Что такое электрическое поле

Электрическое поле. Виды и работа. Применение и свойства

Что такое электрическое поле

Электрическое поле – это векторное поле, действующее вокруг частиц обладающих электрическим зарядом. Оно входит в состав электромагнитного поля. Для него характерно отсутствие реальной визуализации. Оно невидимо, и может быть замечено только в результате силового воздействия, на которое реагируют другие заряженные тела с противоположными полюсами.

По сути, поле является особым состоянием материи. Его действие проявляется в ускорении тел или частиц, обладающих электрическим зарядом. К его характеризующим особенностям, можно отнести:

  • Действие только при наличии электрического заряда.
  • Отсутствие границ.
  • Наличие определенной величины воздействия.
  • Возможность определения только по результату действия.

Поле неразрывно связано с зарядами, которые находятся в определенной частице или теле. Оно может образовываться в двух случаях.

Первый предусматривает его появление вокруг электрических зарядов, а второй при перемещении электромагнитных волн, когда меняется электромагнитное поле.

Электрические поля воздействуют на неподвижные относительно наблюдателя электрически заряженные частицы. В результате они получают силовое влияние. Пример воздействия поля можно наблюдать и в быту. Для этого достаточно создать электрический заряд. Учебники физики предлагают для этого простейший пример, когда диэлектрик натирается о шерстяное изделие.

Получить поле вполне возможно, взяв пластиковую шариковую ручку и потерев ее о волосы. На ее поверхности образуется заряд, что приводит к появлению электрического поля. Как следствие ручка притягивает мелкие частицы. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней.

Такой же результат можно достигнуть и при использовании пластиковой расчески.

Бытовым примером проявления электрического поля является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя заряды. При снятии такого предмета одежды электрическое поле подвергается различным силам воздействия, что и приводит к образованию световых вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов.

Для характеристики электрического поля применяется 3 показателя:

  • Потенциал.
  • Напряженность.
  • Напряжение.

Потенциал

Данное свойство является одним из главных. Потенциал указывает на количество накопленной энергии применяемой для перемещения зарядов. По мере их сдвига энергия расточается, постепенно приближаясь к нулю. Наглядной аналогией данного принципа может выступить обыкновенная стальная пружина.

В спокойном положении она не обладает никаким потенциалом, но только до того момента, пока не будет сжата. От такого воздействия она получает энергию противодействия, поэтому после прекращения влияния обязательно разогнется. Когда пружина отпускается, то моментально распрямляется. Если на ее пути окажутся предметы, она начнет их двигать.

Возвращаясь непосредственно к электрическому полю потенциал можно сравнить с приложенными усилиями на выпрямление назад.

Электрическое поле обладает потенциальной энергией, что и делает его способным выполнять определенное воздействие. Но перемещая заряд в пространстве, оно истощает свой ресурс. В том же случае если передвижение заряда внутри поля осуществляется под воздействием сторонней силы, то поле не только не теряет свой потенциал, но и пополняет его.

Также для большего понимания данной величины можно привести еще один пример. Предположим, что незначительный положительно заряженный заряд располагается далеко за пределами действия эл.поля. Это делает его совершенно нейтральным и исключает взаимный контакт.

Если же в результате воздействия любой сторонней силы заряд будет двигаться по направлению к электрическому полю, то достигнув его границы, будет втянут в новую траекторию.

Энергия поля, затраченная на влияние относительно заряда в определенной точке воздействия, и будет называться потенциалом на этой точке.

Выражение электрического потенциала осуществляется через единицу измерения Вольт.

Напряженность

Этот показатель применяется для количественного выражения поля. Данная величина рассчитывается как отношение положительного заряда воздействующего на силу действия. Простым языком напряженность выражает силу эл.поля в определенном месте и времени. Чем выше напряженность, тем более выраженным будет влияние поля на окружающие предметы или живые существа.

Напряжение

Этот параметр образуется от потенциала. Он применяется для демонстрации количественного соотношения действия, которое производит поле. То есть, сам потенциал показывает объем накопленной энергии, а напряжение демонстрирует потери на обеспечение движения зарядов.

В электрическом поле положительные заряды перемещаются от точек с высоким потенциалом в места, где он ниже. Что касается отрицательных зарядов, то они движутся противоположно. Как следствие осуществляется работа с использованием потенциальной энергии поля. Фактически напряжение между точками качественно выражает работу, совершенную полем для переноса единицы противоположно заряженных зарядов. Таким образом, термины напряжение и разность потенциалов это одно и то же.

Наглядное проявление поля

Электрическое поле имеет условное визуальное выражение. Для этого применяются графические линии. Они совпадают с линиями воздействия силы, которые излучают заряды вокруг себя. Помимо линии действия сил, также важно их направление. Для классификации линий за основу определения направлений принято использовать положительный заряд. Таким образом, стрелка движения поля идет от положительных частиц к отрицательным.

