Что такое кинетическая энергия и потенциальная энергия

Кинетическая и потенциальная энергия. Закон сохранения энергии


Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе силы тяжести по перемещению тела из данного положения на нулевой уровень:

Потенциальная энергия упруго деформированного тела – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

  • полная механическая энергия замкнутой системы тел есть величина постоянная:

В случае, когда на тело (или систему тел) действуют внешние силы, например, сила трения, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно работе внешних сил:

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и закон сохранения импульса, он справедлив не только для механических движений, но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/mexanika/dinamika/zakon-soxraneniya-energii/

К титульной странице

Типовые задачи

1. Пуля массой 9 граммов вылетела из ружья вертикально вверх со скоростью 700 м/с. Какова была ее кинетическая энергия?

2. Ракета массой 0,2 кг вылетела из ракетницы вертикально вверх и поднялась на высоту 60 метров. Какова ее потенциальная энергия на этой высоте?

3. Найти энергию пружины, растянутой на 5 мм, если коэффициент ее жесткости 10000 Н/м.

Краткая теория:

Механическая энергия может быть потенциальной и кинетической. Потенциальная энергия определяется положением тел или частей одного тела относительно друг друга. Кинетическая энергия — это энергия движения. Она определяется скоростью тела.
Единица измерения энергии — джоуль (Дж).

Формулы для решения:

Потенциальная энергия тела над поверхностью планеты:

Где «g» — ускорение свободного падения, «h» — высота подъема тела.

Потенциальная энергия деформированной пружины:

Где «k» — коэффициент жесткости пружины, «x» — смещение ее конца от положения равновесия.

Кинетическая энергия:

Где «m» — масса тела, «v» — его скорость.

Алгоритм решения типовой задачи:

1. Кратко записываем условие задачи. 2. Изображаем условие графически в произвольной системе отсчета. 3. Записываем формулы для вычисления энергии. 4. Решаем уравнения в общем виде. 5. Подставляем величины в общее решение, вычисляем. Перед подстановкой переводим заданные величины в одну систему (предпочтительно СИ).

6. Записываем ответ.

Задача 1

Пуля массой 9 граммов вылетела из ружья вертикально вверх со скоростью 700 м/с. Какова была ее кинетическая энергия?

Решение.

1, 2. Кратко записываем условие задачи и изображаем его графически.

3. Записываем формулу для вычисления кинетической энергии.

4. Решаем уравнение в общем виде. В данном случае сама формула является решением.

5. Подставляем величины в общее решение, вычисляем. Перед подстановкой переводим массу пули в систему СИ. 9 г = 0,009 кг.

6. Ответ: кинетическая энергия вылетевшей пули 2200 джоулей.

Задача 2

Ракета массой 0,2 кг вылетела из ракетницы вертикально вверх и поднялась на высоту 60 метров. Какова ее потенциальная энергия на этой высоте?

Решение.

1, 2. Кратко записываем условие задачи и изображаем его графически в произвольной системе отсчета.

3. Записываем формулы для вычисления энергии.

4. Решаем уравнения в общем виде. Формула сразу дает решение в общем виде.

5. Подставляем величины в общее решение, вычисляем.

6. Ответ: ракета будет иметь потенциальную энергию 118 джоулей.

Задача 3

Найти энергию пружины, растянутой на 5 мм, если коэффициент ее жесткости 10000 Н/м.

Решение.

1, 2. Кратко записываем условие задачи и изображаем условие графически в произвольной системе отсчета.

3. Записываем формулы для вычисления энергии.

4. Решаем уравнения в общем виде. Формула сразу дает общее решение.

5. Подставляем величины в общее решение, вычисляем. Переводим данные в систему СИ. 5 мм = 0,005 м.

6. Ответ: энергия пружины 0,125 джоуля.

Источник: http://izotovmi.ru/PRPR/Fizika/Mehanika/zsohr030.htm

10 лучших примеров кинетической энергии

Кинетическая энергия — это энергия движения: если что-то движется, говорят, что оно имеет кинетическую энергию. Согласно классической механике, кинетическая энергия (E) невращающегося объекта зависит от его массы (m) и скорости (v).

E = ½mv 2

Поскольку энергия является скалярной величиной, она не зависит от направления и всегда положительна. Если вы удвоите массу, вы удвоите и энергию. Однако, если вы удвоите скорость, энергия увеличится в четыре раза.

Кинетическую энергию можно разделить на три группы в зависимости от типа движения объекта.

  1. Поступательная кинетическая энергия: это энергия, обусловленная движением из одного положения в другое. Например, поезд, движущийся по рельсам, или предметы, свободно падающие под действием силы тяжести, обладают поступательной кинетической энергией.
  2. Вращательная кинетическая энергия: энергия, возникающая из-за вращательного движения. Вращение Земли является прекрасным примером вращательной кинетической энергии.
  3. Колебательная кинетическая энергия — это энергия, обусловленная колебательным движением. Движение камертона является ярким примером вибрационной кинетической энергии.

Стандартная единица измерения кинетической энергии является Джоуль. Она может передаваться между объектами и преобразовываться в другие виды энергии.

Например, бегун использует химическую энергию (предоставляемую пищей) для ускорения. В этом случае химическая энергия преобразуется в энергию движения, т.е. кинетическую энергию. Однако этот процесс не является полностью эффективным, так как много энергии теряется в тепле.

Кинетическая энергия в основном проявляется в пяти различных формах: механической, электрической, тепловой, излучающей и звуковой. Чтобы лучше объяснить это количественное свойство, мы собрали несколько простейших и наиболее основных примеров кинетической энергии, которая происходит в повседневной жизни.

