Что такое реактивное индуктивное сопротивление и как он определяется

Reactance

Реактивное сопротивление — это мнимая часть импеданса (импедансом называется полное (комплексное) сопротивление цепи переменного тока), которая показывает меру противодействия синусоидальному переменному току. Реактивное сопротивление возникает в присутствии индуктивности и ёмкости в цепи, и обозначается символом X; единица СИ — Ом.

(В этом разделе знак тильда (~) будет использован для обозначения векторов или комплексных величин, а буквы без дополнительных знаков обозначают модули векторов соответствующих величин, а также скалярные величины.)

Для определения импеданса   требуется как реактивное сопротивление X, так и резистивное (активное) сопротивление R. Несмотря на то, что в некоторых обстоятельствах реактивное сопротивление может доминировать, требуется хотя-бы приблизительное знание активного сопротивления  для определения импеданса. 

Как модуль, так и фаза  импеданса зависят от обоих сопротивлений – и от активного и от реактивного:

Модуль импеданса — это отношение амплитуд напряжения и тока, тогда как фаза — это разница между фазами напряжения и тока. 

  • Если X>0 говорят, что реактивное сопротивление является индуктивным
  • Если X=0 говорят, что импеданс чисто резистивный (активный)
  • Если X и ёмкости C.Ёмкостной элемент называется конденсатором. Конденсатор состоит из двух проводников, отделённых друг от друга изолятором, тоесть диэлектриком.При низких частотах или в цепи постоянного тока конденсатор разрывает (размыкает) цепь, так как ток не может течь через диэлектрик. Если к изначально разряженному конденсатору прикладывают постоянное напряжение – в начальный момент на обкладках конденсатора индуцируются заряды, электрическое поле котрых противоположно полю внешнего источника напряжения. Поэтому ток в этот начальный момент в цепи максимален. Затем потенциалы источника питания и конденсатора точно уравниваются, и ток в цепи прекращается.Конденсатор, включённый в цепь переменного тока, будет успевать накапливать только ограниченный заряд перед тем, как разность потенциалов изменит знак на противоположный. Тоесть ток не будет успевать упасть до нуля, как в случае цепи постоянного тока. Чем выше частота, тем меньший заряд будет аккумулироваться в конденсаторе, и тем меньше конденсатор будет противодействовать внешнему току (сопротивление уменьшается).

    Индуктивное реактивное сопротивление

    Индуктивное реактивное сопротивление XL прямопропорционально частоте сигнала и индуктивности L.Индуктивный элемент представляет собой катушку индуктивности, тоесть длинный проводник, например проволока, намотанный в виде катушки. Изнутри катушка может быть пустая или содержать магнетик. Закон электромагнитной индукции Фарадея устанавливает, что ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Эта ЭДС часто называется противо-ЭДС.Если индуктивность представляет собой катушку содержащую N витков.В общем случае ЭДС является следствием изменения магнитного потока в контуре. Но это изменение магнитного потока может иметь разные причины: движение магнита, движение другой катушки с током, изменение собственного тока контура. Последний случай носит название – явление самоиндукции, которое и лежит в основе индуктивного реактивного сопротивления.В свою очередь противо-ЭДС вызывает в контуре индукционный ток, который направлен противоположно току источника питания. Точная форма правила Ленца: индукционный ток в контуре имеет такое направление, что созданный им магнитный поток, через контур, препятствует изменению магнитного потока, вызвавшего этот ток.Если к изначально неподключенной катушке индуктивности подключают источник постоянного тока – в начальный момент в катушке начинает течь ток от внешнего источника. Он вызывает изменение магнитного потока. Изменение магнитного потока порождает противо-ЭДС. Противо-ЭДС вызывает противоток. Этот противоток в начальный момент равен току источника.При низких частотах или в цепи постоянного тока катушка индуктивности проводит электрический ток беспрепятственно, и может рассматриваться как короткозамкнутый участок цепи, тоесть проводник с низким сопротивлением. Если к изначально неподключенной катушке индуктивности подключают источник постоянного тока – в начальный момент в катушке возникает противоток, равный току внешнего источника. Поэтому для идуктивного элемента в этот начальный момент результирующий ток равен нулю, а напряжение максимально. Затем токи источника и индуктивного элемента уравниваются и напряжение на индуктивном элементе становится равным нулю.Ток в катушке индуктивности, включённой в цепь переменного тока, будет успевать возрасти только до определённого значения перед тем, как ток источника питания изменит знак на противоположный. Тоесть напряжение (на выводах катушки индуктивности) не будет успевать упасть до нуля, как в случае цепи постоянного тока. Чем выше частота, тем выше напряжение на выводах катушки индуктивности (сопротивление увеличивается).

    Фазные соотношения

    Фаза напряжения приложенного к чисто реактивному устройству (устройству с нулевым активным сопротивлением) отстаёт от фазы тока на Pi/2 для ёмкости и опережает фазу тока на Pi/2 для индуктивности. Необходимо отметить, что для определения соотношений между током и напряжением необходимо знать как активное, так и реактивное сопротивление.Причина различных знаков ёмкостного и индуктивного сопротивлений заключается в определении фазной переменной импеданса.Для реактивного элемента цепи синусоидальное напряжение на элементе сдвинуто по фазе на 90 градусов (Pi/2 радиан) относительно тока. Элемент поочерёдно то поглащает энергию из сети, то затем возвращает энергию обратно в сеть, поэтому чисто реактивное сопротивление не поглащает энергию.

Источник: http://electron287.narod.ru/pages/rus_reactance.htm

Индуктивное сопротивление: обозначение, сопротивление катушки формула

Когда в цепи нарастает или уменьшается ток, электромагнитное поле создает противодействующую электродвижущую силу. Это явление порождается индуктивностью катушки. Индуктивное сопротивление воздействует только на переменный ток, быстрые изменения которого порождают противодействующую силу. В статье будет более подробно рассказано о природе этого явления.

Что зовется индуктивным сопротивлением

Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.

Схема для измерения

В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.

На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.

В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.