Чертежи, изображающие эл.поля, на линиях имеют направление в виде стрелки. Схематически в них всегда есть условное начало и конец. Таким образом, они не замыкаются сами на себе. Силовые линии берут свое начало на точке нахождения положительного заряда и заканчиваются на месте отрицательных частиц.

Электрическое поле может иметь различные типы линий в зависимости не только от полярности заряда, который способствует их образованию, но и наличию сторонних факторов. Так, при встрече противоположных полей они начинают действовать друг на друга притягательно. Искаженные линий приобретают очертания гнутых дуг. В том же случае, когда встречаются 2 одинаковых поля, то они отталкиваются в противоположные стороны.

Сфера применения

Электрическое поле обладает рядом свойств, которые нашли полезное применение. Данное явление используется при создании различного оборудования для работы в нескольких весьма важных сферах.

Использование в медицине

Воздействия электрического поля на определенные участки тела человека позволяет повышать его фактическую температуру. Это свойство нашло свое применение в медицине. Специализированные аппараты обеспечивают воздействия на необходимые участки поврежденных или больных тканей. В результате чего улучшается их кровообращение и возникает заживляющий эффект. Поле воздействует с высокой частотой, поэтому точечное влияние на температуру дает свои результаты и вполне ощутимо для больного.

Применение в химии

Данная сфера науки предусматривает использования различных чистых или смешанных материалов. В связи с этим работа с эл.полями не могла обойти эту отрасль. Компоненты смесей взаимодействуют с электрическим полем по-разному. В химии это свойство применяется для разделения жидкостей. Данный метод нашел лабораторное применение, но встречается и в промышленности, хотя и реже. К примеру, при воздействии полем осуществляется отделения в нефти загрязняющих компонентов.

Электрическое поле применяется для обработки при фильтрации воды. Оно способно отделить отдельные группы загрязняющих веществ. Такой способ обработки намного дешевле, чем использование сменных картриджей.

Электротехника

Использование электрического поля имеет весьма интересное применение в электротехнике. Так, был разработан способ беспроводной передачи электричества от источника до потребителя. До недавнего времени все разработки имели теоретический и экспериментальный характер.

Уже имеется эффективная реализация технологии зарядки телефона без применения непосредственного гибкого кабеля вставляемого в USB разъем смартфона. Данный способ пока не позволяет передавать энергию на продолжительное расстояние, но он совершенствуется.

Вполне возможно, что в ближайшем будущем надобность в зарядных кабелях с блоками питания отпадет полностью.

При выполнении электромонтажных и ремонтных работ применяется светодиодная индикаторная отвертка, действующая на основе схемы полевого транзистора. Помимо ряда функций, она может реагировать на электрическое поле.

Благодаря этому при приближении пробника к фазному проводу индикатор начинает светиться без фактического касания к токопроводящей жиле. Он реагирует на поле исходящие от проводника даже сквозь изоляцию.

Наличие электрического поля позволяет находить токопроводящие провода в стене, а также определять точки их разрыва.

Защититься от воздействия эл.поля можно при помощи металлического экрана, внутри которого его не будет. Это свойство широко применяется в электронике, чтобы исключить взаимное влияние электрических схем, которые расположены довольно близко друг к другу.

Возможности применения в будущем

Имеются и более экзотические возможности для электрического поля, которыми на сегодняшний день еще не обладает наука. Это коммуникации быстрее скорости света, телепортация физических объектов, перемещение за один миг между разомкнутыми местоположениями (червоточины). Однако для осуществления подобных планов будут нужны куда более сложные исследования и эксперименты, чем проведение экспериментов с двумя возможными исходами.

Однако наука все время развивается, открывая все новые возможности применения электр.поля. В будущем его сфера использования может значительно расшириться. Возможно, что оно найдет применение во всех значимых областях нашей жизни.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/elektricheskoe-pole/

Электрическое поле – FIZI4KA

Что такое электрическое поле

ЕГЭ 2018 по физике ›

Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.

Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.

Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.

Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

Способы электризации:

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​\( q \)​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​\( N \)​ — число избыточных или недостающих электронов;
​\( e \)​ — элементарный заряд, равный 1,6·10-19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует.

Электрические заряды взаимодействуют:

  • заряды одного знака отталкиваются:
  • заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

ЭТО ИНТЕРЕСНО:  Для чего нужно заземление

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Закон сохранения электрического заряда

Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.

В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.

