Реактивная мощность кратко и понятно: что такое, формулы
Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.
Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.
Что такое реактивная мощность?
Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.
Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.
Строго говоря, приведённая выше формула справедлива только для постоянного тока. Однако, в цепях синусоидального тока формула работает лишь тогда, когда нагрузка потребителей чисто активная. При резистивной нагрузке вся электрическая энергия расходуется на выполнение полезной работы. Примерами активных нагрузок являются резистивные приборы, такие как кипятильник или лампа накаливания.
При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.
На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.
К устройствам с индуктивными нагрузками относятся:
- электромоторы;
- дроссели;
- трансформаторы;
- электромагнитныереле и другие устройства, содержащие обмотки.
Ёмкостными сопротивлениями обладают конденсаторы.
Физика процесса
Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.
Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).
При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.
Рис. 1. Сдвиг фаз индуктивной нагрузкой
Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.
Важно запомнить:
- резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
- катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
- Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.
Треугольник мощностей и cos φ
Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.
Рис. 2. коэффициент мощности
Применяя теорему Пифагора, вычислим модуль вектора S:
Отсюда можно найти реактивную составляющую:
Источник: https://www.asutpp.ru/reaktivnaya-moschnost.html
Что такое реактивная мощность и её компенсация
17.08.2017
Асинхронные двигатели, трансформаторы, газоразрядные и люминесцентные лампы, индукционные и дуговые печи и т.д.
в силу своих физических свойств вместе с активной энергией потребляют из сети также и реактивную энергию, которая необходима для создания электромагнитного поля.
В отличие от активной энергии, реактивная не преобразуется в другие виды – механическую или тепловую – и не выполняет полезной работы, однако вызывает потери при ее передаче. На Рис.1 изображены направления протекания тока при работе с реактивными нагрузками.
Рис.1. Полная мощность.
Наличие в сети реактивной мощности (Q, Вар) характеризуется коэффициентом мощности (PF, cos ф) и является соотношением активной (P, Вт) к полной (S, ВА). Ниже можно увидеть зависимость полной мощности от ее составляющих как на векторной диаграмме, так и на более житейском уровне – бокале пива, где пиво является активной составляющей, а пена – реактивной. Никто же не хочет иметь бокал только с пеной?
Рис.2. Треугольник мощностей. Расчет коэффициента мощности.
При низких значениях коэффициента мощности в сети будет возникать ряд нежелательных явлений, которые могут привести к существенному уменьшению срока службы оборудования. Рекомендуется иметь cos ф не менее 0,9 (например, в Чехии за cos ф менее 0,95 штрафуют). Для этого разработан ряд мероприятий по регулированию баланса реактивной мощности в сети – компенсация реактивной мощности.
Компенсация реактивной мощности (КРМ).
Следует понимать, что реактивная мощность бывает двух характеров – индуктивная и емкостная. Нас интересует компенсация только первого типа, т.к. второй встречается редко. В нашем случае – сетях с индуктивной нагрузкой – для увеличения cos ф требуется устанавливать компенсационные конденсаторы. Но как это сделать?
Выбор способа компенсации предполагает определение места установки конденсаторов (зачастую в составе конденсаторной установки (далее КУ)). Существует три основных варианта:
- Индивидуальная компенсация
Размещение конденсаторов у устройств с низким cos ф и включение одновременно с последними.
Размещение конденсаторов у группы устройств (например, пожарных насосов).
- Централизованная компенсация
Предусматривает установку КУ на главном распределительном щите. Если предыдущие варианты могли быть как регулируемыми, так и нет, то этот, как правило, регулируемый.
Рис.3. Способы компенсации.
При правильном подборе КУ мероприятия по компенсации реактивной мощности позволяют:
- существенно уменьшить нагрузку на трансформаторах, а следовательно уменьшить их нагрев и увеличить срок службы
- при включении КУ в расчет при проектировании новых объектов, существенно уменьшить сечение проводников
- при включении КУ в уже существующие сети, разгрузить их, повышая пропускную способность без реконструкции
- снизить расходы на электроэнергию за счет снижения потери в проводниках
- повысить стабильность напряжения (все) и качество электроэнергии (при использовании ФКУ)
Где мы можем сэкономить видно невооруженным глазом, но для начала придется и потратиться.
Во-первых, необходимо заказать проект, который следует доверить проверенной организации. Которая в свою очередь проведет ряд измерений или сделает расчеты для новых объектов и исходя из них даст рекомендации по способу компенсации, типу КУ и их параметрам.
Во-вторых, следует выбрать организацию-сборщика, которая соберет, установит и настроит наши КУ.
