и тока на корень из трёх без участия угла.
Единицы измерения
Сказанное выше прямо показывает, что активная мощность в реальных системах неотделима от реактивной. Сообразно этому находится множество применений описанной особенности. Первым шагом считается введение отдельных величин для отображения обоих показателей:
- Активная мощность измеряется в ваттах. Так преподаётся на уроках физики. Мощность показывает, как правило, счётчик, установленный в электрическом щитке на лестничной клетке.
- Полная мощность выражается в вольт-амперах. Это геометрическая сумма активной и реактивной составляющей. Полная мощность демонстрирует, за что платит предприятие. Отражённая энергия не несёт пользы, исключительно экономические потери.
- Реактивная мощность выражается в варах. Иногда буквы пишут заглавными, получается: кВАР, ВАР и пр. Реактивная мощность измеряется счётчиками предприятий для разных целей: особенности тарификации поставщика, настройка системы компенсации индуктивного сопротивления оборудования конденсаторными установками.
Из формул, приведённых выше, заключаем, что косинус угла сдвига фаз напряжения и тока численно равен отношению активной мощности к полной, а синус – реактивной к полной.
Измерение мощности
Для каждого вида мощности собственный измеритель. Добавим, что принцип физический используется одинаковый, но устройство приборов отличается. К примеру, аналоговые модели работают на принципе, открытом зимой 1819-1820 гг. Гансом Эрстедом. Точнее говоря, влияние проводника на стрелку компаса замечали прежде, но не привлекали столько внимания, как случилось осенью 1820 года. Когда научный мир узрел, что электричество и магнетизм связаны.
Итак, в основе аналоговых измерительных приборов лежал мульпликатор Иоганна Швейггера (сентябрь 1820 года): ток проходил через катушку из проволоки и отклонял стрелку в установленном направлении. Показания считывались по циферблату и заносились в таблицы вручную.
Современные приборы работают иначе. В перспективе измеритель упростится до единственного процессора, выполняющего дискретные преобразования Фурье и вычисляющего необходимые величины. Понятно, что важно найти сдвиг фаз и ток, напряжение априорно задано. Создатели измерителей знают, что по ГОСТ вольтаж способен гулять на 10% в обе стороны. Следовательно, нельзя считать напряжение априорно заданным, величина также измеряется.
Потом остаётся лишь перемножить по формулам, приведённым выше. В аналоговых приборах коэффициенты задаются передаточными числами механизмов, числом витков и пр. В цифровых обходится без затруднений, в наличии масса алгоритмов для расчёта. Использованные формулы появились гораздо раньше, нежели создали первую ЭВМ. И мир находился в ожидании сообразных приложению вычислительных мощностей.
Аналоговый ваттметр включает основные части:
- Неподвижная катушка напряжения. Для Эрстеда это звучало бы странно, любая катушка создаёт магнитный поток при помощи тока. Напряжение ни при чём. Для измерительных цепей тщательно рассчитываются коэффициенты, параллельно участку цепи ставится высокоомное сопротивление (конструктивно входит в ваттметр), которым ограничивается ток. Не напряжение! Малый ток управляет магнитным потоком. Отклонение стрелки пропорционально напряжению. Это принцип измерения обоснован законом Ома для участка цепи.
- Неподвижная катушка тока включена прямо в цепь. Поэтому сопротивление предвидится минимальным. На высоких напряжениях сигнал снимается измерительным трансформатором. Передаточный коэффициент его рассчитан не по напряжению, как случается, а по току. Зная коэффициент пропорциональности, легко найти искомую величину. Следовательно, ваттметр настраивается на используемый трансформатор, либо априорно задано единственное значение. Тогда настройка не требуется, но приходится выбрать тот трансформатор, передаточный коэффициент которого соответствует требованиям.
Подвижная рамка со стрелкой показывает результат на циферблате. Неподвижные катушки расположены в перпендикулярных плоскостях. Рамка выполняется из металлического сплава, либо берется катушка индуктивности. Конструкция просчитана так, что отклонение стрелки приобретает нужный коэффициент пропорциональности и показывает либо синус угла сдвига фаз (для реактивной мощности), либо косинус (для активной мощности).
Источник: https://vashtehnik.ru/enciklopediya/aktivnaya-moshhnost.html
Реактивная мощность
При расчетах электрических цепей находитширокое применение так называемаяреактивнаямощность. Она характеризуетпроцессы обмена энергией между реактивнымиэлементами цепи и источниками энергиии численно равна амплитуде переменнойсоставляющей мгновенной мощности цепи.В соответствии с этим реактивная мощностьможет быть определена из (1) как
Q = UIsin.
В зависимости от знака угла реактивная мощность может быть положительной или отрицательной. Единицуреактивной мощности, чтобы отличить ееот единицы активной, называют не ватт,а вольт-ампер реактивныйвар.
Реактивные мощности индуктивного иемкостного элементов равны амплитудамих мгновенных мощностейpLиpC.
С учетом сопротивленийэтих элементовреактивные мощности катушки индуктивностии конденсатора равныQL=UI=xLI2иQC=UI= xCI2, соответственно.
Результирующая реактивная мощностьразветвленной электрической цепинаходится как алгебраическая суммареактивных мощностей элементов цепи сучетом их характера (индуктивный илиемкостный): Q=QL–QС.ЗдесьQLесть суммарнаяреактивная мощность всех индуктивныхэлементов цепи, аQС представляетсобой суммарную реактивную мощностьвсех емкостных элементов цепи.
Полная мощность
Кроме активной и реактивной мощностейцепь синусоидального тока характеризуетсяполной мощностью, обозначаемой буквойS. Под полной мощностью участкапонимают максимально возможную активнуюмощность при заданных напряженииUи токеI. Очевидно, что максимальнаяактивная мощность получается приcos= 1, т. е. приотсутствии сдвига фаз между напряжениеми током:
S = UI.
Необходимость во введении этой мощностиобъясняется тем, что при конструированииэлектрических устройств, аппаратов,сетей и т. п.
их рассчитывают на определенноеноминальное напряжение Uноми определенный номинальный токIноми их произведениеUномIном= Sномдаетмаксимально возможную мощность данногоустройства (полная мощность Sномуказывается в паспорте большинстваэлектрических устройств переменноготока.).
Для отличия полной мощности отдругих мощностей ее единицу измеренияназывают вольт-ампер и сокращеннообозначают ВА.Полная мощность численно равна амплитудепеременной составляющей мгновенноймощности.
Из приведенных соотношений можно найтисвязь между различными мощностями:
P = Scos, Q = Ssin, S = UI =
и выразить угол сдвига фаз через активнуюи реактивную мощности:
.
Рассмотрим простой прием, которыйпозволяет найти активную и реактивнуюмощности участка цепи по комплекснымнапряжению и току. Он заключается в том,что нужно взять произведение комплексногонапряжения и тока,комплексно сопряженного токурассматриваемого участка цепи.
Операция комплексного сопряжениясостоит в смене знака на противоположныйперед мнимой частью комплексного числалибо в смене знака фазы комплексногочисла, если число представлено вэкспоненциальной форме записи. Врезультате получим величину, котораяназываетсяполной комплексной мощностьюи обозначается.
Если,то для полной комплексной мощностиполучаем:
.
Отсюда видно, что активная и реактивнаямощности представляют собой вещественнуюи мнимую части полной комплексноймощности, соответственно. Для облегчениязапоминания всех формул, связанных смощностями, на рис. 7, б(с. 38)построен треугольник мощностей.
Источник: https://studfile.net/preview/3020250/page:5/