Определение индуктивности

От каких факторов зависит сопротивление

Изменение силы тока создает электромагнитное поле переменной интенсивности. Результатом его воздействия на проводник является противодействие происходящему изменению тока.

Это противодействие называется реактивным сопротивлением. Существуют две его разновидности: индуктивная и емкостная. Первая создается при наличии в схеме индуктивного элемента, вторая — конденсатора.

В ситуации, когда в цепи присутствует катушка, ее реакция усиливается по мере увеличения частоты.

Цепь, в которой возникает индукция

В случае, когда ее индуктивность уменьшается, то противодействующая сила также становится меньше. При увеличении она возрастает.

Индуктивное сопротивление существенно связано с тем, какую форму принимает проводник. Оно имеется также и у отдельного провода, лежащего прямо. Однако если рядом будет еще один, то он будет оказывать воздействие дополнительно, что повлияет на рассматриваемую величину.

Вам это будет интересно  Особенности DC тока

Рассматриваемую характеристику отдельного провода можно определять в зависимости от его толщины, но оно никак не связано с его сечением.

Принцип действия электродвижущей силы

Катушка индуктивности

Он представляет собой изолированный провод, многократно намотанный вокруг сердечника.

Обычно каркас имеет цилиндрическую или тороидальную форму.

Индуктивность рассматривается в качестве основной характеристики катушки. Это качество выражает способность элемента осуществлять преобразование переменного тока в магнитное поле.

Важно! Магнитные свойства существуют даже у одиночного провода, при условии, что изменяется проходящий через него ток. Воздействие поля направлено так, чтобы противодействовать его изменению. Если он будет увеличиться, поле будет его тормозить, а если ослабевать — усиливать.

Катушки индуктивности

Определение направления силовых линий подчиняется «правилу большого пальца»: если у сжатой в кулак руки большой палец указывает в направлении изменения силы тока, то сомкнутые пальцы подсказывают направление силовых линий поля.

Таким образом в том случае, если провод многократно намотан на цилиндрическое основание, то силовые линии от разных витков складываются и проходят через ось.

Для того, чтобы многократно увеличить индуктивность, в центр цилиндра помещают сердечник из ферромагнитного материала.

Индуктивное сопротивление – единицы измерения

Измерение этой величины производится в омах. Здесь используются такая же единица измерения, как и для резистора, несмотря на то, что у них различная природа. Рассматриваемая величина порождается электродвижущей силой, противодействующей происходящему изменению. Обычное возникает в связи с рассеиванием энергии при прохождении электронов по проводнику.

Магнитное поле индуктивного элемента

Индуктивное сопротивление – как его найти

Реальная катушка имеет не только реактивное, но и обычное сопротивление. Индуктивное сопротивление определяется по формуле:

XL=2*П*v*L

Здесь употреблены следующие обозначения:

  1. XL – рассматриваемая величина.
  2. Символом «П» обозначено число Пи.
  3. V представляет собой частоту.
  4. L — это обозначение величины индуктивности.

Вам это будет интересно  Все о токе и его частоте

Надо отметить, что величина (2*П*v) представляют собой круговую частоту, которую обозначают греческим символом «омега».

Катушки с различными сердечниками

Рассматриваемая величина подчиняется закону Ома. Формула выглядит так:

I = U / XL

I, U представляют собой ток и напряжение, XL – это индуктивное сопротивление.

Конфигурация магнитного поля катушки

Для определения искомой величины можно воспользоваться приведенными формулами. При этом можно воспользоваться амперметром и вольтметром. Первый из них надо включить последовательно, второй — параллельно.

При этом необходимо учитывать следующее. На самом деле, в цепи, в которую включена индуктивность, действует два вида сопротивления: активное и реактивное. Измерив ток и напряжение, можно определить их результирующую величину. Нужно помнить, что она не является их простой суммой.

Дело в том, что в переменной цепи, где имеется только катушка и нет конденсатора, напряжение находится впереди тока на четверть периода колебания. Эта величина равна 90 градусам.

Полное сопротивление определяется следующим образом. Для этого необходимо нарисовать соответствующую диаграмму. Если по горизонтали отложить величину обычного, а по вертикали — реактивного, а затем по этим векторам построить прямоугольник, то длина его диагонали будет равна полному значению.

Магнитное поле провода

К примеру, если подобрать элементы цепи таким образом, чтобы по абсолютной величине обе этих величины были равны, то искомая часть определится как их полное значение, умноженное на квадратный корень из двух.

Для того, чтобы получить информацию о зависимости индуктивного сопротивления от частоты, возможно воспользоваться осциллографом.

При использовании переменного тока необходимо учитывать не только обычное, но и индуктивное сопротивление. Оно возникает в том случае, если в электрической цепи присутствует катушка.

Источник: https://rusenergetics.ru/polezno-znat/induktivnoe-soprotivlenie

Активное, емкостное и индуктивное сопротивление. Закон Ома для цепей переменного тока

Определение 1

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:

\[I\left(t\right)=I_m{sin \left(\omega t\right)\ \left(1\right).\ }\]

Рисунок 1.

Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:

\[U=IR=I_m{Rsin \left(\omega t\right)\ \left(2\right),\ }\]

где $U$ — напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:

\[U_m=RI_m\left(3\right),\]

где коэффициент $R$ — называется активным сопротивлением. Наличие активного сопротивления в цепи всегда приводит к выделению тепла.

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Рисунок 2.

Мы можем использовать следующие соотношения:

  • Курсовая работа 490 руб.
  • Реферат 260 руб.
  • Контрольная работа 210 руб.

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $\frac{\pi }{2}.$ Амплитуда напряжения на емкости равна:

Величину $X_C=\frac{1}{\omega C}$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=\infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Индуктивное сопротивление

Пусть участок цепи имеет только индуктивность (рис.3). Будем считать $I>0$, если ток направлен от $а$ к $в$.

Рисунок 3.