Что может входить в состав КУ?
Рассмотрим максимально возможную комплектацию конденсаторной установки:
-
Вводное устройство – автоматический выключатель, разъединитель предохранительный или выключатель нагрузки (при наличии еще одного вводного устройства, например, в ГРЩ).
-
Защитные устройства ступеней – большинство производителей (например, ZEZ Silko) рекомендуют использовать плавкие вставки с характеристикой gG (см. таблицу ниже), но нередко можно встретить и защиту автоматическими выключателями.
-
Коммутационное устройство (для статической компенсации НН) – контактор с токоограничевающей приставкой (контакты предварительного включения с сопротивлениями). Важно выбрать качественного производителя, т.к. через контактор при включении ступени проходят огромные токи (до 200Iе), обусловленные зарядом конденсатора, например, Benedict-Jager или Eaton (Moeller).
-
Антирезонансные дроссели (реакторы) – используются для защиты от перегрузки токами конденсаторов при наличии в сети высших гармоник.
-
Компенсационные конденсаторы – главный компонент всей установки – емкостной элемент. о применении, конструкции и монтаже низковольтных цилиндрических компенсационных конденсаторов в предыдущей статье.
-
Регулятор реактивной мощности – своего рода анализатор сети с функцией управления ступенями. В зависимости от модели разные регуляторы кроме основных параметров (U, I, P, cos ф, количество подключенных ступеней) контролируют и ряд дополнительных (нелинейные искажения, температура и т.д). Также могу быть и дополнительные функции, например, коммуникация или автонастройка.
* Рассмотрена только основная комплектация без оболочек и микроклимата, защиты вторичных цепей.
2,9 | 2 | 2,5 | 8 |
3,6 | 2,5 | 2,5 | 8 |
4,5 | 3,15 | 2,5 | 10 |
5,8 | 4 | 2,5 | 10 |
7,2 | 5 | 2,5 | 16 |
9 | 6,25 | 2,5 | 16 |
11,5 | 8 | 4 | 20 |
14,4 | 10 | 4 | 25 |
18,1 | 12,5 | 6 | 32 |
21,7 | 15 | 6 | 40 |
28,8 | 20 | 10 | 50 |
36,1 | 25 | 10 | 63 |
43,4 | 30 | 16 | 80 |
50,5 | 35 | 16 | 100 |
57,7 | 40 | 25 | 100 |
72,2 | 50 | 25 | 125 |
86,6 | 60 | 35 | 160 |
115,5 | 80 | 70 | 200 |
144,3 | 100 | 95 | 250 |
Таблица 1. Подбор предохранителей и проводников.
В заключение хочется напомнить, что неверно спроектированные, собранные и настроенные компенсационные установки или из материалов сомнительного происхождения имеют обыкновение громко выходить из строя.
Коммерческое предложение действительно на 22.06.2020 г.
Источник: https://lsys.by/news/articles/chto-takoe-reaktivnaya-moshchnost-i-eye-kompensatsiya.html
Теория реактивной мощности
Теория реактивной мощности
Появление термина «реактивная» мощность связано с необходимостью выделения мощности, потребляемой нагрузкой, составляющей, которая формирует электромагнитные поля и обеспечивает вращающий момент двигателя. Эта составляющая имеет место при индуктивном характере нагрузки. Например, при подключении электродвигателей. Практически вся бытовая нагрузка, не говоря о промышленном производстве, в той или иной степени имеет индуктивный характер.
В электрических цепях, когда нагрузка имеет активный (резистивный) характер, протекающий ток синфазен (не опережает и не запаздывает) от напряжения. Если нагрузка имеет индуктивный характер (двигатели, трансформаторы на холостом ходу), ток отстает от напряжения. Когда нагрузка имеет емкостной характер (конденсаторы), ток опережает напряжение.
Суммарный ток, потребляемый двигателем, определяется векторной суммой:
- Iа — активный ток
- Iри — реактивный ток индуктивного характера
К этим токам привязаны мощности потребляемые двигателем.
- Р – активная мощность привязана к Iа (по всем гармоникам суммарно)
- Q – реактивная мощность привязана к Iри (по всем гармоникам суммарно)
- A – полная мощность потребляемая двигателем. (по всем гармоникам суммарно)
Реактивная мощность не производит механической работы, хотя она и необходима для работы двигателя, поэтому ее необходимо получать на месте, чтобы не потреблять ее от энергоснабжающей организации. Тем самым мы снижаем нагрузку на провода и кабели, повышаем напряжение на клеммах двигателя, снижаем платежи за реактивную мощность, имеем возможность подключить дополнительные станки за счет снижения тока потребляемого с силового трансформатора.