Полный электрический заряд ​\( (q) \)​ системы равен алгебраической сумме ее положительных и отрицательных зарядов ​\( (q_1, q_2 q_N) \)​:

Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​\( F \)​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​\( q_1 \)​ и \( q_2 \) и обратно пропорциональна квадрату расстояния между ними ​\( r \)​:

Источник: https://fizi4ka.ru/egje-2018-po-fizike/jelektricheskoe-pole.html

Электрическое поле

Что такое электрическое поле
Подробности Категория: Электричество и магнетизм 25.03.2015 11:06 9934

Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электромагнитного поля.

Что такое электрическое поле

После того как тело получило заряд, оно способно действовать на другие заряженные тела: притягивать тела с противоположным зарядом и отталкивать их, если они имеют такой же заряд.

Каким же образом происходит такое взаимодействие?

Зарядим металлический шарик, закреплённый на металлической подставке. Точно такой же по знаку заряд сообщим другому шарику из пенопласта, подвешенному на нити. Назовём его пробным. Перемещая его на разные расстояния, увидим, что нить с шариком отклоняется в любой точке пространства. Этот способ исследования называется методом пробного заряда.

Почему отклоняется пробный шарик?

Причина в том, что электрические заряды взаимодействуют друг с другом с помощью электрического поля, которое они создают в окружающем их пространстве. Электрическое поле — это особый вид материи, с помощью которого это взаимодействие и происходит. Такое поле окружает каждый электрический заряд и действует на другие заряды с некоторой силой. Следовательно, электрическое поле – разновидность силового поля.

Характеризуется электрическое поле физической величиной, которую называют напряжённостью электрического поля. Это количественная характеристика, векторная величина. Она равна отношению силы, действующей на точечный заряд в данной точке поля, к величине этого заряда:

где — напряжённость электрического поля;

 — сила, действующая на точечный заряд;

q – величина заряда.

Точечным называют заряженное тело, размеры которого настолько малы, что ими можно пренебречь по сравнению с расстоянием, на котором рассматривается воздействие этого заряда. Электрические поля, создаваемые такими зарядами, называют кулоновскими полями.

Силы, действующие на пробный заряд в разных точках электрического поля, отличаются по величине и направлению. Соответственно, различны и напряжённости в этих точках поля. Такое поле называют неоднородным.

Если модуль и направление напряжённости электрического поля одинаковы во всех его точках, то такое поле называется однородным.

Однородное поле создаётся в  центре между двумя параллельными заряженными пластинами.

Электростатическое поле

Электрическое поле, созданное неподвижным и не меняющимся во времени зарядом, называется электростатическим полем.

Если электрическое поле образовано несколькими зарядами, то напряжённость в данной точке пространства равна сумме напряжённостей электрических полей, создаваемых в этой точке каждым зарядом в отдельности.

Графическое изображение электрического поля

Графически электрическое поле изображают с помощью силовых линий.

Силовая линия – это такая линия, касательная к которой в каждой её точке совпадает с направлением вектора напряжённости в этой точке.

Начинаются силовые линии на положительных зарядах или на бесконечности и заканчиваются на отрицательных, либо уходят в бесконечность. Они никогда не пересекаются и не касаются друг друга.

Силовые линии указывают направление действия силы, которая действует на положительно заряженную частицу со стороны электрического поля.

 В общем эти линии имеют форму кривых. Но они могут быть и прямыми линиями в случае, если описывается поле одиночного точечного заряда.

Силовые линии положительного точечного заряда уходят в бесконечность.

Силовые линии отрицательного точечного заряда начинаются в бесконечности.

Совокупность двух точечных зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга, называется электрическим диполем. В целом электрический диполь нейтрален.

Вот так выглядят силовые линии электрического диполя.

А вот так располагаются силовые линии двух одинаковых по знаку электрических зарядов.

Электростатический потенциал

Другой величиной, характеризующей электростатическое поле, является электростатическийпотенциал (точечный потенциал). Это скалярная величина, равная отношению потенциальной энергии взаимодействия электрического заряда с полем к величине этого заряда. Электростатический потенциал – это энергетическая характеристика электрического поля:

В вакууме электростатический потенциал точечного заряда определяют по формуле:

 ,

где q —  величина заряда, r — расстояние от заряда-источника до точки, для которой рассчитывается потенциал;

Напряжённость электрического поля связана с его потенциалом следующим отношением:

Так как электрическое поле является потенциальным полем, то работа, совершаемая при перемещении заряда q из точки 1 в точку 2, равна:

A = W1 – W2 = qψ1 – qψ2 = q(ψ1 – ψ2)

Разность потенциалов (ψ1 – ψ2) в электростатическом поле называется электрическимнапряжением:

U =(ψ1 – ψ2) = A/q

Электрическое поле, созданное электрическими зарядами, называют потенциальным. Его силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Электрическое поле, возникшее за счёт электромагнитной индукции, называется вихревым. Силовые линии такого поля замкнуты. Существуют комбинации потенциальных и вихревых полей.