1. Движущийся автомобиль

Форма механической энергии

Само определение кинетической энергии — это энергия, которой тело обладает в силу движения. По этому определению каждое движущееся транспортное средство обладает определенной кинетической энергией.

Чем больше масса и скорость транспортного средства, тем больше кинетической энергии он будет иметь. У автомобиля будет более высокая кинетическая энергия, чем у мотоцикла (учитывая, что оба движутся с одинаковой скоростью, но у автомобиля больше массы).

Точно так же летающий истребитель или космический корабль (такой как Международная космическая станция на низкой околоземной орбите) обладает очень большим количеством кинетической энергии.

2. Езда на велосипеде

Форма механической энергии

Езда на велосипеде-это богатый источник кинетической энергии. Велосипедист изначально имеет химическую энергию, хранящуюся в его организме в результате приема пищи. По мере того как он прикладывает направленную вниз силу на педаль велосипеда, химическая энергия преобразована в кинетическую энергию.

Однако такое преобразование энергии не очень эффективно. Велосипедист также использует значительное количество химической энергии для получения тепла и преодоления трения и сопротивления воздуха.

3. Падение телефона на пол

Форма механической энергии

Что происходит, когда вы случайно роняете свой телефон? Он ускоряется за счет гравитационной силы, набирая скорость и импульс.

Любой падающий объект будет продолжать ускоряться до тех пор, пока восходящая сила сопротивления воздуха полностью не уравновесит нисходящую силу, действующую из-за гравитации. В этом случае, однако, мы можем пренебречь сопротивлением воздуха, так как оно намного ниже силы тяготения.

Изначально, в самой высокой точке, телефон обладает максимальной потенциальной энергией. При падении эта энергия преобразуется в кинетическую энергию. Чем больше масса телефона, тем больше кинетической энергии он будет достигать .

Когда телефон ударяется о пол, эта кинетическая энергия переходит в производство звука, вызывая отскок телефона, и ломает или деформирует его тело.

4. Пуля, выпущенная из пистолета

Форма механической энергии

Пуля, летящая по воздуху, обладает чрезвычайно высокой кинетической энергией. Ее также называют дульной энергией. Если не принимать во внимание внешние факторы (такие как гравитация и аэродинамика), то дульная энергия примерно указывает на разрушительный потенциал данного огнестрельного оружия или патрона.

Чем быстрее движется пуля и чем она тяжелее, тем выше ее кинетическая энергия и тем больше урона она нанесет.

5. Молния во время грозы

Форма электрической энергии

Электрическая энергия — это вид кинетической энергии, вызываемой потоком отрицательно заряженных электронов. Количество энергии пропорционально скорости движения электронов: чем быстрее они движутся, тем больше энергии они несут. Именно это движение электронов и питает наши электрические устройства.

Молния во время грозы является ярким примером электрической энергии. То, что вы на самом деле видите, это мгновенный разряд электронов, вызванный статическим электричеством в облаках. По мере того, как молния нагревает воздух, она производит ударную волну, вызывая звук грозы.

6. Электричество, обеспечиваемое автомобильной аккумуляторной батареей

Форма электрической энергии

Автомобильный аккумулятор преобразует химическую энергию в электрическую, доступ к которой осуществляется через клеммы аккумулятора. Химический процесс в разрядной батарее освобождает электроны от анода к катоду. Эти движущиеся электроны обеспечивают электричество для цепей в автомобиле.

ЭТО ИНТЕРЕСНО:  Сколько ватт в вольт

Для зарядки батареи поток электронов обратный (от катода к аноду). Кроме того, эти аккумуляторы предназначены для выпуска высокого всплеска тока, а затем быстро заряжается.

7. Вибрирующие стереодинамики

Форма звуковой энергии

Звук — это движение энергии через среду (такую как вода или воздух) и вызвано вибрациями. Звуковая энергия распространяется в виде волн и достигает наших барабанных перепонок, которые затем вибрируют, и наш мозг интерпретирует ее как звук.

тереодинамики (или все, что производит звук) работает таким же образом. Если вы проигрываете его громче и кладете на него руку, вы почувствуете, как он вибрирует. Что на самом деле происходит, так это то, что колонка движется вперед и назад, надавливая на частицы воздуха, что изменяет давление воздуха и генерирует звуковые волны.

Еще одним отличным примером может служить игра на барабанах; когда вы бьете по барабану, его поверхность вибрирует и вызывает звук.
В отличие от света, звук не может проходить через вакуум, так как нет атомов, которые могли бы передавать вибрацию.

8. Фотоны, испускаемые лампой накаливания

Форма излучающей энергии

В традиционной электрической лампочке, также называемой лампой накаливания, электрический ток перемещается от одного металлического контакта к другому. По мере того как течение пропускает через проводы и нить вольфрама, нить нагрюет до пункта где она начинает испустить фотоны, небольшие пакеты видимого света.

Лампа также производит много тепла в дополнение к свету. Лампа накаливания мощностью 60 ватт, например, преобразует 60 джоулей электрической энергии в секунду в световую и тепловую энергию — обе формы излучаемой энергии.

Энергия излучения — это энергия, которая перемещается частицами или волнами. Она генерируется электромагнитными волнами, которые мы обычно испытываем в виде тепла.

9. Радиоволны, движущиеся со скоростью света

Форма излучающей энергии

Радиоволны также движутся в форме волн. Они имеют частоты от 3 кГц до 300 ГГц и соответствующие длины волн 100 километров и 1 миллиметр. Как и другие электромагнитные волны, радиоволны движутся со скоростью света. Радиостанции используют эти волны для передачи их содержания на большие расстояния.