Параметр определяющий потребление реактивной мощности называется Cos (φ)
Cos (φ) = P1гарм / A1гарм
где:
- P1гарм — активная мощность первой гармоники 50 Гц
- A1гарм — полная мощность первой гармоники 50 Гц
где:
A = √P² + Q²
Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:
- Высокие потери мощности в электрических линиях (протекание тока реактивной мощности);
- Высокие перепады напряжения в электрических линиях (например 330370 В, вместо 380 В);
- Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.
Из всего вышеприведенного, понятно, что компенсация реактивной мощности необходима. Чего легко можно достичь применением активных компенсирующих установок. Конденсаторы в которых будут компенсировать реактивную мощность двигателей.
Потребители реактивной мощности
Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи (трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле (асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминисцентное освещение и т.п.
Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести.
Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности.
Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.
Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя – статора передаётся во вторичную – ротор посредствам магнитного поля.
Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.
Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте.
Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др.
Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.
Компенсация реактивной мощности в электрических сетях
С другой стороны, элементы распределительной сети (линии электропередачи, повышающие и понижающие трансформаторы) в силу особенностей конструктивного исполнения имеют продольное индуктивное сопротивление.
Поэтому, даже для нагрузки потребляющей только активную мощность, в начале распределительной сети будет иметь место индуктивная составляющая – реактивная мощность.
Величина этой реактивной мощности зависит от индуктивного сопротивления распределительной сети и полностью расходуется на потери в элементах этой распределительной сети.
Действительно, для простейшей схемы:
- Р – активная мощность в центре питания,
- Рн – активная мощность на шинах потребителя,
- R – активное сопротивление распределительной сети,
- Q – реактивная мощность в центре питания,
- Qн – реактивная мощность на шинах потребителя.
- U – напряжение в центре питания,
- Uн – напряжение на шинах потребителя,
- Х – индуктивное сопротивление распределительной сети.
В результате, независимо от характера нагрузки, по распределительной сети от источника питания будет передаваться реактивная мощность Q. При двигательном характере нагрузки ситуация ухудшается – значения мощности в центре питания увеличивается и становится равными:
Р = Рн + ( Рн² + Qн² ) * R / Uн²;
Q = Qн + ( Рн² + Qн² ) * X / Uн².
Передаваемая от источника питания к потребителю реактивная мощность имеет следующие недостатки:
- В распределительной сети возникают дополнительные потери активной мощности – потери при транспорте электрической энергии:
δР = ( Рн² + Qн² ) * R ,
часть которых (а иногда и значительную) составляют потери от транспорта реактивной мощности.
- Величина напряжения у потребителя, а, следовательно, и качество электрической энергии, снижается:
Uн = U – ( P * R + Q * X ) / U.
- Увеличивается распределительной сети током, что лишает потребителя возможности перспективного развития.
Таким образом, транспортировка реактивной мощности по распределительным сетям от центров питания к потребителям превращается в сложную технико-экономическую проблему, затрагивающую как вопросы экономичности так и вопросы надежности систем электроснабжения.
Классическим решением данной проблемы в распределительных сетях является компенсация реактивной мощности у потребителя путём установки у него дополнительных источников реактивной мощности – потребительских статических конденсаторов.
Компенсация реактивной мощности применяется:
- по условию баланса реактивной мощности;
- как важное мероприятие для снижения потерь электрической энергии в сетях;
- для регулирования напряжения.
Источник: https://www.nucon.ru/reactive-power/theory-of-reactive-power.php
Смещение фаз и реактивная мощность
Реактивная мощность необходима для создания электромагнитных полей машин, например, трехфазных электродвигателей, трансформаторов, сварочных установок и т.п. Поскольку эти поля непрерывно исчезают и возникают заново, реактивная мощность перемещается между генератором и потребителем.
В отличие от активной мощности ее нельзя использовать, то есть преобразовать в другую форму энергии, поэтому она создает нагрузку на сеть электроснабжения и генераторные установки (генераторы и трансформаторы).
Кроме того, из-за реактивного тока распределительные установки должны иметь большую мощность.
Поэтому целесообразно снижать возникающую индуктивную реактивную мощность в непосредственной близости от потребителя с помощью противодействующей емкостной реактивной мощности равной величины. Эту процедуру называют компенсацией.
В ходе компенсации доля индуктивной реактивной мощности в сети снижается на величину реактивной мощности силового конденсатора или установки для компенсации реактивной мощности (КРМ). Генераторные установки и системы электропередачи освобождаются при этом от реактивного тока.
