Что такое энергия электрического поля

Энергия электрического поля

Что такое энергия электрического поля

Исходя из опытов, заряженный конденсатор имеет запас энергии.

Определение 1

Энергия заряженного конденсатора равняется работе внешних сил, которая необходима для его зарядки.

Его заряжение представляется как последовательный перенос малых порций заряда ∆q>0 с одной обкладки на другую, как изображено на рисунке 1.7.1 Одна из них заряжается положительным зарядом, другая – отрицательным. Процесс производится при уже имеющемся некотором заряде q, тогда как между обкладками существует разность потенциалов U=qC, а при переносе ∆q внешние силы совершают работу ∆A=U∆q=q∆qC.

Нахождение энергии We конденсатора с емкостью С и с зарядом Q производится с помощью интегрирования в переделах от 0 до Q. Формула примет вид:

We=A=Q22C.

Рисунок 1.7.1. Процесс зарядки конденсатора.

Опиши задание

Энергия заряженного конденсатора

Существует еще одна эквивалентная запись заряженного конденсатора при использовании соотношения Q=CU:

We=Q22C=CU22=QU2.

Электрическая энергия We рассматривается как потенциальная. Формулы для We аналогичны формулам потенциальной энергии Ep деформированной пружины, а именно:

Ep=kx22=F22k=Fx2, где k является жесткостью пружины, х – деформацией, F=kx – внешней силой.

Определение 2

Современные представления электрической энергии говорят о том, что она сосредоточена между пластинами конденсатора. В связи с этим и получила название энергии электрического поля. Это объяснимо с помощью иллюстрирования заряженного плоского конденсатора.

Объемная плотность электрической энергии

Определение 3

Напряженность однородного поля плоского конденсатора равняется E=Ud, его емкость – C=ε0εSd.

Отсюда следует, что We=C·U22=ε0·ε·S·E2·d22d=ε0·ε·E22V, где V=Sd обозначает объем пространства между обкладками с наличием электрического поля. Данное соотношение приводит к формуле следующей физической величины.

Определение 4

Физическая величина We=ε0·ε·E22 – это электрическая энергия на единицу объема пространства, в котором создается электрическое поле. Ее называют объемной плотностью данной электрической энергии.

Энергия поля конденсатора, создаваемая любыми распределениями электрических зарядов в пространстве, находится путем интегрирования We по всему объему, в котором было создано электрическое поле.

Источник: https://zaochnik.com/spravochnik/fizika/elektricheskoe-pole/energija-elektricheskogo-polja/

Конденсатор. Энергия электрического поля

Что такое энергия электрического поля

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.

Но прежде введём понятие электрической ёмкости.

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым.

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду. Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где — заряд шара, — его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

мкФ.

Как видите, Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2):

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Ф.

Так легче запомнить, не правда ли?

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

ЭТО ИНТЕРЕСНО:  Как найти работу электрического тока

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора.

Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

или

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4). Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями.

На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора.

Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6), таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком:

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10): заполнение конденсатора диэлектриком увеличивает его ёмкость.

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но — объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

ЭТО ИНТЕРЕСНО:  Для чего нужен диод в цепи

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/kondensator-energiya-elektricheskogo-polya/

III. Основы электродинамики

Что такое энергия электрического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) — поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Зависимость напряженности и потенциала от расстояния

Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен

Напряжение в природе

Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В. Напряжение в телефонных сетях может достигать 60 В.

Электрический угорь способен создавать напряжение до 650 В.

Энергия взаимодействия зарядов*

Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1

Аналогично Тогда энергия взаимодействия двух точечных зарядов

Энергия взаимодействия n зарядов

Источник: http://fizmat.by/kursy/jelektrichestvo/potencial

Напряженность электрического поля

Именно интенсивность, называемая напряженностью, характеризует электрическое поле, показывая, какая сила будет действовать на тестовый электрозаряд. Согласно формуле, она равна отношению этой силы к заряду:

ЭТО ИНТЕРЕСНО:  Что такое постоянное и переменное напряжение

Е = F/q.

Сила F = (k x Q x q)/r², где:

  • k = 1/4πε – постоянный коэффициент;
  • r – дистанция от одного злектрозаряда до другого.

Тогда E = (k x Q x q)/(r²x q) = (k x Q)/r² (Q – заряд источника поля).

Если поле вызвано не одним источником, а несколькими, то учитывается суперпозиция полей. При этом производится расчет напряженностей, созданных отдельными зарядами, а для нахождения общего вектора надо найти геометрическую сумму векторов.

Работа в электростатическом поле

Какой-либо произвольный электрозаряд Q генерирует ЭП. На дистанции r1 от него находится тестовый электрозаряд q, на который действует сила Кулона F.

Работа электрического поля

Если заряд переместится с дистанции r1 на r2, то работа по перемещению составит:

А = F x S x cos α, где α – угол между вектором силы и вектором сдвига.