Другим хорошим примером излучаемой энергии являются лучи, исходящие от Солнца. Вот почему вы чувствуете себя жарче в солнечном свете, чем в тени.

10. Кипящая вода

Форма тепловой энергии

Как и энергия излучения, тепловую энергию можно испытать в виде тепла или излучения. Однако между ними есть большая разница: если энергия излучения описывает движение частиц или волн, то тепловая энергия относится к уровню активности между молекулами и атомами в объекте.

Когда атомы и молекулы движутся быстрее и сталкиваются друг с другом, они создают тепловую энергию. Из-за этого движения тепловая энергия считается формой кинетической энергии.
Кипящая вода — лучший способ визуализации тепловой энергии. При нагревании воды кинетическая энергия отдельных молекул воды увеличивается. И она продолжает расти с температурой до тех пор, пока вода не достигнет точки кипения.

Примером кинетической энергии является также геотермальная энергия, получаемая в результате вулканического действия Земли и распада природных минералов.

Источник: https://new-science.ru/10-luchshih-primerov-kineticheskoj-energii/

Биомеханика-Механическая работа и энергия при движениях человека

Если на частицу подействовать силой F и переместить ее на расстояние s, то сила совершит работу A = Fs = F s cos(F;s) (угол (F;s) между направлением силы и перемещения рассматривается тогда, когда эти вектора не совпадают по направлению). Единицей измерения работы является Джоуль (в системе СИ) или киловатт-час.

Мощностью называется работа, совершаемая за единицу времени, или W=A/t =Fv. По последней формуле можно определить мощность коротких интенсивных движений (ударов по мячу, боксерских ударов и других ударных действий), когда механическую работу определить трудно, но можно измерить силу и скорость. Единица измерения мощности — ватт (Дж/с) (СИ) или лошадиная сила.

Если материальная точка находится в поле (гравитационном, электромагнитном), на нее действует сила F от этого поля, имеющая возможность совершать определенную работу. Этот запас работы, предопределяемый положением точки в поле, является ее потенциальной энергией. Принято считать, что если силы, действующие на материальную точку, совершают положительную работу, то ее потенциальная энергия убывает.

При рассмотрении деформируемого тела часто используют понятие «внутренней потенциальной энергии», которая равна работе деформации, взятой с обратным знаком.

Любое движущееся с поступательной скоростью v тело массой m обладает кинетической энергией, равной Ek=(1/2)mv2.

Аналогичную формулу можно записать для вращающегося с угловой скоростью w твердого тела с центром инерции J: Ekвр=(1/2) Jw2.

Полная энергия движущегося тела равна сумме его потенциальной энергии и кинетической энергии в поступательном и вращательном движениях:

Если мы рассматриваем замкнутую систему, т.е. систему, а которую не оказывают влияние внешние силы, то для такой системы справедливо первое начало термодинамики: энергия в заданной замкнутой механической системе сохраняется. Иначе — это закон сохранения энергии.

Если на систему действуют внешние силы и она переходит из одного состояния в другое, то изменение полной механической энергии при этом переходе равно работе внешних сил. В деформируемых телах полная энергия равна сумме внутренней и кинетической энергий.

Переход одного вида механической энергии в другой называется рекуперацией механической энергии. Простой пример — вращение гимнаста на перекладине, когда вращательная кинетическая энергия переходит целиком в потенциальную в верхней точке и наоборот — в нижней.

Оценка энергетических показателей деятельности спортсмена осуществляется с использованием различного рода датчиков и тестов. С их помощью можно оценить физическое состояние спортсмена и уровень его потенциальных возможностей.

вверх

на главную

Источник: http://www.gm4.ru/pril/shig/biomexanika3.html

Энергия

Любая работа, совершаемая над телом, увеличивает его энергию и делает его способным в свою очередь совершать работу.

Энергией Е называется способность тела совершать работу.
Энергия — Способность тела совершать работу или запас работы.

Энергия измеряется в тех же единицах что и работа. Единица СИ энергии:

Потенциальная энергия

Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжести запасается в виде потенциальной энергии тела.

Если:
Еп — Потенциальная энергия тела, энергия положения (Джоуль)
m — масса тела (кг)
h — высота на которую поднято тело (метр
g — ускорение свободного падения 9.81 (м/c2)

Потенциальная энергия тела равна:

Потенциальная энергия, определяемая по формуле (1), не является полной потенциальной энергией тела, а представляет собой только приращение потенциальной энергии при подъеме тела на высоту h, поскольку начало отсчета выбирается произвольно.

Если тело падает с высоты h, то его потенциальная энергия Wпцеликом превращается в кинетическую энергию Wк (энергию движения).

Потенциальная энергия положения на большой высоте

Формула (1) верна при условии, что ускорение свободного падения g постоянно по всей высоте подъема, т.е. в случае подъема на относительно небольшую высоту. В гравитационном поле любого небесного тела сила тяжести и соответственно ускорение свободного падения тела убывают пропорционально квадрату расстояния от центра этого тела.

Поэтому при подъеме на большую высоту следует учитывать, что g = g(h) и, следовательно F = F(h):

Здесь:
Еп(А) — работа против гравитационной силы (Джоуль)
F — гравитационная сила, с которой два тела притягиваются друг к другу (Ньютон)
m1 — масса первого тела (кг)
m2 — масса второго тела (кг)
r — расстояние между центрами масс тел (метр)
r1 — начальное расстояние между центрами масс тел (метр)
r2 — конечное расстояние между центрами масс тел (метр)
G — гравитационная постоянная 6.67 · 10-11 (м3/(кг · сек2))

Кинетическая энергия

Чтобы сообщить телу ускорение и заставить его двигаться с определенной скоростью, нужно совершить работу. Эта работа запасается в виде кинетической энергии тела.