Сдвиг фаз между током и напряжением уменьшается или, в идеальном случае, при коэффициенте мощности 1, полностью устраняется.
Коэффициент мощности (Power Factor) – это параметр, зависящий от таких сбоев в сети, как искажение или асимметрия. Он снижается при увеличении сдвига фаз между током и напряжением и при росте искажения кривой тока. Вычисляется как отношение поглощаемой нагрузкой активной мощности к полной и является, таким образом, показателем эффективности использования нагрузкой электрической энергии. Чем больше коэффициент мощности, тем эффективнее используется электроэнергия, так выше КПД.
Коэффициент мощности – Power Factor (арифметический)
Коэффициент мощности может принимать только положительные значения
Cos (phi) – Fundamental Power Factor
- Для расчета cos (phi) используется только основная гармоническая составляющая.
- Знак cos (phi) (φ): «-» при выработке активной мощности; «+» при потреблении активной мощности.
Поскольку при нагрузке высшими гармониками невозможно указать единый угол сдвига фаз, нельзя путать коэффициент мощности λ и часто используемый коэффициент смещения cos(φ1). Из формулы
где I1 = эффективное значение первой гармоники тока, I = общий эффективный ток, g1 = доля первой гармоники тока и cos(φ1) = коэффициент сдвига.
Видно, что только при синусоидальном напряжении и токе (g = 1) коэффициент мощности λ равен коэффициенту сдвига cos(φ1).
Таким образом, только при синусоидальном напряжении и токе коэффициент мощности λ равен косинусу угла сдвига фаз φ и равен коэффициенту мощности.
Регистрацию значений реактивной мощности производит любой анализатор качества электроэнергии.
Источник: https://neokip.ru/blog/smeshchenie-faz-i-reaktivnaya-moshchnost/
Компенсация реактивной мощности как средство сокращения затрат
Описание:
В последние годы наблюдается значительный рост производства и развитие инфраструктуры городов. В связи с этим увеличивается число и мощности электроприемников, использующихся на производствах в основных технологических и вспомогательных циклах, а объекты инфраструктуры применяют все большее количество осветительных аппаратов для рабочего освещения, рекламы и дизайна. Соответственно увеличивается потребляемая электрическая мощность.
В последние годы наблюдается значительный рост производства и развитие инфраструктуры городов. В связи с этим увеличивается число и мощности электроприемников, использующихся на производствах в основных технологических и вспомогательных циклах, а объекты инфраструктуры применяют все большее количество осветительных аппаратов для рабочего освещения, рекламы и дизайна. Соответственно увеличивается потребляемая электрическая мощность.
В зависимости от вида используемого оборудования нагрузка подразделяется на активную, индуктивную и емкостную. Наиболее часто потребитель имеет дело со смешанными активно-индуктивными нагрузками. Соответственно, из электрической сети происходит потребление как активной, так и реактивной энергии.
Активная энергия преобразуется в полезную – механическую, тепловую и пр. энергии.
Реактивная же энергия не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей в электродвигателях, трансформаторах, индукционных печах, сварочных трансформаторах, дросселях и осветительных приборах.
Показателем потребления реактивной энергии (мощности) является коэффициент мощности сosj. Он показывает соотношение активной мощности Р и полной мощности S, потребляемой электроприемниками из сети:
сosj = P / S.
Значения коэффициента мощности нескомпенсированного оборудования приведены в табл. 1, а усредненные значения коэффициента мощности для систем электроснабжения различных предприятий – в табл. 2. В оптимальном режиме показатель должен стремиться к единице и соответствовать нормативным требованиям.
Таким образом, видно, что при отсутствии компенсации реактивной мощности потребитель переплачивает за потребление реактивной энергии 30–40% общей стоимости.
Срок окупаемости конденсаторных установок можно оценить следующим образом:
T = З1/(З2 – З3),
где З1 – стоимость конденсаторной установки, руб.;
З2 – затраты на электроэнергию без компенсации, руб./мес.;
З3 – затраты на электроэнергию при применении конденсаторных установок, руб./мес.
Применение конденсаторных установок |
Основы компенсации реактивной мощности
Реактивный ток дополнительно нагружает линии электропередачи, что приводит к увеличению сечений проводов и кабелей и соответственно к увеличению капитальных затрат на внешние и внутриплощадочные сети. Реактивная мощность наряду с активной мощностью учитывается поставщиком электроэнергии, а следовательно, подлежит оплате по действующим тарифам, поэтому составляет значительную часть счета за электроэнергию.
Наиболее действенным и эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок). Наглядно это представленно на рисунке.