Если в катушке течет ток, то в индуктивности появляется ЭДС самоиндукции, следовательно, закон Ома примет вид:

По условию $R=0. \mathcal E$ самоиндукции можно выразить как:

Из выражений (8), (9) следует, что:

Амплитуда напряжения в данном случае равна:

где $X_L-\ $индуктивное сопротивление (кажущееся сопротивление индуктивности).

Закон Ома для цепей переменного тока

Определение 2

Выражение вида:

\[I_m=\frac{U_m}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}\left(12\right).\]

где

\[Z=\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}(13)\]

называют полным электросопротивлением, или импедансом, иногда называют законом Ома для переменного тока. Однако необходимо помнить, что формула (12) относится к амплитудам тока и напряжения, а не мгновенным их значениям.

Пример 1

Задание: Чему равно действующее значение силы тока в цепи. Цепь переменного тока состоит из последовательно соединенных: конденсатора емкостью $C$, катушки индуктивности $L$, активного сопротивления $R$. На зажимы цепи подается напряжение действующее напряжение $U$ частота которого $u$.

Решение:

Так как все элементы цепи соединены последовательно, то сила тока во всех элементах одинакова.

Амплитудное значение силы тока выражается «законом Ома для переменного тока»:

\[I_m=\frac{U_m}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}\left(1.1\right)\]

оно связано с действующим значением силы тока как:

\[I=\frac{I_m}{\sqrt{2}}\left(1.2\right).\]

В условиях задачи мы имеем действующее значение напряжения $U$, нам в формуле (1.1) требуется амплитуда напряжения, используя формулу:

\[U=\frac{U_m}{\sqrt{2}}\to U_m=\sqrt{2}U\left(1.3\right).\]

Подставим в формулу (1.2) формулы (1.1) и (1.3), получим:

\[I=\frac{1}{\sqrt{2}}\frac{\sqrt{2}U}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}=\frac{U}{\sqrt{R2+{\left(\omega L-\frac{1}{\omega C}\right)}2}}=\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}},\]

где $\omega =2\pi u .$

Ответ: $I=\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}}.$

Пример 2

Задание: Используя условия задачи в первом примере, найдите действующие значения напряжений на катушке индуктивности ($U_L$), сопротивлении ($U_R$), конденсаторе ($U_C$).

Решение:

Используем результат примера 1. Напряжение на катушке индуктивности выражается формулой:

\[U_L=I\omega L=2 \pi u L\frac{U}{\sqrt{R2+{\left(2 \pi u L-\frac{1}{2 \pi u C}\right)}2}}.\]

Напряжение на активном сопротивлении ($U_R$) равно:

\[U_R=IR=\frac{UR}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}}.\]

Напряжение на конденсаторе ($U_C$) определяется как:

\[U_C=\frac{I}{C2 \pi u}=\frac{1}{C2 \pi u}\frac{U}{\sqrt{R2+{\left(2 \pi u L-\frac{1}{2 \pi u C}\right)}2}}.\]

Ответ: $U_L=2\pi u L\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}},\ U_R=\frac{UR}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}},U_C=\frac{1}{C2\pi u }\frac{U}{\sqrt{R2+{\left(2\pi u L-\frac{1}{2\pi u C}\right)}2}}.$

Источник: https://spravochnick.ru/fizika/peremennyy_sinusoidalnyy_tok/aktivnoe_emkostnoe_i_induktivnoe_soprotivlenie_zakon_oma_dlya_cepey_peremennogo_toka/

Полное сопротивление трансформатора формула – Расчетные сопротивления трансформаторов — КиберПедия

Мы привыкли считать, что все магнитные потоки в трансформаторе пронизывают обе обмотки и магнитопровод. Если бы существовал идеальный трансформатор, то это действительно так бы и происходило. К сожалению, в реальности часть магнитного потока преодолевает изоляционное пространство, выходит за пределы обмоток и замыкается в них (см. рис. 1). В результате возникает реактивное сопротивление трансформатора. Такое явление ещё называют рассеиванием магнитных потоков.

Рис. 1. Схема, иллюстрирующая рассеивание магнитных потоков

В катушках существуют и другие сопротивления, являющиеся причинами потерь мощности. Таковыми являются: внутреннее сопротивление материалов обмоток, и рассеивания, вызванные индуктивными сопротивлениями. Совокупность рассеиваний магнитных потоков называют внутренним сопротивлением или импедансом трансформатора.

Потери реактивных мощностей

Вспомним, как работает идеальный двухобмоточный трансформатор (см. рис. 2). Когда первичная обмотка окажется под переменным напряжением (например, от электрической сети), возникнет магнитный поток, который пронизывает вторичную катушку индуктивности. Под действием магнитных полей происходит возбуждение вторичных обмоток, в витках которых возникает ЭДС. При подключении активной мощности к прибору во вторичной цепи начинает протекать переменный ток с частотой входного тока.

Рис. 2. Устройство трансформатора

В идеальном трансформаторе образуется прямо пропорциональная связь между напряжениями в обмотках. Их соотношение определяется соотношением числа витков каждой из катушек. Если U1 и U2 – напряжения в первой и второй обмотке соответственно, а w1 и w2 – количество витков обмоток, то справедлива формула: U1 / U2 = w1 / w2.

Другими словами: напряжение в рабочей обмотке во столько раз больше (меньше), во сколько раз количество мотков второй катушки увеличено (уменьшено) по отношению к числу витков, образующих первичную обмотку.

Величину w1 / w2 = k принято называть коэффициентом трансформации. Заметим, что формула, приведённая выше, применима также для автотрансформаторов.

В реальном трансформаторе часть энергии теряется из-за рассеяния магнитных потоков (см. рис. 1). Зоны, где происходит концентрация потоков рассеяния обозначены пунктирными линиями. На рисунке видно, что индуктивность рассеяния охватывает  магнитопровод и выходит за пределы обмоток.

Наличие реактивных сопротивлений в совокупности с активным сопротивлением обмоток приводят к нагреванию конструкции. То есть, при расчётах КПД необходимо учитывать импеданс трансформатора.