Если:
Ек — Кинетическая энергия тела, энергия движения (Джоуль)
m — масса тела (кг)
s — перемещение тела (метр)
U — скорость тела (м/c)
a — ускорение тела (м/c2)

Кинетическая энергия тела, энергия движения, записывается в виде формулы:

Задачи на кинетическую и потенциальную энергию с подробными решениями

А почему-бы и нет? У нас уже были задачи на свободное падение, законы Ньютона, силу трения и проч. и проч. Сегодня решаем задачи на кинетическую и потенциальную энергию.

А вообще, помните, что мы занимаемся далеко не только решением задач. Наш телеграм – это полезная информация для студентов всех специальностей, новости, лайфхаки, акции и скидки.

Задачи на кинетическую и потенциальную энергию

Приведем примеры задач на нахождение кинетической и потенциальной энергии с решением. Прежде чем приступать к практике, почитайте теорию по теме, повторите общую памятку по решению задач по физике и на всякий случай держите под рукой полезные формулы.

Задача №1 на кинетическую энергию

Условие

Максимальная высота, на которую поднимается тело массой 1 кг, подброшенное вертикально вверх, составляет 20 м. Найдите, чему была равна кинетическая энергия сразу же после броска.

Решение

Потенциальная энергия тела над поверхностью Земли составляет:

Здесь m – масса тела, g – ускорение свободного падения, h – высота. Согласно закону сохранения энергии, потенциальная энергия тела в наивысшей точке должна равняться кинетической энергии тела в начальный момент, то есть:

Принимая ускорение свободного падения равным 10 м/с2, находим кинетическую энергию тела сразу же после броска:

Ответ: 200 Дж.

Задача №2 на потенциальную энергию

Условие

Чему равна потенциальная энергия трех кубических дециметров воды на высоте 10 м?

Решение

По определению, потенциальная энергия равна в поле силы тяжести равна:

Масса трех кубических дециметров воды (трех литров) легко находится из формулы для плотности воды:

Осталось вычислить потенциальную энергию:

Ответ: 300 Дж.

При решении задач не забывайте переводить все размерности величин в систему СИ.

Задача №3 на полную механическую энергию

Условие

Какова полная механическая энергия дирижабля массой 5 тонн, если он летит на высоте 2 км со скоростью 60 км/ч?

Решение

Полная механическая энергия состоит из кинетической и потенциальной энергий:

Вычислим:

Ответ: 100,7 МДж.

Задача №4 на кинетическую и потенциальную энергию

Условие

ЭТО ИНТЕРЕСНО:  Как измерить ток утечки

Шарик массой 200 г падает с высоты 20 м с начальной скоростью, равной нулю. Какова его кинетическая энергия в момент перед ударом о землю, если потеря энергии за счет сопротивления воздуха составила 4 Дж? (Ответ дайте в джоулях.) Ускорение свободного падения принять равным 10 м/с2.

Решение

Перед началом падения потенциальная энергия шарика составляет:

По закону сохранения энергии, эта энергия должна перейти в кинетическую энергию Ек за вычетом потери за счет сопротивления воздуха дельта Е. Таким образом, можем найти кинетическую энергию:

Ответ: 36 Дж.

Задача №5 кинетическую и потенциальную энергию

Условие

Шарик висит на нити. В нем застревает пуля, летящая горизонтально, в результате чего нить отклоняется на некоторый угол. Как изменятся при увеличении массы шарика следующие величины: импульс, полученный шариком в результате попадания в него пули; скорость, которая будет у шарика тотчас после удара; угол отклонения нити?

Решение

Согласно закону сохранения импульса, скорость шарика с застрявшей в нем пулей равна

Здесь M и m – массы шарика и пули соответственно, v – скорость пули перед ударом. Таким образом, при увеличении массы шарика его скорость после удара уменьшится.

Найдем импульс, переданный шарику при попадании пули:

Следовательно, с увеличением массы шарика переданный ему импульс увеличивается.

Согласно закону сохранения энергии, кинетическая энергия пули перейдет в потенциальную энергию шарика с пулей:

Таким образом, при увеличении массы шарика угол отклонения нити уменьшится, поскольку уменьшится скорость u.

Ответ: см решение выше.

Вопросы на потенциальную и кинетическую энергию

Вопрос 1. Что такое энергия? Что такое механическая энергия?

Ответ. Для энергии существует множество определений. В наиболее общем смысле:

Энергия – мера способности тела совершать работу.

Механическая энергия – это энергия, связанная с движением тела или его положением в пространстве. Механическая энергия в механике описывается суммой кинетической и потенциальной энергии.

Вопрос 2. Сформулируйте закон сохранения энергии

Ответ. Закон сохранения энергии является фундаментальным физическим принципом. Для каждого вида энергии он имеет свою формулировку. Для механической энергии:

Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остается неизменной.

Вопрос 3. Какие силы называются консервативными?

Ответ. Консервативные, или потенциальные силы – это силы, работа которых не зависит от формы траектории. В качестве примера такой силы можно привести силу тяжести.

Вопрос 4. Какую энергию называют кинетической?

Ответ. Кинетическая энергия является энергией движения. Ею обладают только движущиеся тела, она зависит от массы тела и его скорости.

Вопрос 5. Какую энергию называют потенциальной?