Использование конденсаторных установок позволяет:
— разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
— снизить расходы на оплату электроэнергии;
— при использовании определенного типа установок снизить уровень высших гармоник;
— подавить сетевые помехи, снизить несимметрию фаз;
— сделать распределительные сети более надежными и экономичными.
На практике коэффициент мощности после компенсации находится в пределах от 0,93 до 0,99.
Единичная компенсация
предпочтительна там, где:
— требуется компенсация мощных (свыше 20 кВт) потребителей;
— потребляемая мощность постоянна в течение длительного времени.
Групповая компенсация
применяется для случая компенсации нескольких расположенных рядом и включаемых одновременно индуктивных нагрузок, подключенных к одному распределительному устройству и компенсируемых одной конденсаторной батареей.
Единичная компенсация | Групповая компенсация |
Централизованная компенсация
Для предприятий с изменяющейся потребностью в реактивной мощности постоянно включенные батареи конденсаторов не приемлемы, т. к. при этом может возникнуть режим недокомпенсации или перекомпенсации. В этом случае конденсаторная установка оснащается специализированным контроллером и коммутационно-защитной аппаратурой.
При отклонении значения сosj от заданного значения контроллер подключает или отключает ступени конденсаторов. Преимущество централизованной компенсации заключается в следующем: включенная мощность конденсаторов соответствует потребляемой в конкретный момент времени реактивной мощности без перекомпенсации или недокомпенсации.
Централизованная компенсация |
При выборе конденсаторной установки требуемая мощность конденсаторов может определяться как
Qc = P • (tgj1 – tgj2),
где tgj1 – коэффициент мощности потребителя до установки компенсирующих устройств;
tgj2 – коэффициент мощности после установки компенсирующих устройств (желаемый или задаваемый энергосистемой коэффициент).
P = Ew/T
где Ew – показания счетчика активной энергии, кВт•ч;
Eq – показатель счетчика реактивной энергии, кВАр•ч;
T – период снятия показаний счетчиков электроэнергии, ч.
Технико-экономический эффект, ожидаемый в результате применения конденсаторных установок, представлен в табл. 3.
Конденсаторные установки компенсации реактивной мощности
Для реализации задачи компенсации реактивной мощности на стороне 0,4 кВ ЗАО «ЭТМ» рекомендует использовать и предлагает к поставке конденсаторные установки типа УК, УКМ58, УКМ70 и УКМФ71, на стороне 6,3 и 10,5 кВ – установки типа УКЛ(П)-56 производства ЗАО «Электро-интернешнл».
Данные конденсаторные установки являются наиболее адаптированными к требованиям российских энергосетей и потребителей.
На протяжении длительного срока эксплуатации они зарекомендовали себя как качественное, надежное оборудование, позволяющее решать любые задачи компенсации реактивной мощности.
В зависимости от типоисполнения установки изготавливаются в различном конструктивном исполнении и комплектации (табл.4).
Преимущества установок обуславливаются использованием:
— самовосстанавливающихся сегментированных конденсаторов, что обеспечивает их надежность, долговечность и низкую стоимость при профилактических и ремонтных работах;
— специальных контакторов опережающего включения, увеличивающих срок службы контакторов;
— специальных контроллеров нескольких типов, обеспечивающих автоматическое регулирование cosj, в том числе с возможностью передачи данных на PC и возможностью контроля в сети высших гармоник тока и напряжения;
— индикации при неисправностях;
— фильтра высших гармонических;
— устройства терморегуляции;
— эмалевой или порошковой окраски (по желанию заказчика).
По желанию заказчика возможно изготовление и поставка конденсаторных установок напряжением 0,4 кВ, мощностью до 1 200 кВАр.
Вся продукция имеет соответствующие сертификаты.
ООО «ЭТМ» является официальным представителем завода «Электро-интернешнл» и предлагает услуги по расчету требуемой установки по заданным параметрам, поставке оборудования и отгрузке продукции со склада.
Таблица 1 | ||||||||||||||
|
Таблица 2 | ||||||||||||||||
|
Таблица 3 | ||||||||||||||||||||||||||||||||
|
Таблица 4 | |||||||||||||||||||||||||||||||||||
|
Источник: https://www.abok.ru/for_spec/articles.php?nid=1967
Общие сведения о компенсации реактивной мощности
Разработка и проектирование схемы электросети / электроустановки потребителя ставит перед проектировщиком широкий перечень задач. Одной из основных задач является задача обеспечения безопасности, в том числе и путем повышения надежности электроустановки и качества потребляемой электрической энергии.