Электрическое поле является одной из составляющих электромагнитного поля. Оно возникает не только вокруг электрических зарядов, но и при изменении магнитного поля.

В свою очередь, магнитное поле появляется при изменении электрического поля или создаётся током заряженных частиц.

Источник: http://ency.info/materiya-i-dvigenie/elektrichestvo-i-magnetizm/416-elektricheskoe-pole

Напряжение электрического поля

Электрические заряды не оказывают непосредственное воздействие друг на друга. Каждое заряженное тело может создавать электрическое поле в окружающем пространстве. Такое поле оказывает непосредственное силовое воздействие на остальные заряженные тела.

Электрическое поле и его свойства

Главным свойством электрического поля считается воздействие с определенной силой на электрические заряды. Иными словами, заряженные тела способны взаимодействовать друг с другом исключительно за счет электрических полей, их окружающих.

Исследовать электрическое поле, которое окружает заряженное тело, позволяет так называемый пробный заряд (точечный заряд, небольшой по величине). Такой заряд не может осуществлять заметного перераспределения рассматриваемых зарядов.

Определение 1

Электрическое поле для неподвижных и не изменяющихся со временем зарядов будет называться электростатическим. В большинстве случаев его называют просто электрическим полем.

Если за счет пробного заряда проводится исследование электрического поля, создаваемого несколькими электрически заряженными телами, результирующая сила становится равной геометрической сумме сил, воздействующих на пробный заряд отдельно со стороны каждого из заряженных тел.

  • Курсовая работа 400 руб.
  • Реферат 270 руб.
  • Контрольная работа 200 руб.

Тогда напряженность электрического поля, формируемого системой зарядов в указанной точке пространства, будет зависеть от векторной суммы напряженностей электрополей, создаваемых зарядами в этой же точке по отдельности:

$\vec{E}=\vec{E_1}+vec{E_2}+$

Такое свойство электрического поля подразумевает его подчинение принципу суперпозиции. Соответственно закону Кулона, напряженность электростатического поля, созданного за счет точечного заряда $Q$ на расстоянии $r$ от него определяет следующая формула:

$E=\frac{Q}{4\pi_0r2}$

Такое поле названо кулоновским. В этом поле направление вектора $\vec{E}$ будет зависеть от знака заряда $Q$, если $Q$ > $0$, то $\vec{E}$ направляется по радиусу от заряда, если $Q$ < $0$, то $\vec{E}$ направляется к заряду.

С целью наглядного изображения электрополя задействуют силовые линии. Они проводятся таким образом, чтобы направление вектора $\vec{E}$ совпадало в каждой точке с направлением касательной к такой силовой линии. Изображение электрического поля за счет силовых линий требует соблюдения следующего условия: густота таких линий должна оказаться пропорциональной модулю вектора напряженности поля.

Кулоновское поле точечного заряда $Q$ лучше записывать в векторной форме. Для этого проводится радиус-вектор $\vec{r}$. от заряда $Q$ к точке наблюдения. Тогда при условии, что $Q$ > $0$,$\vec{E}$ оказывается параллельным $\vec{r}$. При условии, что $Q$ < $0$, $\vec{E}$ не будет параллельным $r$.

Пример 1

Примером использования принципа суперпозиции полей выступают силовые линии поля электрического диполя. Такие линии представляют систему из двух равнозначных по модулю зарядов разного знака $q$р, расположенных на определенном расстоянии $L$.

Напряженность однородного электрического поля

Определение 2

Чтобы количественно определить электрическое поле, вводится силовая характеристика в виде напряженности электрического поля. Напряженностью электрополя считается физическая величина, характеризуемая силой воздействия поля на пробный положительный заряд, помещенный в заданную точку пространства.

Определяется такая величина формулой:

$\vec{E}=\frac{\vec{F}}{q}$, где:

  • $E$ — напряженность электрического поля (Вольт/метр),
  • $F$ — сила, воздействующая на заряд Q (Ньютон),
  • $Q$ — заряд (Кулон).

Напряженность электрического поля представляет физическую векторную величину. В неоднородном поле сила, воздействующая на заряд в разных точках поля будет неодинаковой. Напряженность однородного электрополя считается прямо пропорциональной напряжению между пластинами и обратно пропорциональной расстоянию между ними:

$E=\frac{U}{d}$, где:

  • $E$ — напряженность однородного электрополя (Вольт/метр),
  • $U$ — напряжение, возникающее между пластинами (Вольт),
  • $d$ — расстояние между пластинами, которые заряжены (метр).

Напряженность магнитного электрического поля

Замечание 1

Напряженность магнитного электрического поля определяет сила, воздействующая на пробный магнит, помещенный в поле.