Ответ. Потенциальная энергия является энергией взаимодействия в поле консервативных сил. Она зависит от положения тела и выбора системы отсчета. Например, потенциальная энергия тела в поле силы тяжести зависит от массы тела, ускорения свободного падения и высоты над нулевым уровнем.

Не знаете, как решать задачи на кинетическую или потенциальную энергию? Проблемы с выполнением любых других студенческих работ? Обращайтесь в профессиональный сервис для учащихся за помощью и консультациями.

Источник: https://zaochnik.ru/blog/zadachi-na-kineticheskuju-i-potentsialnuju-energiju-s-podrobnymi-reshenijami/

Энергия: потенциальная и кинетическая энергия

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Нужна помощь в учебе?

Предыдущая тема: Коэффициент полезного действия механизмов: расчет, формула + примеры
Следующая тема:   Превращение энергии: закон сохранения энергии

Источник: http://www.nado5.ru/e-book/ehnergiya-potencialnaya-i-kineticheskaya-ehnergiya

Закон сохранения механической энергии

Конспект по физике для 7 класса «Закон сохранения механической энергии». ВЫ УЗНАЕТЕ: Какими источниками энергии издревле пользуется человечество. Что такое возобновляемые и невозобновляемые источники энергии.

Конспекты по физике    Учебник физики    Тесты по физике

Тела, поднятые над поверхностью Земли, обладают потенциальной энергией, а движущиеся тела кинетической. В повседневной жизни часто можно наблюдать, как потенциальная энергия превращается в кинетическую, а кинетическая — в потенциальную.

ПРЕВРАЩЕНИЕ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ В КИНЕТИЧЕСКУЮ

Например, мячик массой m, поднятый на высоту h над поверхностью Земли, обладает потенциальной энергией. Его кинетическая энергия равна нулю.

Но стоит отпустить мячик, как он начнет падать на Землю. Во время падения высота, на которой находится мячик, уменьшается. Следовательно, потенциальная энергия мячика также уменьшается.

При этом скорость тела начинает увеличиваться, следовательно, его кинетическая энергия также увеличивается. В тот момент, когда тело коснётся поверхности Земли, ею потенциальная энергия станет равной нулю, а кинетическая будет максимальной.

В этом случае потенциальная энергия тела переходит в ею кинетическую энергию: Еп → Ек.

ПРЕВРАЩЕНИЕ КИНЕТИЧЕСКОЙ ЭНЕРГИИ В ПОТЕНЦИАЛЬНУЮ

Также можно наблюдать превращение кинетической энергии в потенциальную. Если мячик бросить вертикально вверх, то расстояние от поверхности Земли до него будет увеличиваться, следовательно, будет увеличиваться его потенциальная энергия. Скорость мячика при этом будет уменьшаться, и его кинетическая энергия тоже будет уменьшаться. В этом случае кинетическая энергия тела переходит в его потенциальную энергию: Ек → Еп.

ПРЕВРАЩЕНИЕ ОДНОГО ВИДА ЭНЕРГИИ В ДРУГОЙ

Во всех описанных примерах при уменьшении потенциальной энергии тела его кинетическая энергия возрастала. И наоборот, при увеличении потенциальной энергии тела его кинетическая энергия уменьшалась.

Превращения одного вида механической энергии в другой можно наблюдать на примере движения маятника. Если шарик маятника оттянуть вправо, он приподнимется на высоту h над своим нижним положением. В этом положении потенциальная энергия шарика будет максимальной.

Если теперь шарик отпустить, то он начнёт двигаться влево вниз, постепенно увеличивая скорость. Следовательно, кинетическая энергия шарика увеличивается и в среднем положении она будет максимальной.

Его потенциальная энергия в этом положении будет минимальной. За счет запаса кинетической энергии шарик продолжает двигаться влево, поднимаясь всё выше. Это приводит к возрастанию его потенциальной энергии.

Одновременно скорость шарика уменьшается, что приводит к уменьшению кинетической энергии.

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ

Можно выдвинуть гипотезу о том, что при переходе механической энергии из одного вида в другой полная энергия сохраняется. Рассмотрим следующий идеализированный опыт (считая сопротивление воздуха несущественным).

Железный шар радиусом 10 см и массой 32,7 кг находится на вершине Пизанской башни, высота которой составляет приблизительно 56 м. Кинетическая энергия этого шара равна нулю, а его потенциальная энергия Еп = mgh = 17 946 Дж.

При падении этого шара с башни на него действует сила тяжести, и его скорость каждую секунду увеличивается на 9,8 м/с. Шар достигает поверхности «Земли за время, примерно равное 3,38 с.

Используя формулу а = (ʋ – ʋ0)/t и учитывая, что ʋ0 = 0 и а = g, получаем, что ʋ = gt.

Значит, в момент, когда шар достигает поверхности Земли, его скорость ʋ = 33,13 м/с.

Здесь Ек = mʋ2/2 = 17 946 Дж, а Еп = 0. Получается, что вся потенциальная энергия шара перешла в его кинетическую энергию.

Из многочисленных наблюдений за превращениями энергии учёные сделали вывод: энергия никогда не исчезает и не возникает из ничего, она только переходит из одного вида в другой и от одного тела к другому. Это утверждение называют законом сохранения энергии.

Кроме перехода энергии из одного вида в другой, энергия может переходить от одного тела к другому. Это очень хорошо демонстрируется при столкновении бильярдных шаров.

Вы смотрели Конспект по физике для 7 класса «Закон сохранения механической энергии»: .
Вернуться к Списку конспектов по физике (В оглавление).