Среди мероприятий по оптимизации использования электроэнергии потребителем стоит выделить мероприятия направленные на повышение коэффициента мощности.
Если рассматривать эти мероприятия с рациональной точки зрения, то изменение коэффициента мощности сети всего с 0,8 до 0,97 (идеальный случай – чаще всего изначальный коэффициент мощности не более 0,6), то общие затраты на потребляемую электроэнергию сократятся на 4 – 5 % от общего расхода.
В данном случае эти цифры свидетельствуют не только о экономии средств на потребляемую электроэнергию и о повышении энергоэффективности производства, но и о улучшении косвенного влияния на экологию путем экономии природных ресурсов и снижению затрат на оборудование.
Само возникновение реактивной мощности, как понятия, обусловлено уровнем современного развития промышленности, а именно большим количеством электрических машин в современных сетях. Известно, что полная мощность имеет две составляющие – активную мощность, непосредственно выполняющие работу и реактивную – необходимую для активации магнитных полей электрических машин.
Реактивная мощность отбирается потребителем из сети и снижает коэффициент мощности и КПД электроустановки. То есть, чем ниже коэффициент мощности, тем выше будет индуктивный реактивный компонент по отношению к активному компоненту и наоборот. Для решения проблемы реактивной мощности могут использовать процесс принудительного производства реактивной энергии путем использования батарей специальных (косинусных) конденсаторов или синхронных компенсаторов. Конденсаторы сдвигают ток, по фазе на 180% из фазы с индуктивным реактивным током. Оба тока суммируются алгебраически таким образом, что циркулирующим реактивным током установки является реактивный ток, который равен разнице между индуктивным и ёмкостным токами.
Компенсация коэффициента мощности
Как известно, в электрических цепях протекающий ток совпадает по фазе с напряжением только когда нагрузка имеет активный (резисторы) характер. В случае индуктивной нагрузки ток отстает от напряжения (двигатели, трансформаторы на холостом ходу), когда ток опережает напряжение – нагрузка имеет емкостной характер (конденсаторы).
Так как в промышленности и в бытовой сфере преобладают нагрузки или активные или активно-индуктивные, тем самым график тока отстает от графика напряжения на угол φ косинус которого (cos(φ)) является отношением средней мощности переменного тока к произведению действующих значений напряжения и тока.
Наибольшее значение КМ (коэффициент мощности) равно 1 – в случае чисто активной нагрузки . В случае синусоидального переменного тока КМ равен косинусу угла сдвига фаз между синусоидами напряжения и тока и определяется параметрами цепи: cos(φ) = r/Z, где (φ) — угол сдвига фаз, r — активное сопротивление цепи, Z — полное сопротивление цепи.
КМ может отличаться от 1 и в цепях с чисто активными сопротивлениями, если в них содержатся нелинейные участки. В этом случае КМ уменьшается вследствие искажения формы кривых напряжения и тока.
Формула полной мощности, составленная для первой гармоники имеет вид : S= √((P2+ Q2)) Где S-полная мощность P- активная мощность Q- реактивная мощность Таким образом, cos(φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к увеличению cos(φ), т.к. низкий cos(φ) вызывает следующие проблемы:
- Протекание тока реактивной мощности (большие потери мощности в электрических линиях).
- Большие перепады напряжения в электрических линиях (например 330370 В, вместо 380 В)
- Необходимость увеличения габаритов и мощности генераторов, сечения кабелей, мощности силовых трансформаторов.
Из решения этих технических проблем и вытекает коррекция (компенсация) коэффициента мощности в электрических сетях. Компенсация реактивной мощности осуществляется путем подключения к сети конденсаторных установок и конденсаторов. Подключая конденсаторы мы вводим в сеть емкостную составляющую, которая уменьшает отставание графика тока от напряжения и приближает, при достаточной компенсации, коэффициент мощности к 1.
Таким образом, уменьшается потребление реактивной мощности через силовые трансформаторы у энергоснабжающей организации и улучшается cos(φ). Рекомендуется поддерживать cos(φ) в пределах = 0,92..0,96, для того, чтобы избежать платежей за потребление реактивной мощности, снизить нагрузку на кабели и трансформаторы.
Однако, в то же время необходимо избегать и перекомпенсации в сети (работы с избыточным количеством конденсаторов), возможной при cos(φ)=0,97 и выше, т.к. тарифы энергоснабжающих организаций за несанкционированную перекомпенсацию превышают значительно тарифы на реактивную мощность. Различают два основных типа компенсации: Индивидуальная компенсация — компенсация реактивной мощности по каждой нагрузке отдельно.