Поскольку магнитные полюсы не существуют по отдельности, мы наблюдаем воздействие на южный и северный полюсы пробного магнита противоположно направленных сил. При этом возникает момент пары сил, характеризующий величину напряженности поля в заданном месте.

В магнитном поле у цилиндрической катушки он будет прямо пропорциональным числу витков и силе тока, и при этом и обратно пропорциональным длине катушки.

Направление у вектора напряженности магнитного поля в каждой точке будет совпадающим с направлением силовых линий. Внутри самой катушки (магнита) он направляется от южного полюса к северному, а вне ее — от северного к южному.

Источник: https://spravochnick.ru/fizika/napryazhenie_elektricheskogo_toka/napryazhenie_elektricheskogo_polya/

Силовые линии

Коль скоро электрическое поле является векторным, его можно изображать в различных точках стрелками, как это сделано на рис. 22.13. Направления векторов Еа, Еb, Ес совпадали бы с направлениями показанных на этом рисунке сил и лишь длина их была бы уже иной в результате деления на q.

Отношение длин векторов Еа, Еb, Ес сохранится прежним, так как мы делим на один и тот же заряд. Однако изображать электрическое поле таким образом неудобно, поскольку при большом числе точек весь рисунок будет испещрен стрелками.

Поэтому пользуются другим способом изображения поля-методом силовых линий.

Для наглядного представления электрического поля его изображают семейством линий, указывающих направление напряженности поля в каждой точке пространства. Эти так называемые силовые линии проводятся так, чтобы указывать направление силы, действующей в данном поле на положительный пробный заряд. Силовые линии точечного положительного заряда показаны на рис. 22.20, а, отрицательного — на рис. 22.20,6.

В первом случае линии радиально расходятся от заряда, во втором они радиально сходятся к заряду. Именно в таком направлении будут действовать силы на положительный пробный заряд. Конечно, силовые линии можно нанести и в промежутках между изображенными на рисунке.

Но мы условимся наносить силовые линии с таким расчетом, чтобы число линий, исходящих от положительного заряда или заканчивающихся на отрицательном заряде, было пропорционально величине этого заряда.

Обратим внимание на то, что вблизи заряда, где сила максимальна, линии расположены более тесно. Это общее свойство силовых линий: чем теснее расположены силовые линии, тем сильнее электрическое поле в этой области. Вообще говоря, можно всегда изображать силовые линии таким образом, чтобы число линий, пересекающих единичную площадку, перпендикулярную направлению поля Е, было пропорционально напряженности электрического поля. Например, для уединенного точечного заряда (рис. 22.20) напряженность электрического поля убывает как 1/r 2; так же будет уменьшаться с расстоянием и число равномерно распределенных силовых линий, пересекающих единичную площадку: ведь общее число силовых линий остается постоянным, а площадь поверхности, через которую они проходят, растет как 4πr 2 (поверхность сферы радиусом г). Соответственно число силовых линий на единицу площади пропорционально 1/r 2.

ЭТО ИНТЕРЕСНО:  Как работает электромагнитный клапан холостого хода

На рис. 22.21, а показаны силовые линии поля, создаваемого двумя зарядами противоположных знаков. Здесь силовые линии искривлены и направлены от положительного заряда к отрицательному. Поле в любой точке направлено по касательной к силовой линии, как показано стрелкой в точке Р.
На рис.

22.21,6 и в показаны силовые линии электрического поля двух положительных зарядов и поля между двумя параллельными противоположно заряженными пластинами. Заметим, что силовые линии поля между пластинами параллельны и расположены на равном расстоянии друг от друга, исключая область вблизи краев.

Таким образом, в центральной области напряженность электрического поля во всех точках одинакова, и мы можем написать:
Е = const (между близко расположенными параллельными пластинами).
Хотя вблизи краев это не так (силовые линии изгибаются), часто этим можно пренебречь, особенно если расстояние между пластинами мало по сравнению с их размерами. [Сравните этот результат со случаем уединенного точечного заряда, где поле изменяется обратно пропорционально квадрату расстояния].

Итак, силовые линии обладают следующими свойствами:

1. Силовые линии указывают направление напряженности электрического поля: в любой точке напряженность поля направлена по касательной к силовой линии.

2. Силовые линии проводятся так, чтобы напряженность электрического поля Е была пропорциональна числу линий, проходящих через единичную площадку, перпендикулярную линиям.

3. Силовые линии начинаются только на положительных зарядах и заканчиваются только на отрицательных зарядах; число линий, выходящих из заряда или входящих в него, пропорционально величине заряда.

Можно также сказать, что силовая линия электрического поля — это траектория, по которой следовал бы помещенный в поле малый пробный заряд. (Строго говоря, это верно лишь в том случае, если пробный заряд не обладает инерцией или движется медленно, например вследствие трения.)
Силовые линии никогда не пересекаются. (Если бы они пересекались, это означало бы, что в одной и той же точке напряженность электрического поля имеет два различных направления, что лишено смысла.)