Пройти онлайн-тест «»

Источник: https://xn--7-8sb3ae5aa.xn--p1ai/zakon-sohranenija-mehanicheskoj-jenergii/

Кинетическая и потенциальная энергия

Одним из основных понятий в физике является понятие энергии. Закон сохранения энергии это основной закон природы. С его помощью приходит понимание как происходят многие механические, тепловые и электрические явлений. Понятие «энергия» является базовым в огромном количестве технических задач, так как важная задача техники заключается в получении, передаче и использовании энергии.

Кинетическая энергия — энергия движения

Определение

Кинетическая энергия механической системы — это энергия ее движения.

При воздействии силы ($\overline{F}$) на тело, находящееся в состоянии покоя, тело приводится в движение. При этом сила совершает работу, энергия тела увеличивается на величину произведенной работы:

\[dA=dE_k\left(1\right),\]

где $dA$ — элементарная работа силы над телом; $dE_k$ — малое изменение кинетической энергии тела.

Запишем второй закон Ньютона для материальной точки, на которую действует сила $\overline{F}$ в виде:

\[\overline{F}=m\frac{d\overline{v}}{dt\ }\left(2\right).\]

Умножим обе части выражения (2) на перемещение, которое совершает тело при действии силы $\overline{F}:$

\[\overline{F}\cdot d\overline{s}=m\frac{d\overline{v}}{dt\ }\cdot d\overline{s}\ \left(3\right).\]

В левой части формулы (3) мы получили элементарную работу ($dA$):

\[dA=m\frac{d\overline{v}}{dt\ }•d\overline{s}\ \left(4\right).\]

Учитывая, что $\frac{d\overline{s}}{dt}=\overline{v}$ выражение (4) можно представить как:

\[dA=m\ \overline{v}\ d\overline{v}\left(5\right).\]

Примем во внимание равенство (1), получаем:

\[dE_k=m\ \overline{v}\ d\overline{v}=mvdv\left(6\right).\]

Интегрируем правую и левую части уравнения (6), имеем:

\[E_k=\int\limitsv_0{m\ v\ dv=\frac{mv2}{2}}\left(7\right).\]

Мы получили, что тело имеющее массу $m$, движущееся со скоростью $v$ имеет кинетическую энергию равную:

\[E_k=\frac{mv2}{2}=\frac{p2}{2m}\left(8\right).\]

где $p$ — импульс тела. Формула (8) является приближенной, но в практических расчетах она дает достаточную точность. Так, при скоростях в сотни километров вычисления по формуле (8) дают погрешность (в сравнении с вычислениями по релятивистским формулам) в десятитысячную долю процента.

Релятивистское определение кинетической энергии

Кинетической энергией тела ($E_k$) называют разность между его полной энергией ($W$) и энергией покоя ($E_0$):

\[E_k=W-E_0=mc2\left(G-1\right)\left(9\right),\]

где $W$ — полная энергия изолированного тела.

ЭТО ИНТЕРЕСНО:  Как проверить работает ли диод

\[W=Gmc{2\ }\left(10\right),\]

$c$- скорость света; $G=\frac{1}{\sqrt{1-\frac{v2}{c2}}}$ ($v-$скорость движения тела по отношению к избранной инерциальной системе отсчета); $m$ — масса покоя тела.

Для вычислений кинетической энергии используют ее определение в другом виде. Чтобы его получить умножим выражение (9) на $\frac{G+1}{G+1}$:

\[E_k=mc2\left(G-1\right)\frac{G+1}{G+1}=\frac{mv2}{\frac{1}{G}+\frac{1}{G2}}.\]

И так, мы получили, что при скорости движения тела близкой к скорости света:

\[E_k=\frac{mv2}{\frac{1}{G}+\frac{1}{G2}}(11).\]

Если тело движется со скоростью много меньше, чем скорость света, то кинетическая энергия существенно меньше энергии покоя.

\[\frac{E_k}{E_0}=\frac{v2}{2c2}\ll 1.\]

При скоростях близких к скорости света почти вся энергия тела сводится к его кинетической энергии, в этом случае энергия покоя значительно меньше кинетической. Для ультрарелятивистских скоростей можно пользоваться выражением:

\[E_k\approx W=Gmc2\left(12\right).\]

Потенциальная энергия — энергия взаимодействия

Определение

Потенциальной энергией ($E_p$) взаимодействующих тел называют энергию, которая зависит от взаимного расположения рассматриваемых тел.

Работа ($A$) консервативных сил равна изменению потенциальной энергии системы тел находящихся во взаимодействии:

\[A=E_{p1}-E_{p2}\left(13\right).\]

Потенциальную энергию можно вычислить с точностью до произвольной постоянной величины.

В общем случае потенциальная сила, которая действует на тело в некоторой точке потенциального поля и потенциальная энергия тела связывает соотношение:

\[\overline{F}=-gradE_p=-\left(\frac{\partial E_p}{\partial x}\overline{i}+\frac{\partial E_p}{\partial y}\overline{j}+\frac{\partial E_p}{\partial z}\overline{k}\right)\left(14\right),\]

где $\overline{i},\ \overline{j},\overline{k}$ — единичные векторы (орты). Если поле сил имеет сферическую симметрию, то выражение (7) можно преобразовать к виду:

\[F=-\frac{dE_p}{dr}\left(15\right).\]

Когда говорят о потенциальной энергии тела, всегда следует указывать, в каком поле находится это тело (с каким телом взаимодействует).