Обозначим активное сопротивление обмоток символами R1 и R2 соответственно, а реактивное – буквами X1 и X2. Тогда импеданс первичной обмотки можно записать в виде: Z1= R1+jX1. Для рабочей катушки соответственно будем иметь: Z2= R2+jX2, где j – коэффициент, зависящий от типа сердечника.

Реактивное сопротивление можно представить в виде разницы индукционного и ёмкостного показателя: X = RL – RC. Учитывая, что RL =  ωL, а RC = 1/ωC, где ω – частота тока, получаем формулу для вычисления реактивного сопротивления: X = ωL – 1/ωC.

Не прибегая к цепочке преобразований, приведём готовую формулу для расчёта полного сопротивления, то есть, для определения импеданса трансформатора:

Суммарное сопротивление трансформатора необходимо знать для определения его КПД. Величины потерь в основном зависят от материала обмоток и конструктивных особенностей трансформаторного железа.

Вихревые потоки в монолитных стальных сердечниках значительно больше, чем многосекционных конструкциях магнитопроводов. Поэтому на практике сердечники изготавливаются из тонких пластин трансформаторной стали.

С целью повышения удельного сопротивления материала, в железо добавляют кремний, а сами пластины покрывают изоляционным лаком.

Для определения параметров трансформаторов важно найти активное и реактивное сопротивление, провести расчёты потерь холостого хода. Приведённая выше формула не практична для вычисления импеданса по причине сложности измерений величин индукционного и ёмкостного сопротивлений. Поэтому на практике пользуются другими методами для расчёта, основанными на особенностях режимов работы силовых трансформаторов.

Режимы работы

Двухобмоточный трансформатор способен работать в одном из трёх режимов:

  • вхолостую;
  • в режиме нагрузки;
  • в состоянии короткого замыкания.

Для проведения расчётов режимов электрических цепей проводимости заменяют нагрузкой, величина которой равна потерям при работе в режиме холостого хода. Вычисления параметров схемы замещения проводят опытным путём, переводя трансформатор в один из возможных режимов: холостого хода, либо в состояние короткого замыкания. Таким способом можно определить:

  • уровень потерь активной мощности при работе на холостом ходу;
  • величины потерь активной мощности в короткозамкнутом приборе;
  • напряжение короткого замыкания;
  • силу тока холостого хода;
  • активное и реактивное сопротивление в короткозамкнутом трансформаторе.

Параметры режима холостого хода

Для перехода в работу на холостом ходу необходимо убрать отсутствует нагрузку на вторичной обмотке, то есть – разомкнуть электрическую цепь. В разомкнутой катушке напряжение отсутствует. Главной составляющей тока в первичной цепи является ток, возникающий на реактивных сопротивлениях. С помощью измерительных приборов довольно просто найти основные параметры переменного тока намагничивания, используя которые можно вычислить потери мощности, умножив силу тока на подаваемое напряжение.

Схема измерений на холостом ходу показана на рисунке 3. На схеме показаны точки для подключения измерительных приборов.

Рис. 3. Схема режима холостого хода

Формула, применяемая для  расчётов параметров реактивной проводимости, выглядит так: Вт = Iх%*Sном  / 100* Uв ном2  Умножитель 100 в знаменателе применён потому, что величина тока холостого хода Iх обычно выражается в процентах.

Режим короткого замыкания

Для перевода трансформатора на работу в режиме короткого замыкания закорачивают обмотку низшего напряжения. На вторую катушку подают такое напряжение, при котором в каждой обмотке циркулирует номинальный ток. Поскольку подаваемое напряжение существенно ниже номинальных напряжений, то потери активной мощности в проводимости настолько малы, что ими можно пренебречь.

Таким образом, у нас остаются активные мощности в трансформаторе, которые расходуются на нагрев обмоток: ΔPk = 3* I1ном * Rт. Выразив ток I1 ном через напряжение Uка и сопротивление Rт, умножив выражение на 100, получим формулу для вычисления падения напряжения в зонах активного сопротивления (в процентах):

Активное сопротивление двухобмоточного силового трансформатора вычисляем по формуле:

Подставив значение Rт в предыдущую формулу, получим:

Вывод: в короткозамкнутом трансформаторе падение напряжения в зоне активного сопротивления (выраженная в %) прямо пропорционально размеру потерь активной мощности.

Формула для вычисления падения напряжения в зонах реактивных сопротивлений имеет вид:

Отсюда находим:

Величины реактивных сопротивлений в современных трансформаторах гораздо меньше активного. Поэтому можно считать что падение напряжения в зоне реактивного сопротивления Uк р ≈ Uк, поэтому для практических расчётов можно пользоваться формулой: XT = Uk*Uв ном2 / 100*Sном

Рассуждения, приведённые выше, справедливы также для многообмоточных, в том числе и для трёхфазных трансформаторов. Однако вычисления проводятся по каждой обмотке в отдельности, а задача сводится к решению систем уравнений.

Знание коэффициентов мощности, сопротивления рассеивания и других параметров магнитных цепей позволяет делать расчёты для определения величин номинальных нагрузок. Это, в свою очередь, обеспечивает работу трансформатора в промежутке номинальных мощностей.

www.asutpp.ru

1.4. Определение сопротивления трансформатора

Сопротивлениятрансформатора находятся по даннымопыта короткого замыкания. Схема опытапоказана на рисунке.

Из схемы опытакороткого замыкания видно, что напряжениекороткого замыкания равнопри номинальной нагрузке трансформатора.

Умножив начислитель и знаменатель, получим

У силовыхтрансформаторов,поэтому для них с достаточной точностьюпринимают, что

В опыте короткогозамыкания ваттметр показывает суммупотерь активной мощности в стали и вмеди. Поскольку Uкв % составляет5 – 17 %, то пропорциональный напряжениюмагнитный поток в стальном сердечникеневелик.

Потери активноймощности в стали приблизительнопропорциональны квадрату магнитногопотока, поэтому в опыте короткогозамыкания они очень малы и, или можнопренебречь.