Электрические поля и проводники

В статическом случае (т.е. когда заряды покоятся) электрическое поле внутри хорошего проводника отсутствует.

Если бы в проводнике существовало электрическое поле, то на внутренние свободные электроны действовала бы сила, вследствие чего электроны пришли бы в движение и двигались до тех пор, пока не заняли бы такое положение, при котором, напряженность электрического поля, а стало быть, и действующая на них сила обратились бы в нуль. Из этого рассуждения вытекают любопытные следствия.

В частности, если проводник обладает результирующим зарядом, то этот заряд распределяется по внешней поверхности проводника. Этот факт можно объяснить с иной точки зрения. Если, например, проводник заряжен отрицательно, то мы легко можем представить, что отрицательные заряды отталкивают друг друга и устремляются к поверхности проводника, чтобы расположиться как можно дальше друг от друга.

Другое следствие состоит в следующем. Пусть положительный заряд Q помещен в центр полого изолированного проводника в форме сферической оболочки (рис. 22.22).
Поскольку внутри проводника электрического поля быть не может, силовые линии, идущие от положительного заряда, должны заканчиваться на отрицательных зарядах на внутренней поверхности металлической сферы.

В результате на внутренней поверхности сферического проводника будет индуцирован соответствующий отрицательный заряд -Q, а равный по величине положительный заряд +Q распределится по внешней поверхности сферы (поскольку в целом оболочка нейтральна). Таким образом, хотя внутри проводника электрическое поле отсутствует, снаружи сферы существует электрическое поле (рис. 22.22), как если бы металлической сферы вовсе не было.

С этим связано также и то обстоятельство, что силовые линии электрического поля всегда перпендикулярны поверхности проводника. Действительно, если бы вектор напряженности электрического поля Е имел компоненту, параллельную поверхности проводника, то электроны под действием силы двигались бы до тех пор, пока не заняли положение, в котором на них не действует сила, т. е. пока вектор напряженности электрического поля не будет перпендикулярен поверхности.

Все сказанное относится только к проводникам. В изоляторах, у которых нет свободных электронов, может существовать электрическое поле и силовые линии не обязательно перпендикулярны поверхности.

Источник: https://tel-spb.ru/statika/electric_field.php

Взаимодействие заряженных тел

Привыкли считать устаревшие теории утопией, между тем мужи науки вовсе не глупые. Сегодня смешно звучит учение Франклина об электрической жидкости, видный физик Эпинус посвятил целый трактат. Закон Кулона открыт экспериментально на основе крутильных весов, аналогичными методами пользовался Георг Ом при выводе известного уравнения для участка цепи. Но что лежит за всем этим?

Должны признаться, электрическое поле попросту является очередной теорией, не уступающей франклиновой жидкости. Сегодня известно о субстанции два факта:

  1. Постоянное электрическое поле существует вокруг заряженного тела. Наличествует два знака частиц, объекты могут притягиваться, отталкиваться. Учат в школе, нет смысла дополнительно здесь обсуждать вопрос. Напряженность поля показывает, в какую сторону будет действовать сила на положительно заряженную частицу – потому, является величиной векторной. Тело окружено линиями эквивалентности, в каждой точке которых направление уникальное. Для точечного заряда расходятся лучами в стороны. Направление определено знаком: векторы стремятся прочь от положительного.

    Силовые линии электрического поля

  2. Электрическое поле изменяется во времени, пространстве. Согласно уравнениям Максвелла, порождает магнитное, описываемое аналогичным законом. Векторы полей лежат во взаимно перпендикулярных плоскостях, существуют в тесной взаимосвязи. Электромагнитная волна, повсеместно используемая в быту, технике для передачи информации посредством эфира.

Изложенные факты заложили базис современного представления о взаимодействиях в природе, выступают опорой теории близкодействия. Помимо нее учеными выдвигались другие предположения о сути наблюдаемого явления. Теория близкодействия подразумевает мгновенное распространение сил без участия эфира.

Поскольку явления пощупать труднее, нежели электрическое поле, многие философы окрестили подобные взгляды идеалистическими.

В нашей стране они успешно критиковались советской властью, поскольку, как известно, большевики недолюбливали Бога, клевали по каждому удобному случаю идею существования чего-либо, “зависимого от наших представлений и поступков” (попутно изучая сверхвозможности Джуны).

Франклин объяснял положительные, отрицательные заряды тел избытком, недостаточностью электрической жидкости.

Характеристики электрического поля

Электрическое поле описывается векторной величиной – напряженностью. Стрелка, направление которой совпадает с силой, действующей в точке на единичный положительный заряд, длина пропорциональна модулю силы.