Примеры задач с решением

Пример 1

Задание. Материальная точка массой $m\ (кг)$ движется под воздействием некоторой силы, при этом модуль ее перемещения задается уравнением: $s=C-Bt+Dt2-Et3(м)$. Какова ее кинетическая энергия тела в момент времени $t=1\ c?$

Решение. Будем считать, что скорость материальной точки много меньше, чем скорость света. Это позволит нам использовать следующее определение кинетической энергии:

\[E_k=\frac{mv2}{2}\left(1.1\right).\]

Из уравнения $s(t)$, которое задано в условии задачи мы найдем величину скорости движения материальной точки как:

\[v\left(t=1\ c\right)=\frac{ds}{dt}=-B+2Dt-3Et2=-B+2D-3E\left(\frac{м}{с}\right)\left(1.2\right).\]

Подставим в формулу (1.1) вместо $v,$ правую часть выражения, полученного в (1.2):

\[E_k=\frac{m{\left(-B+2D-3E\right)}2}{2}(Дж).\]

Ответ. $E_k=\frac{m{(-B+2D-3E)}2}{2}$ Дж

Пример 2

Задание. Материальная точка движется в положительном направлении оси X в поле консервативных сил. Потенциальная энергия силового поля представлена графиком (рис.1). Как изменяется модуль ускорения материальной точки?

Решение. Из графика (рис.1) следует, что потенциальная энергия задана уравнением:

\[E_p\left(x\right)=Cx\left(2.1\right),\]

где $C=const.$

Так как тело находится в поле консервативных сил, то сила и потенциальная энергия тела в поле этих сил связаны соотношением:

\[\overline{F}=-gradE_p=-\left(\frac{\partial E_p}{\partial x}\overline{i}+\frac{\partial E_p}{\partial y}\overline{j}+\frac{\partial E_p}{\partial z}\overline{k}\right)\left(2.2\right).\]

Так как потенциальная энергия зависит только от $x$, то выражение (2.2) заменим на:

\[\overline{F}=-\frac{dE_p}{dx}\overline{i}\left(2.3\right).\]

Найдем силу, действующую на точку, подставив (2.1) в (2.3), имеем:

\[\overline{F}=-C\overline{i}\ \left(2.4\right).\]

Модуль силы равен:

\[F=C\ \left(2.5\right).\]

По второму закону Ньютона, с другой стороны:

\[F=ma=C\ \left(2.6\right).\]

Из уравнения (2.6) видим, что ускорение постоянно по величине.

Ответ. $a=const$

Читать дальше: кинетическая энергия.

Источник: https://www.webmath.ru/poleznoe/fizika/fizika_23_kineticheskaja_i_potencialnaja_jenergija.php

Потенциальная и кинетическая энергия. Закон сохранения механической энергии – FIZI4KA

ОГЭ 2018 по физике ›

1. Камень, упав с некоторой высоты на Землю, оставляет на поверхности Земли вмятину. Во время падения он совершает работу по преодолению сопротивления воздуха, а после касания земли — работу по преодолению силы сопротивления почвы, поскольку обладает энергией.

Если накачивать в закрытую пробкой банку воздух, то при некотором давлении воздуха пробка вылетит из банки, при этом воздух совершит работу по преодолению трения пробки о горло банки, благодаря тому, что воздух обладает энергией. Таким образом, тело может совершить работу, если оно обладает энергией.

Энергию обозначают буквой ​\( E \)​. Единица работы — ​\( [E\,] \)​ = 1 Дж.

При совершении работы изменяется состояние тела и изменяется его энергия. Изменение энергии равно совершенной работе: ​\( E=A \)​.

2.Потенциальной энергией называют энергию взаимодействия тел или частей тела, зависящую от их взаимного положения.

Поскольку тела взаимодействуют с Землёй, то они обладают потенциальной энергия взаимодействия с Землёй.

Если тело массой ​\( m \)​ падает с высоты ​\( h_1 \)​ до высоты ​\( h_2 \)​, то работа силы тяжести ​\( F_т \)​ на участке ​\( h=h_1-h_2 \)​ равна: ​\( A = F_тh = mgh = mg(h_1 — h_2) \)​ или \( A = mgh_1 — mgh_2 \) (рис. 48).

В полученной формуле ​\( mgh_1 \)​ характеризует начальное положение (состояние) тела, \( mgh_2 \) характеризует конечное положение (состояние) тела. Величина \( mgh_1=E_{п1} \) — потенциальная энергия тела в начальном состоянии; величина \( mgh_2=E_{п2} \) — потенциальная энергия тела в конечном состоянии.

Можно записать ​\( A=E_{п1}-E_{п2} \)​, или \( A=-(E_{п2}-E_{п1}) \), или \( A=-E_{п} \).

Таким образом, работа силы тяжести равна изменению потенциальной энергии тела. Знак «–» означает, что при движении тела вниз и соответственно при совершении силой тяжести положительной работы потенциальная энергия тела уменьшается. Если тело поднимается вверх, то работа силы тяжести отрицательна, а потенциальная энергия тела увеличивается.

Если тело находится на некоторой высоте ​\( h \)​ относительно поверхности Земли, то его потенциальная энергия в данном состоянии равна ​\( E_п=mgh \)​. Значение потенциальной энергии зависит от того, относительно какого уровня она отсчитывается. Уровень, на котором потенциальная энергия равна нулю, называют нулевым уровнем.

В отличие от кинетической энергии потенциальной энергией обладают покоящиеся тела. Поскольку потенциальная энергия — это энергия взаимодействия, то она относится не к одному телу, а к системе взаимодействующих тел. В данном случае эту систему составляют Земля и поднятое над ней тело.