Индивидуальная компенсация — это наиболее простое техническое решение. В этом случае конденсатор(ы) подбирается по мощности и cos(φ) двигателя, поэтому реактивная мощность двигателя компенсируется постоянно в течение всего дня. При этом cos(φ) достаточно высокий. Еще одним достоинством данного вида компенсации реактивной мощности являются низкие удельные затраты на компенсацию.
Общая компенсация — компенсация реактивной мощности с помощью одной конденсаторной установки устанавливаемой на трансформаторной подстанции или в составе ГРЩ. Основным фактором, влияющим на выбор оптимальной схемы компенсации реактивной мощности является характер изменения нагрузки в течение дня. Если предприятие содержит, например, большой парк станочного оборудования, работающего посменно или временно – периодически.
То в этом случае индивидуальная компенсация является более дорогим решением по причине большого количества мало работающих конденсаторов. Индивидуальная компенсация более эффективна, в случае генерирования реактивной мощности небольшим числом нагрузок, потребляющих наибольшую мощность достаточно длительный период времени. Общая компенсация применяется там, где нагрузка перераспределяется между разными потребителями в течение дня.
При этом потребление реактивной мощности в течение дня меняется. В этом случае предпочтительнее использование регулируемых (автоматических) конденсаторных установок. Задача такой установки будет подключать требуемую емкость, соответствующую нагрузке в каждый конкретный момент.
Эффект гармоники в электрических сетях
Гармоники тока (напряжения) можно определить, разложив соответствующие кривые в ряд Фурье. Порядок гармоники определяется как соотношение частоты гармоники к основной частоте той же периодической волны. В случае идеальной синусоидальной волны будет присутствовать только основная гармоника первого порядка, в Украине (СНГ) ее частота составляет 50 Гц.
В случае искаженной кривой, (искажение обусловлено нелинейностью нагрузки- инверторы, лампы дневного света, сварочные агрегаты и др.) кривая тока или напряжения может содержать некоторое количество частот искажающих идеальную синусоиду. Такая кривая может быть разложена на гармонический ряд, включающий в себя не только основную (первую) гармонику — синусоиду (50 Гц), но и некоторое количество частот кратных 50 Гц – высшие гармоники.
Например, 250 Гц это есть 5-я гармоника. При “нелинейной” нагрузке форма волны тока будет отличаться от идеальной и, согласно теореме Фурье, даст гармонику, чьи число и амплитуда увеличатся вместе со степенью искривления формы волны тока.
Установка в сети конденсаторов с компенсацией коэффициента мощности служит для создания условия параллельного резонанса между эквивалентной емкостью конденсаторов и эквивалентной индуктивностью системы (которую обычно могут аппроксимировать при расчете эквивалентной индуктивности трансформатора) в соответствии с частотой fк.
Источник: https://electrocontrol.com.ua/stati-sxemy-i-spravochnaya-informaciya/obshhie-svedeniya-o-kompensacii-reaktivnoj-moshhnosti.html
Устройство поперечной компенсации реактивной мощности на посту секционирования станции Заринская
Внедрено в структурном подразделении Службы электрификации и электроснабжения Западно-Сибирской дирекции инфраструктуры – структурного подразделения Центральной дирекции инфраструктуры – филиала открытого акционерного общества «Российские железные дороги» в 2016 г. в рамках инвестиционного проекта «Внедрение ресурсосберегающих технологий на железнодорожном транспорте».
Описание технологии
Устройство поперечной компенсации реактивной мощности (далее – Устройство) предназначено для установки на тяговых подстанциях и постах секционирования железных дорог, электрифицированных по системе переменного тока и предназначено для улучшения показателей качества электрической энергии:
— повышаются уровень напряжения и коэффициент мощности;
— снижается содержание высших гармоник напряжения;
— снижается фликкер-эффект.
Устройство, именуемое статический генератор реактивной мощности, по английски SVG (Static VAR Generator), представляет собой многомостовой последовательный инвертор тока, построенный на транзисторах IGBT. Эффект достигается за счет генерирования Устройством реактивного тока в контактную сеть.
Величина, фазовый сдвиг, гармонический состав выходного тока Устройства определяются на основании сложных вычислений в режиме реального времени.
В систему управления постоянно поступают мгновенные значения напряжения в контактной сети, при необходимости корректировка величины, фазового угла, гармонического состава выходного тока происходит с быстродействием не более 5 мс.
Состав Устройства
Главной составной частью силовой схемы Устройств являются силовые ячейки, реализованные на основе IGBT-элементов (биполярных транзисторов с изолированным затвором). Силовая ячейка представляет собой мостовой инвертор с поляризованными тонкопленочными конденсаторами в плече постоянного тока. Силовые ячейки собраны в последовательную цепочку, и размещены в контейнере в отсеке силовых ячеек.