Физики находят удобным пользоваться потенциалом. Величина скалярная, проще представить на примере температуры: в каждой точке пространства некоторое значение.

Под электрическим потенциалом понимают работу, совершаемую для перемещения единичного заряда из точки нулевого потенциала в данную точку.

Электрический потенциал

Поле, описываемое указанным выше способом, называется безвихревым. Иногда именуют потенциальным. Функция потенциала электрического поля непрерывная, изменяется плавно по протяженности пространства. В результате выделим точки равного потенциала, складывающие поверхности. Для единичного заряда сфера: дальше объект, слабее поле (закон Кулона). Поверхности называют эквипотенциальными.

Для понимания уравнений Максвелла заимейте представление о нескольких характеристиках векторного поля:

  • Градиентом электрического потенциала называется вектор, направление совпадает с наискорейшим ростом параметра поля. Значение тем больше, чем быстрее изменяется величина. Направлен градиент от меньшего значения потенциала к большему:
  1. Градиент перпендикулярен эквипотенциальной поверхности.
  2. Градиент тем больше, чем ближе расположение эквипотенциальных поверхностей, отличающихся друг от друга на заданную величину потенциала электрического поля.
  3. Градиент потенциала, взятый с обратным знаком, является напряженностью электрического поля.

Электрический потенциал. Градиент “взбирается в гору”

  • Дивергенция является скалярной величиной, вычисляемой для вектора напряженности электрического поля. Является аналогом градиента (для векторов), показывает скорость изменения величины. Необходимость во введении дополнительной характеристики: векторное поле лишено градиента. Следовательно, для описания требуется некий аналог – дивергенция. Параметр в математической записи схож с градиентом, обозначается греческой буквой набла, применяется для векторных величин.
  • Ротор векторного поля именуется вихрем. Физически величина равна нулю при равномерном изменении параметра. Если ротор отличен от нуля, возникают замкнутые изгибы линий. У потенциальных полей точечных зарядов по определению вихрь отсутствует. Не обязательно линии напряжённости в этом случае прямолинейны. Просто изменяются плавно, не образуя вихрей. Поле с ненулевым ротором часто называют соленоидальным. Часто применяется синоним – вихревое.
  • Полный поток вектора представлен интегралом по поверхности произведения напряженности электрического поля на элементарную площадь. Предел величины при стремлении емкости тела к нулю представляет собой дивергенцию поля. Понятие предела изучается старшими классами средней школы, ученик может составить некоторое представление на предмет обсуждения.

Уравнения Максвелла описывают изменяющееся во времени электрическое поле и показывают, что в таких случаях возникает волна. Принято считать, одна из формул указывает отсутствие в природе обособленных магнитных зарядов (полюсов). Иногда в литературе встретим особый оператор – лапласиан. Обозначается как квадрат набла, вычисляется для векторных величин, представляет дивергенцией градиента поля.

Пользуясь означенными величинами, математики и физики рассчитывают электрические и магнитные поля. Например, доказано: скалярный потенциал может быть только у безвихревого поля (точечных зарядов). Придуманы другие аксиомы. Вихревое поле ротора лишено дивергенции.

Подобные аксиомы легко положим в основу описания процессов, происходящих в реальных существующих устройствах. Антигравитационный, вечный двигатель были бы неплохим подспорьем экономике. Если реализовать на практике теорию Эйнштейна никому не удалось, наработки Николы Тесла исследуются энтузиастами. Отсутствуют ротор, дивергенция.

Краткая история развития электрического поля

  • Первой вехой назовем введение в обиход науки Лагранжем понятия потенциала. Параметр в теории электричества характеризует напряженность поля. Великий астроном ввел потенциал применительно к небесной механике в 1773 году.
  • В 1785 году Кулон с использованием крутильных весов опытным путем вывел закон взаимодействия между электрическими зарядами.
  • В 1812 году Пуассон связал понятие потенциала с электрическими и магнитными явлениями.
  • В 1819 году Эрстед эмпирически показал: магнитная стрелка может отклоняться текущим по проводнику током (см. Магнитная индукция), создающим вокруг круговое электрическое поле постоянной напряжённости.
  • 1827 год – Георг Ом вывел закон, связывающий величины напряжения и силы тока через сопротивление участка цепи. Использовалось действие поля на магнитную стрелку. Результирующая сила измерялась при помощи крутильных весов.Георг Ом
  • В 1831 году М. Фарадей публикует работы по электромагнетизму, показывая взаимосвязь двух разнородных полей, объясняется практическая сторона вопроса (электродвигатель). Фарадей занимался вопросами на тот момент без малого 10 лет, не решался опубликовать конспект, остановленный критикой со стороны своего наставника Дэви, считавшего идею задумки плагиатом (см. Википедию). Взгляды ученого нашли горячий отклик в сердцах материалистов. Согласно М. Фарадею поле распространяется с конечной скоростью в эфире (известная из физики скорость света).
  • Выведенное в 1833 году правило Ленца привело к выявлению в 1838 году обратимости электрических машин (с работы на генерацию энергии).
  • Во второй половине XIX века ввели в обиход единицы измерения магнитного и электрического полей (тесла появилась во второй половине XX века при утверждении системы единиц СИ).
  • В 1973 году Максвелл впервые излагает теорию в «Трактате об электричестве и магнетизме» взаимосвязи электрического, магнитного полей, подкрепляя уравнениями.