3. Потенциальной энергией обладают упруго деформированные тела. Предположим, что левый конец пружины закреплён, а к правому её концу прикреплён груз. Если пружину сжать, сместив правый её конец на ​\( x_1 \)​, то в пружине возникнет сила упругости ​\( F_{упр1} \)​, направленная вправо (рис. 49).

Если теперь предоставить пружину самой себе, то её правый конец переместится, удлинение пружины будет равно \( x_2 \)​, а сила упругости \( F_{упр2} \).

Работа силы упругости равна

\[ A=F_{ср}(x_1-x_2)=k/2(x_1+x_2)(x_1-x_2)=kx_12/2-kx_22/2 \]

​\( kx_12/2=E_{п1} \)​ — потенциальная энергия пружины в начальном состоянии, \( kx_22/2=E_{п2} \) — потенциальная энергия пружины во конечном состоянии. Работа силы упругости равна изменению потенциальной энергии пружины.

Можно записать ​\( A=E_{п1}-E_{п2} \)​, или \( A=-(E_{п2}-E_{п1}) \), или \( A=-E_{п} \).

Знак «–» показывает, что при растяжении и сжатии пружины сила упругости совершает отрицательную работу, потенциальная энергия пружины увеличивается, а при движении пружины к положению равновесия сила упругости совершает положительную работа, а потенциальная энергия уменьшается.

Если пружина деформирована и её витки смещены относительно положения равновесия на расстояние ​\( x \)​, то потенциальная энергия пружины в данном состоянии равна ​\( E_п=kx2/2 \)​.

4. Движущиеся тела так же могут совершить работу. Например, движущийся поршень сжимает находящийся в цилиндре газ, движущийся снаряд пробивает мишень и т.п. Следовательно, движущиеся тела обладают энергией. Энергия, которой обладает движущееся тело, называется кинетической энергией. Кинетическая энергия ​\( E_к \)​ зависит от массы тела и его скорости \( E_к=mv2/2 \). Это следует из преобразования формулы работы.

Работа ​\( A=FS \)​. Сила ​\( F=ma \)​. Подставив это выражение в формулу работы, получим ​\( A=maS \)​.

Так как ​\( 2aS=v2_2-v2_1 \)​, то ​\( A=m(v2_2-v2_1)/2 \)​ или \( A=mv2_2/2-mv2_1/2 \), где ​\( mv2_1/2=E_{к1} \)​ — кинетическая энергия тела в первом состоянии, \( mv2_2/2=E_{к2} \) — кинетическая энергия тела во втором состоянии.

Таким образом, работа силы равна изменению кинетической энергии тела: ​\( A=E_{к2}-E_{к1} \)​, или ​\( A=E_к \)​. Это утверждение — теорема о кинетической энергии.

Если сила совершает положительную работу, то кинетическая энергия тела увеличивается, если работа силы отрицательная, то кинетическая энергия тела уменьшается.

5. Полная механическая энергия ​\( E \)​ тела — физическая величина, равная сумме его потенциальной ​\( E_п \)​ и кинетической \( E_п \) энергии: \( E=E_п+E_к \).

Пусть тело падает вертикально вниз и в точке А находится на высоте ​\( h_1 \)​ относительно поверхности Земли и имеет скорость ​\( v_1 \)​ (рис. 50). В точке В высота тела \( h_2 \) и скорость \( v_2 \) Соответственно в точке А тело обладает потенциальной энергией ​\( E_{п1} \)​ и кинетической энергией \( E_{к1} \), а в точке В — потенциальной энергией \( E_{п2} \) и кинетической энергией \( E_{к2} \).

При перемещении тела из точки А в точку В сила тяжести совершает работу, равную А. Как было показано, ​\( A=-(E_{п2}-E_{п1}) \)​, а также \( A=E_{к2}-E_{к1} \). Приравняв правые части этих равенств, получаем: ​\( -(E_{п2}-E_{п1})=E_{к2}-E_{к1} \)​, откуда \( E_{к1}+E_{п1}=E_{п2}+E_{к2} \) или ​\( E_1=E_2 \)​.

Это равенство выражает закон сохранения механической энергии: полная механическая энергия замкнутой системы тел, между которыми действуют консервативные силы (силы тяготения или упругости) сохраняется.

В реальных системах действуют силы трения, которые не являются консервативными, поэтому в таких системах полная механическая энергия не сохраняется, она превращается во внутреннюю энергию.

  • Примеры заданий
  • Ответы

Часть 1

1. Два тела находятся на одной и той же высоте над поверхностью Земли. Масса одного тела ​\( m_1 \)​ в три раза больше массы другого тела ​\( m_2 \)​. Относительно поверхности Земли потенциальная энергия

1) первого тела в 3 раза больше потенциальной энергии второго тела 2) второго тела в 3 раза больше потенциальной энергии первого тела 3) первого тела в 9 раз больше потенциальной энергии второго тела

4) второго тела в 9 раз больше потенциальной энергии первого тела

2. Сравните потенциальную энергию мяча на полюсе ​\( E_п \)​ Земли и на широте Москвы ​\( E_м \)​, если он находится на одинаковой высоте относительно поверхности Земли.

1) ​\( E_п=E_м \)​
2) \( E_п>E_м \)
3) \( E_п

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/potencialnaja-i-kineticheskaja-jenergija-zakon-sohranenija-mehanicheskoj-jenergii.html

Понравилась статья? Поделиться с друзьями:
Электро Дело
Что такое инфракрасный теплый пол

Закрыть
Для любых предложений по сайту: [email protected]