В результате:

,откуда

или

1.5. Определение проводимостей трансформатора

Проводимости gти bтнаходятсяпо данным опыта холостого хода. Схемаопыта показана на рисунке.

Ток холостого ходамал и составляет.Потери мощности, в первичной обмотке,зависящей от квадрата этого тока,незначительны, в результате чегопринимают, что.

Потери в сталиопределяются выражением,где

–активная составляющаятока холостого хода, которая равна

Выраженные черезпотери мощности в стали равны

Токи холостогохода активная составляющая которыхпокрывает потери активной мощности встальном сердечнике на гистерезис ивихревые токи, в 5 – 10 раз меньше реактивнойсоставляющей. Приближённо принимают

Отсюда

окончательно имеем.

Таким образом

2. Трёхобмоточные трансформаторы

Понижающиеподстанции иногда питают распределительныесети двух напряжений, например 10(6) и 35кВ. Если нагрузки этих сетей соизмеримы,то целесообразно применять трёхобмоточныетрансформаторы с двумя вторичнымиобмотками вместо установки двухдвухобмоточных трансформатора.

2.1. Соединение обмоток трёхобмоточных трансформаторов

У силовыхтрансформаторов обмотки ВН и СНсоединяются в звезду, обмотка НН втреугольник. Соответственно группасоединения у/у/Д-0-11.

На тяговыхподстанциях для совместного питаниятяги и района устанавливают трёхобмоточныетрансформаторы.

Их первичнаяобмотка соединяется в звезду, а тяговаяв треугольник. Соединение районнойобмотки зависит от её напряжений. Еслиона имеет напряжение 11(6,6 кВ), то соединяютв треугольник, при напряжении 38,5 кВ –в звезду.

Источник: https://esr-energy.ru/transformator/polnoe-soprotivlenie-transformatora-formula-raschetnye-soprotivleniya-transformatorov-kiberpediya.html

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), котораяпропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2)

Источник: https://tel-spb.ru/rea.html

Полное сопротивление электрической цепи

Для расчетов напряжений и токов через элементы электрической цепи нужно знать их общее сопротивление. Источники энергии делятся на два типа:

  • постоянного тока (батарейки, выпрямители, аккумуляторы), электродвижущая сила (ЭДС) которых не изменяется во времени;
  • переменного тока (бытовые и промышленные сети), ЭДС которых изменяется по синусоидальному закону с определенной частотой.

Активные и реактивные сопротивления

Сопротивление нагрузки бывает активным и реактивным. Активное сопротивление (R) не зависит от частоты сети. Это означает, что ток в нем изменяется синхронно с напряжением. Это то сопротивление, которое мы измеряем мультиметром или тестером.

Обозначение активного сопротивления

Реактивное сопротивление делится на два вида:

индуктивное (трансформаторы, дроссели);

Обозначение индуктивного сопротивления

емкостное ( конденсаторы).

Обозначение емкостного сопротивления

Отличительная черта реактивной нагрузки – наличие опережения или отставания тока от напряжения. В емкостной нагрузке ток опережает напряжение, а в индуктивной – отстает от него.

Физически это выглядит так: если разряженный конденсатор подключить к источнику постоянного тока, то в момент включения ток через него максимальный, а напряжение – минимальное. Со временем ток уменьшается, а напряжение — возрастает, пока конденсатор не зарядится.

Если подключить конденсатор к источнику переменного тока, то он будет постоянно перезаряжаться с частотой сети, а ток — увеличиваться раньше, чем напряжение.

Подключив к источнику постоянного тока индуктивность, получим обратный результат: ток через нее будет нарастать некоторое время после подключения напряжения.

Величина реактивного сопротивления зависит от частоты. Емкостное сопротивление:

Угловая частота, связанна с частотой сети f формулой:

Как видно из формулы, при повышении частоты емкость уменьшается.

Индуктивное сопротивление:

Физические величины в формулах
Обозначение Единица измерения Наименование
С Фарада (Ф) емкость
ѡ 1/с угловая частота
f Герц (Гц) частота
L Генри (Гн) индуктивность

Полное сопротивление электрической цепи переменного тока

В сети переменного тока нет нагрузки только активной или только реактивной. Нагревательный элемент помимо активного содержит индуктивное сопротивление, в электродвигателе индуктивное сопротивление преобладает над активным.

Величину полного сопротивления, учитывающего все активные и реактивные составляющие электрической цепи, подсчитывают по формуле:

Расчет эквивалентного сопротивления элементов цепи

К одному источнику питания может быть подключено несколько сопротивлений. Для вычисления тока нагрузки источника подсчитывают эквивалентное сопротивление нагрузки. В зависимости от соединения элементов между собой, используются два способа.

Последовательное соединение сопротивлений.

В этом случае их величины складываются:

Последовательное соединение двух сопротивлений

Чем больше сопротивлений соединено последовательно, тем больше эквивалентное сопротивление этой цепи. Бытовой пример: если контакт в штепсельной вилке ухудшится, это равносильно подключению последовательно с нагрузкой дополнительного сопротивления. Эквивалентное сопротивление нагрузки вырастет, а ток через нее – уменьшится.

Параллельное соединение сопротивлений.

Формула расчета выглядит намного сложнее:

Случай применения этой формулы для двух параллельно соединенных сопротивлений:

Случай для соединения n одинаковых сопротивлений R:

Чем больше сопротивлений соединить параллельно, тем итоговое сопротивление цепи меньше. Это мы наблюдаем и в повседневной жизни: чем больше к сети подключить потребителей, тем меньше эквивалентное сопротивление и больше ток нагрузки.

Таким образом, расчет полного сопротивления электрической цепи происходит поэтапно:

  1. Рисуется схема замещения цепи, содержащая активные и реактивные сопротивления.
  2. Рассчитываются эквивалентные сопротивления отдельно для активной, индуктивной и емкостной составляющих нагрузки.
  3. Рассчитывается полное сопротивление электрической цепи
  4. Рассчитываются токи и напряжения в цепи источника питания.