Управление силовыми ячейками осуществляется по оптоволоконным кабелям от системы управления, размещенной в отсеке управления в том же контейнере. Пуско-зарядное устройство и выходной дроссель размещены вне контейнера на площадке открытого распредустройства.
Пуско-зарядное устройство обеспечивает первичный заряд конденсаторов в силовых ячейках, Дроссели на входе и выходе обеспечивают возможность потребления реактивной мощности в случае необходимости.
Основные технические характеристики
Характеристика | Ед. изм. | Номинал |
Номинальная мощность | квар | 6 700 |
Номинальный ток | А | 244 |
Номинальное напряжение | В | 27 500 |
Максимальное напряжение | В | 31 000 |
Перегрузочная способность | 110% | |
Количество ячеек | 28 | |
Количество фаз | 1 | |
Метод охлаждения | Принудительное воздушное | |
Степень защиты контейнера (IP) | IP54 | |
Длина контейнера * Глубина контейнера * Высота контейнера | мм мм мм | 9125 * 2438 * 2896 * |
Требования для подготовки объекта к внедрению
1. Проектно-изыскательские работы с обследованием мест внедрения.
2. Разработка рабочего проекта.
3. Выдача технических условий на увеличение мощности собственных нужд поста секционирования
4. Расширение территории поста секционирования для размещения Устройства.
5. Подготовка места хранения поставляемого оборудования.
6. Расширение системы телемеханики для интеграции телемеханизируемых элементов Устройства.
7. Подготовка проекта производства работ по монтажу оборудования Устройства.
Устройство и работа
Устройство подключается к шине 27,5 кВ поста секционирования через вводной выключатель и пуско-зарядное устройство на входе и к рельсу на выходе. Мгновенное значение напряжения контактной сети поступает в систему управления от трансформатора напряжения на шинах постах секционирования. Система управления обрабатывает поступившую информацию и обеспечивает требуемые значения напряжения путем генерирования выходного реактивного тока необходимой амплитуды, фазы, частотного состава.
Устройство способно как генерировать, так и потреблять 100% своей номинальной реактивной мощности, что делает его незаменимым при значительных колебаниях нагрузки. При этом исключаются превышения рабочего напряжения в ночные часы при минимальной поездной обстановке.
В отличие от тиристорных устройств компенсации, SVG занимает меньше места, имеет меньшие внутренние потери, меньшее время восстановления, более высокую надежность.
Устройство работает в необслуживаемом режиме с дистанционным управлением. Предусмотрен режим местного управления, используемый при техническом обслуживании.
Преимущества перед аналогами
Аналогами Устройства можно назвать STATCOM от Siemens, ABВ. Эти аналоги содержат повышающий трансформатор, что увеличивает потери в устройстве и требует большей площади, у них выше ток в силовых ячейках за счет низкого напряжения преобразователей, что требует более интенсивного охлаждения. Конечная стоимость рассматриваемого Устройства на 25-30% дешевле аналогов.
Конкурентной по стоимости, но устаревшей технологией является применение тиристорных устройств для компенсации реактивной мощности. В отличие от тиристорных устройств компенсации, SVG занимает в два раза меньше места, имеет меньшие внутренние потери, меньшее время восстановления, более высокую надежность, работает не только как генератор, но и как потребитель реактивной мощности, программно настраивается на гашение определённых гармоник напряжения.
Факторы, образующие экономический эффект
За счёт разгрузки тяговой сети от потоков реактивной мощности, потребляемой подвижным составом, повышается уровень напряжения в тяговой сети в часы максимума поездной нагрузки, снижаются коэффициенты загрузки трансформаторов тяговых подстанций, сокращаются технологические потери электрической энергии. За счет поддержания уровня напряжения сокращается расчетное время прохождения участка тяжелыми составами на 14-20%.
Полезная мощность устройства выбирается исходя из конкретных условий эксплуатации по результатам расчётов.
Экономическая эффективность мероприятия достигается за счёт:
– повышения уровня напряжения в тяговой сети;
– сокращения технологических потерь электрической энергии;
– улучшения показателей качества электрической энергии;
– увеличения наличной пропускной способности участка по устройствам тягового электроснабжения.
плеера
Источник: http://www.rzd-expo.ru/innovation/resource_saving/news/ustroystvo-poperechnoy-kompensatsii-reaktivnoy-moshchnosti-na-postu-sektsionirovaniya-stantsii-zarin/