За постановкой теории последовали многочисленные работы по применению электрического и электромагнитного полей на практике, самой известной из которых в России считают опыт Попова по передачи информации через эфир. Возник ряд вопросов.

ЭТО ИНТЕРЕСНО:  Где возникает переменный ток

Стройная теория Максвелла бессильна объяснить явления, наблюдающихся при прохождении электромагнитных волн через ионизированные среды. Планк выдвинул предположение: лучистая энергия испускается дозированными порциями, названными впоследствии квантами.

Дифракцию отдельных электронов, любезно демонстрируемую Ютуб в англоязычном варианте, открыли в 1949 году советские физики. Частица одновременно проявляла волновые свойства.

https://www.youtube.com/watch?v=ADsP0VJS38Q

Это говорит нам: современные представление об электрическом поле постоянном и переменном, далеки совершенству. Многие знают Эйнштейна, бессильны объяснить, что отрыл физик. Теория относительности 1915 года связывает электрическое, магнитное поля и тяготение. Правда, формул в виде закона представлено не было. Сегодня известно: существуют частицы, движущееся быстрее, распространения света. Очередной камень в огород.

Системы единиц претерпевали постоянное изменение. Изначально введенная СГС, базирующаяся на наработках Гаусса, не удобна. Первые буквы обозначают базисные единицы: сантиметр, грамм, секунда. Электромагнитные величины добавлены к СГС в 1874 году Максвеллом и Томсоном. СССР в 1948 году страной стала использовать МКС (метр, килограмм, секунда). Конец баталиям положило введение в 60-х годах XX века системы СИ (ГОСТ 9867), где напряженности электрического поля измеряется в В/м.

Использование электрического поля

В конденсаторах происходит накопление электрического заряда. Следовательно, меж обкладками образуется поле. Поскольку емкость напрямую зависит от величины вектора напряженности, с целью повышения параметра пространство заполняется диэлектриком.

Косвенным образом электрические поля применяются кинескопами, люстрами Чижевского, потенциал сетки управляет движением лучей электронных ламп. Несмотря на отсутствие стройной теории, эффекты электрического поля лежат в основе многих изображений.

Источник: https://vashtehnik.ru/enciklopediya/elektricheskoe-pole.html

Электрическое поле: определение, классификация, характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

  • реагирует на присутствие заряженных частиц;
  • взаимодействует с магнитными полями;
  • является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
  • поддаётся определению только по результатам наблюдения за проявлением действия.

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в  электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородноеэлектрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию.

Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3).

Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4).  Их неоднородность очевидна.

Рис. 3. Электрический диполь Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

  • потенциал;
  • напряжённость;
  • напряжение.

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ=W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией,  называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

  • электростатического;
  • дипольного;
  • системы и одноимённых зарядов;
  • однородного поля.

Рис. 7. Линии напряжённости различных полей

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

  • метод сеток или конечных разностей;
  • метод эквивалентных зарядов;
  • вариационные методы;
  • расчёты с использованием интегральных уравнений и другие.

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Источник: https://www.asutpp.ru/elektricheskoe-pole.html

Электрическое поле: основные понятия

Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.

Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.

Понятие напряженности электрического поля

Определение 1

Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.

Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.

Напряженность электрического поля можно задать формулой:

E→=F→q.

Напряжение электрического поля является векторной величиной. Направление вектора E→ совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.

Напряженность электрического поля

Какое поле называют электростатическим?

Определение 2

Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.

Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.

Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.

Определение 3

Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:

E→=E1→+E2→+

Электрическое поле подчиняется принципу суперпозиции.

Определение 4

Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:

E=14πε0·Qr2.

Это поле называется кулоновским.

Опиши задание

В кулоновском поле направление вектора E⇀ зависит от знака заряда Q: если Q>0, то вектор E⇀ направлен по радиусу от заряда, если Q0 вектор E→ параллелен r→, а при Q

Источник: https://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/elektricheskoe-pole-osnovnye-ponjatija/

Понравилась статья? Поделиться с друзьями:
Электро Дело
Как подсоединить конденсатор к мотору

Закрыть
Для любых предложений по сайту: [email protected]