Источник: http://electric-tolk.ru/polnoe-soprotivlenie-elektricheskoj-cepi/

Теория реактивной мощности

Теория реактивной мощности

Появление термина «реактивная» мощность связано с необходимостью выделения мощности, потребляемой нагрузкой, составляющей, которая формирует электромагнитные поля и обеспечивает вращающий момент двигателя. Эта составляющая имеет место при индуктивном характере нагрузки. Например, при подключении электродвигателей. Практически вся бытовая нагрузка, не говоря о промышленном производстве, в той или иной степени имеет индуктивный характер.

В электрических цепях, когда нагрузка имеет активный (резистивный) характер, протекающий ток синфазен (не опережает и не запаздывает) от напряжения. Если нагрузка имеет индуктивный характер (двигатели, трансформаторы на холостом ходу), ток отстает от напряжения. Когда нагрузка имеет емкостной характер (конденсаторы), ток опережает напряжение.

Суммарный ток, потребляемый двигателем, определяется векторной суммой:

  1. — активный ток
  2. Iри — реактивный ток индуктивного характера

К этим токам привязаны мощности потребляемые двигателем.

  1. Р – активная мощность привязана к Iа (по всем гармоникам суммарно)
  2. Q – реактивная мощность привязана к Iри (по всем гармоникам суммарно)
  3. A – полная мощность потребляемая двигателем. (по всем гармоникам суммарно)

Реактивная мощность не производит механической работы, хотя она и необходима для работы двигателя, поэтому ее необходимо получать на месте, чтобы не потреблять ее от энергоснабжающей организации. Тем самым мы снижаем нагрузку на провода и кабели, повышаем напряжение на клеммах двигателя, снижаем платежи за реактивную мощность, имеем возможность подключить дополнительные станки за счет снижения тока потребляемого с силового трансформатора.

Параметр определяющий потребление реактивной мощности называется Cos (φ)

Cos (φ) = P1гарм / A1гарм

где:

  • P1гарм — активная мощность первой гармоники 50 Гц
  • A1гарм — полная мощность первой гармоники 50 Гц

где:

A = √P² + Q²

Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:

  1. Высокие потери мощности в электрических линиях (протекание тока реактивной мощности);
  2. Высокие перепады напряжения в электрических линиях (например 330370 В, вместо 380 В);
  3. Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.

Из всего вышеприведенного, понятно, что компенсация реактивной мощности необходима. Чего легко можно достичь применением активных компенсирующих установок. Конденсаторы в которых будут компенсировать реактивную мощность двигателей.

Потребители реактивной мощности

Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи (трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле (асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминисцентное освещение и т.п.

Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести.

Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности.

Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.

Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя – статора передаётся во вторичную – ротор посредствам магнитного поля.

Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.

Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте.

Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др.

Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.

Компенсация реактивной мощности в электрических сетях

С другой стороны, элементы распределительной сети (линии электропередачи, повышающие и понижающие трансформаторы) в силу особенностей конструктивного исполнения имеют продольное индуктивное сопротивление.

Поэтому, даже для нагрузки потребляющей только активную мощность, в начале распределительной сети будет иметь место индуктивная составляющая – реактивная мощность.

Величина этой реактивной мощности зависит от индуктивного сопротивления распределительной сети и полностью расходуется на потери в элементах этой распределительной сети.

Действительно, для простейшей схемы:

  • Р – активная мощность в центре питания,
  • Рн – активная мощность на шинах потребителя,
  • R – активное сопротивление распределительной сети,
  • Q – реактивная мощность в центре питания,
  • – реактивная мощность на шинах потребителя.
  • U – напряжение в центре питания,
  • – напряжение на шинах потребителя,
  • Х – индуктивное сопротивление распределительной сети.

В результате, независимо от характера нагрузки, по распределительной сети от источника питания будет передаваться реактивная мощность Q. При двигательном характере нагрузки ситуация ухудшается – значения мощности в центре питания увеличивается и становится равными:

Р = Рн + ( Рн² + Qн² ) * R / Uн²;

Q = Qн + ( Рн² + Qн² ) * X / Uн².

Передаваемая от источника питания к потребителю реактивная мощность имеет следующие недостатки:

  1. В распределительной сети возникают дополнительные потери активной мощности – потери при транспорте электрической энергии:

    δР = ( Рн² + Qн² ) * R ,

    часть которых (а иногда и значительную) составляют потери от транспорта реактивной мощности.

  2. Величина напряжения у потребителя, а, следовательно, и качество электрической энергии, снижается:

    Uн = U – ( P * R + Q * X ) / U.

  3. Увеличивается распределительной сети током, что лишает потребителя возможности перспективного развития.

Таким образом, транспортировка реактивной мощности по распределительным сетям от центров питания к потребителям превращается в сложную технико-экономическую проблему, затрагивающую как вопросы экономичности так и вопросы надежности систем электроснабжения.

Классическим решением данной проблемы в распределительных сетях является компенсация реактивной мощности у потребителя путём установки у него дополнительных источников реактивной мощности – потребительских статических конденсаторов.

Компенсация реактивной мощности применяется:

  • по условию баланса реактивной мощности;
  • как важное мероприятие для снижения потерь электрической энергии в сетях;
  • для регулирования напряжения.

Источник: https://www.nucon.ru/reactive-power/theory-of-reactive-power.php

Реактивное сопротивление

> Теория > Реактивное сопротивление

В цепь переменного электрического тока входят активные (содержащие внутренние источники энергии) и пассивные элементы (потребители энергии). К пассивным элементам относят резисторы и реактивные устройства.

Виды пассивных элементов

В электротехнике рассматривают два типа резисторов: активное и реактивное сопротивление. Активным – обладают приборы, в которых энергия электрического тока преобразуется в тепловую. В физике оно обозначается символом R. Единица измерения – Ом.

Рассчитать его можно, используя закон Ома:

R = U/I.

Этой формулой можно пользоваться для расчёта по мгновенным значениям тока и напряжения, максимальным или действующим.

Реактивные устройства энергию не рассеивают, а накапливают. К ним относятся:

  • катушка индуктивности;
  • конденсатор.