В данном случае значение этого угла может быть 0° или 180°, а cos α = 1 или -1.

Если подставить значение S = r1 — r2, формула работы примет вид:

А = ((k x Q x q)/(r1 x r2)) x (r1 — r2) =(k x Q x q) x ( 1/r1 — 1/r2).

Важно! Как и в случае работы в гравитационном поле, формула показывает, что работа ЭП зависит только от начального и конечного расстояния от источника поля.

Энергия в электростатическом поле

Энергия электрического поля вычисляется, используя известное понятие, что разность потенциалов в двух точках представляет собой работу при смещении электрозаряда из одной точки в другую.

Чтобы вычислить потенциальную энергию в конкретной точке, надо переместить точечный электрозаряд в ЭП из того места, где его потенциальная энергия равна нулю.

Так как энергия определяет способность совершения работы, а энергия поля будет нулевая в пункте, где расстояние максимально от источника, то:

W = (k x Q x q) x (1/∞ — 1/r) = (k x Q x q)/r – это формула для точечного заряда.

Важно! Положительное либо отрицательное значение потенциальной энергии выбирается в зависимости от притяжения или отталкивания точечного заряда.

Электрическое поле в конденсаторе

Напряженность электрического поля

Конденсаторы могут сохранять энергию путем удерживания пары противоположных зарядов. Эти устройства способны поддерживать баланс электрозарядов. Если на одной пластине хранится 1 кулон положительного электрозаряда, то другая будет стремиться иметь 1 кулон отрицательного, что делает общий заряд на обеих обкладках нулевым.

При подключении к источнику тока на одной из пластин начинает формироваться заряд. Он вызывает такой же по количественному значению и противоположный по знаку заряд на другой пластине. Когда он добавляться больше не может из-за параметров пластины, конденсатор заряжен полностью. Этот максимальный заряд равен:

Q = C x U, где:

  • C – емкость конденсаторного элемента,
  • U – напряжение.

Как только противоположные заряды установлены полностью с обеих сторон, они могут использоваться для выполнения работы, если позволить им перемещаться друг к другу по цепи.

Работу конденсатора можно описать, используя фазы накопления и разряда:

  1. Накопление энергии. При подсоединении к аккумулятору электроны накапливаются на одной пластине, вызывая накопление положительного заряда на другой;
  2. Отдача энергии (разряд). Если отключить аккумулятор, заряд на пластинах сохраняется до тех пор, пока не подключить его к электроцепи, например, к лампе. После этого заряды будут переходить с одной пластины на другую, перемещаясь по цепи. Таким образом, конденсатор сам становится источником энергии.

Важно! Конденсаторы сохраняют энергию, благодаря своему физическому устройству, которое делает их очень быстрыми при зарядке и разрядке в отличие от химических аккумуляторов.

Энергия конденсатора

Плотность энергии магнитного поля

Энергия электрического поля в заряженном конденсаторе принадлежит к потенциальному виду. Его обкладки притягиваются друг к другу, и для поддержания их на постоянном расстоянии необходима внешняя сила. В какой-то момент эта сила F может совершить работу.

Формулы для энергии ЭП конденсатора

Таким образом, энергия электрического поля определяется через составление формул для работы:

  1. Работа A = F x d (d – дистанция между конденсаторными обкладками);
  2. Сила F = q x E1 (q – электрозаряд, Е1 – напряженность ЭП, создаваемая одной пластиной);
  3. Тогда А = q x E х d;
  4. Так как напряженность ЭП в плоском конденсаторе, состоящем из двух обкладок, равна E = 2 х E1, то А = (q x E х d)/2;
  5. Выражая напряженность E = U/d, получается:

A = (q x U x d)/ (2 x d) = (q x U)/2.

Вычисленная работа равна энергии заряженного конденсатора.

Используя формулу для конденсаторной емкости C = q/U, записывается выражение для энергии следующим образом:

W = q²/2 x C или W = (C x U²)/2.

В то же время емкость C = (ε x ε0 x S)/d (S – площадь обкладки, ε – диэлектрическая проницаемость). Формулу для энергии можно переписать в виде:

W = (C x U²)/2 =(ε x ε0 x S)/(2 x d) x E² x d² = 1/2 ε x ε0 x S x d x E² = 1/2 ε x ε0 x E² x V, где V = S x d  – объем ЭП.

В этой форме энергия выражается свойствами пространства (ε, ε0) и напряженностью ЭП.

Важно! В пространстве, где присутствует ЭП, энергия электрического поля накапливается пропорционально квадрату его напряженности.

По данным формулам можно вести расчет применительно к любым конденсаторам.

Источник: https://elquanta.ru/teoriya/ehnergiya-ehlektricheskogo-polya.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Для чего нужен расширительный бак трансформатора

Закрыть