Реактивное сопротивление обозначается символом Х. Единица измерения – Ом.

Катушка индуктивности

Представляет собой проводник, выполненный в форме спирали, винта или винтоспирали. Благодаря высокой инерционности, прибор используют в схемах, которые применяются для уменьшения пульсаций в цепях переменного тока и колебательных контурах, для создания магнитного поля и т.д. Если она имеет большую длину при небольшом диаметре, то катушку называют соленоидом.

Для вычисления падения напряжения (U) на концах катушки используют формулу:

U = –L·DI/Dt, где:

  • L – индуктивность прибора, измеряется в Гн (генри),
  • DI – изменение силы тока (измеряется в амперах) за промежуток времени Dt (измеряется в секундах).

Внимание! При любом изменении тока в проводнике возникает ЭДС самоиндукции, которая препятствует этому изменению.

Вследствие этого в катушке возникает сопротивление, которое называется индуктивным.

В электротехнике обозначается ХL и рассчитывается по формуле:

ХL = w · L,

где w – угловая частота, измеряется в рад/с.

Угловая частота является характеристикой гармоничного колебания. Связана с частотой f (количество полных колебаний в секунду). Частота измеряется в колебаниях в секунду (1/с):

w = 2 · p · f.

Если в схеме используется несколько катушек, то при их последовательном соединении общее ХLдля всей системы будет равно:

XL = XL1 + XL2 +

В случае параллельного соединения:

1/XL = 1/XL1 + 1/XL2 +

Закон Ома для такого соединения имеет вид:

XL=UL/I,

где UL – падение напряжения.

Помимо индуктивного, устройство обладает и активным R.

Электрический импеданс в этом случае равен:

Z = XL + R.

Емкостной элемент

В проводниках и обмотке катушки, кроме индуктивного и активного сопротивлений, присутствует и емкостное, которое обусловлено наличием ёмкости в этих приборах. Кроме резистора и катушки, в схему может быть включен конденсатор, который состоит из двух металлических пластин, между которыми размещён слой диэлектрика.

К сведению. Электрический ток протекает за счёт того, что в устройстве проходят процессы заряда и разряда пластин.

При максимальном заряде на пластинах прибора:

U = max, I = 0.

За счёт того, что резистивное устройство может накапливать энергию, его используют в приборах, которые стабилизируют напряжение в цепи.

Возможность накапливать заряд характеризуется ёмкостью.

Реактивное сопротивление конденсатора (ХС) можно рассчитать по формуле:

XC = 1/(w·C), где:

  1. w – угловая частота,
  2. С – ёмкость конденсатора.

Единица измерения ёмкости – Ф (фарада).

Учитывая, что угловая частота связана с циклической частотой, расчет значения реактивного сопротивления конденсатора можно выполнить по формуле:

XC=1/(2·p·f·C).

Если в цепи последовательно соединены несколько устройств, то общее XС системы будет равно:

XС = XС1 + XС2 +

Если соединение объектов параллельное, то:

1/XC = 1/XC1 + 1/XC2+

Закон Ома для этого случая записывается следующим образом:

XC = UC/I,

где UС – падение напряжения на конденсаторе.

Расчёт цепи

Эквивалентное сопротивление

При последовательном соединении I = const в любой точке и, согласно закону Ома, его можно рассчитать по формуле:

I = U/R,

где Z – электрический импеданс.

Последовательное соединение элементов

Напряжение на устройствах рассчитывается следующим образом:

UR = I · R, UL = I · XL, UC = I · XC.

Вектор индуктивной составляющей напряжения направлен в противоположную сторону от вектора емкостной составляющей, поэтому:

UX = UL – UC,

следовательно, согласно расчётам:

X = XL – XC.

Внимание! Для вычисления значения импеданса можно воспользоваться «треугольником сопротивлений», в котором гипотенузой является значение Z, а катетами – значения X и R.

Треугольник сопротивлений

Если в цепь подключены и конденсатор, и катушка индуктивности, то, согласно теореме Пифагора, гипотенуза (Z) будет равна:

Так как X = XLXC, то:

При решении электротехнических задач часто импеданс записывают в виде комплексного числа, в котором действительная часть соответствует значению активной составляющей, а мнимая – реактивной. Таким образом, выражение для импеданса в общем виде имеет вид:

Z = R + X·i,

где i – мнимая единица.

Для онлайн расчёта реактивного сопротивления можно использовать программу – калькулятор, которую можно найти в сети Интернет. Подобных сервисов достаточно много, поэтому вам не составит труда подобрать удобный для вас калькулятор.

Онлайн калькулятор для расчёта емкостных и индуктивных характеристик

Благодаря таким Интернет сервисам, можно быстро выполнить нужный расчёт.

Источник: https://elquanta.ru/teoriya/reaktivnoe-soprotivlenie.html

Реактивное сопротивление XL и XC. Формула индуктивного сопротивления

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Определение реактивной мощности

Одной из основных проблем в сети переменного напряжения является наличие реактивной мощности. Она  расходуется только на потери тепловые. Источником реактивной энергии есть  накопители электрической энергии L и С.  Я не буду очень глубоко рассматривать этот вопрос. Предлагаю рассмотреть этот вопрос на примере простых элементов цепи —  индуктивности и емкости.

Индуктивный элемент L

Индуктивный элемент ( рассмотрим на примере  катушки индуктивности) представляют собой витки изолированного между собой провода. При протекании тока катушка намагничивается. Если изменить полярность  источника, катушка начнет отдавать запасенную энергию обратно, стараясь поддержать величину тока в контуре.

Поэтому при протекании через нее  переменной составляющей , энергия запасенная при прохождении положительного полупериода, не успеет рассеяться и будет препятствовать прохождению отрицательного полупериода. В результате отрицательному полупериоду придется  погасить энергию запасенную катушкой. В итоге напряжение(U),  будет опережать ток (І) на какой-то угол φ.

Ниже  приведен результат моделирования работы на L-R нагрузку  L=1*10-3 Гн, R=0.5 Ом. Uист= 250 В, частота f=50 Гц.

Рисунок 1. Работа источника на R-L нагрузку

φ – это разница фаз  между U и  I.

Реактивное сопротивление обозначается буквой X, полное  Z, активное R.

Для  индуктивности :

Где ω – циклическая  частота 

— частота питающего напряжения,  Гц;

L – индуктивность катушки;

Вывод: чем выше индуктивность L или частота , тем больше будет сопротивление катушки переменному току.

Емкостной элемент

Емкостной элемент (рассмотрим на примере конденсатора)  представляет собой двухполюсник с переменным или постоянным значением емкости. Конденсатор — накопитель электрических зарядов.  Если подключить  его  к  источнику питания, он зарядится. Если к нему приложить источник с переменной составляющей, он будет заряжаться при прохождении через него положительного полупериода.

Когда направление полупериода изменится на отрицательное значение, конденсатор начнет перезаряжаться, то есть энергия, которая накопилась в нем, начнет противодействовать перезарядке. В итоге мы получим напряжение на конденсаторе противоположное  источнику. В результате  І,  будет опережать U на какой- то угол φ. Ниже  приведен результат моделирования работы на С-R нагрузку  С=900*10—6 Фа, R=0.

5 Ом, Uист= 250 В, частота f=50 Гц.

Рисунок 2. Работа источника на R-C нагрузку

Для емкости:

Где ω – циклическая  частота 

— частота питающего напряжения,  Гц;

С — емкость конденсатора;

Вывод: чем выше емкость С или частота, тем меньше будет сопротивление переменному току.

Сравнение влияния реактивного сопротивления на активную мощность сети

Из рисунков 1 и 2 видно, что сдвиг фаз на рисунках не одинаков. Вывод — чем больше в полном сопротивлении Z будет влияние XL  или  XC  тем больше будет разница фаз U и I.

Угол сдвига между током и напряжением называется φ .

Реактивная мощность однофазная:

Трехфазная:

Uф, Iф — фазные ток и напряжение

Вывод: реактивная мощность – не выполняет полезного действия.

Она «перегоняется» по сети нагревая кабели и увеличивая потери. На крупных промышленных предприятиях это особо ощутимо в силу наличия электроприводов  и других крупных потребителей. Этот вопрос очень актуален для энергосбережения и модернизации производства.

Поэтому на пром. предприятиях устанавливаются компенсаторы реактивной мощности. Они могут быть разного типа и кроме компенсации выполнять еще и роль фильтров.

С помощью компенсаторов стараются сохранить баланс реактивной мощности для минимизации ее влияния на сеть и подогнать угол φ к нулю.

Для компенсации реактивной мощности необходимо максимально сбалансировать в сети количество (L, C) элементов.

Источник: https://elenergi.ru/opredelenie-reaktivnoj-moshhnosti.html

Активное емкостное индуктивное реактивное полное сопротивления

, где — импеданс, — величина активного сопротивления, — величина реактивного сопротивления, — мнимая единица.

Активное сопротивление — сопротивление электрической цепи или её участка, обусловленное необратимыми превращениями электрической энергии в другие виды энергии (в тепловую).

Реактивное сопротивление

Реактивное сопротивление — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому илимагнитному полю (и обратно).

Реактивное сопротивление определяет мнимую часть импеданса:

, где — импеданс, — величина активного сопротивления, — величина реактивного сопротивления, — мнимая единица.

В зависимости от знака величины какого-либо элемента электрической цепи говорят о трёх случаях:

— элемент проявляет свойства индуктивности.

— элемент имеет чисто активное сопротивление.

— элемент проявляет ёмкостные свойства.

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений:

Индуктивное сопротивление ( ) обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи. Изменение тока и, как следствие, изменение его магнитного поля вызывает препятствующее изменению этого тока ЭДС самоиндукции. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока:

Ёмкостное сопротивление ( ). Величина ёмкостного сопротивления зависит от ёмкости элемента и также частоты протекающего тока :

Здесь — циклическая частота, равная .

Прямая и обратная зависимость этих сопротивлений от частоты тока приводит к тому, что с увеличением частоты всё бо?льшую роль начинает играть индуктивное сопротивление и всё меньшую ёмкостное.

Полное сопротивление

Полное сопротивление (z) — это векторная сумма всех сопротивлений: активного, емкостного и индуктивного.

Треугольники сопротивлений

Если стороны треугольника напряжений (155, а) разделить на ток I (.155, б), то углы треугольника от этого не изменятся, и мы получим новый треугольник, подобный первому — треугольник сопротивлений (155, в).

В треугольнике сопротивления, показанном на рис, все стороны обозначают сопротивления, причем гипотенуза его является полным или кажущимся сопротивлением цепи.

Из треугольника сопротивлений видно, что полное или кажущееся сопротивление Z равно геометрической сумме активного R и индуктивного Xl сопротивлений.

Применяя теорему Пифагора к треугольнику сопротивлений, получаем:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:Да какие ж вы математики, если запаролиться нормально не можете. 8459 — | 7349 — или читать все.

91.146.8.87 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Активное сопротивление

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:

Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:

где $U$ — напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:

где коэффициент $R$ — называется активным сопротивлением. Наличие активного сопротивления в цепи всегда приводит к выделению тепла.

Ёмкостное сопротивление

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Мы можем использовать следующие соотношения:

Попробуй обратиться за помощью к преподавателям

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $frac.$ Амплитуда напряжения на емкости равна:

Величину $X_C=frac$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Источник: https://vemiru.ru/info/aktivnoe-emkostnoe-induktivnoe-reaktivnoe-polnoe/

Активное и реактивное сопротивление. Треугольник сопротивлений

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, равно активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением.

Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения.

При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnoe-i-reaktivnoe-soprotivlenie/

ЭТО ИНТЕРЕСНО:  Что представляет собой реактивная мощность
Понравилась статья? Поделиться с друзьями:
Электро Дело
Для чего нужен диэлектрик

Закрыть
Для любых предложений по сайту: [email protected]