Сила тока
Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать. Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.
Представьте себе шланг, с помощью которого вы поливаете свой огород
Давайте теперь проведем аналогию. Пусть шланг – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.
А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.
В обоих случаях диаметр шланга одинаков.
А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.
Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.
Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет в два раза больше, чем через тонкую трубу.
Что такое сила тока?
Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.
Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.
За период времени берут 1 секунду.
Формула силы тока
Формула для чайников будет выглядеть вот так:
где
I – собственно сила тока, Амперы
N – количество электронов
t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды
Более правильная (официальная) формула выглядит вот так:
где
Δq – это заряд за какой-то определенный промежуток времени, Кулон
Δt – тот самый промежуток времени, секунды
I – сила тока, Амперы
В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.
Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).
Если преподу не понравится ваш ответ, то скажите типа что-то этого:
Сила тока – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.
Сила тока и сопротивление
Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.
Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?
Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.
Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:
Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.
плавкий предохранитель
Как только сила тока через тонкий проводок предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.
сгоревший плавкий предохранитель
Поэтому, силовые кабели, через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.
Сила тока в проводнике
Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.
Да и вообще, сопротивление проводника рассчитывается по формуле:
формула сопротивления проводника
Таблица с удельным сопротивлением из разных материалов выглядит вот так.
таблица с удельным сопротивлением веществ
Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:
закон Ома
Задача
У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?
задача на силу тока в проводнике
Решение:
Как измерить силу тока?
Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.
Более подробно как это сделать, можете прочитать в этой статье.
Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.
Источник: https://www.ruselectronic.com/sila-toka/
Зависимость мощности от силы тока, формула мощности, физический смысл
Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами.
Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор.
Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.
Выясним, что же представляет собой понятие электричество?
Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз
И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.
А теперь, перейдем к главному
Основа-основ науки об электричестве – закон Ома.
Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R
Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.
Вся остальная электротехника «пляшет» от этого.
О мощности электрического тока
В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.
Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.
Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:
P = U*I.
Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.
Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.
Вот так – ничего сложного!
Источник: https://pue8.ru/elektrotekhnik/921-zavisimost-moshchnosti-ot-sily-toka-formula-moshchnosti-fizicheskij-smysl.html
В чем сила, брат? а сила тока в розетке?
Для того, чтобы разобраться в данном вопросе, необходимо для начала отыскать в книгах или чертогах разума следующую информацию:
- закон Ома
- сопротивление амперметра, вольтметра, мультиметра
- подключение амперметра, мультиметра в цепь для измерения силы тока
Хоть электрика опасная и строгая наука, но опытные, умудренные опытом спецы любят шутить на профессиональные темы. Например, в кабинетах или мастерских можно встретить различные смешные и не очень плакаты, относящиеся к теме электрики:
- “не чапай — лясне”
- “электрик! не трогай оголенные провода мокрыми руками, от этого они ржавеют и портятся”
Пару слов о физике процесса и законе Ома
Так вот, закон Ома. Закон Ома — сиди дома. Основополагающий закон, зная который, можно уже что-то сообразить. ПрименИм для цепей постоянного и переменного тока.
Разница лишь в сопротивлении: для переменного тока это будет полное сопротивление Z, в которое входит активная, индуктивная и емкостная составляющие. Для постоянного тока сопротивление только активное. Сама формула следующая: I=U/R для постоянки, и I=U/Z для переменки.
Хотя переменки это в школе, а у нас переменный ток. Более подробно про закон Ома в другом материале. У нас все же тема про розетки.
Значит розетка — это источник переменного напряжения в домашней сети, к которому мы подключаем нагрузку (чайник, стиралка, утюг, фен или удлинитель, к которому подключено несколько приборов разом). Ток появляется, когда есть напряжение и есть нагрузка.
Если выключить в квартире освещение и все приборы, то счетчик не будет вращаться, так как отсутствует ток и мощность равна нулю. Если мы включаем бытовой прибор, то “деньги начинают кАпать”.
Напряжение же в розетке есть всегда, если оно приходит от щитка и включен питающий автомат.
Вводная про подключение амперметра, вольтметра и измерения мультиметром
Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.
Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.
Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.
Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение. Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром.
Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.
Как измерить напряжение в розетке
Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?
- прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
- прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины
Какой величины ток в розетке и как его измерить
Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?
- Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
- Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.
Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.
Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:
- Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
- Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
- Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер. Поэтому важно следить за величинами тока, которые мы измеряем.
Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.
В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.
За какой провод можно браться в розетке под напряжением? Фазный или нулевой?
Раз уж мы в разделе электробезопасность, то обсудим и вопрос касания нулевого и фазного провода в розетке. Случайно или специально электричество разбираться не будет, результат будет одинаков.
Коснулись сразу фазного и нулевого
Ток протек через Вас такой величины, как U/R. Где R — Ваше внутреннее сопротивление, которое зависит от различных факторов. То есть ток потечет и Вам будет печально или посмертно. Путей протекания тока через человека несколько.
Коснулись фазного проводника:
Если Вы парите в воздухе как птичка или стоите на сухой деревянной подставке плюс не касаетесь другими частями тела заземленных предметов, плюс еще куча факторов, которые вы “учли” (хотя скорее всего не учли, а просто так сложились обстоятельства) => Тогда Вас не ударит током.
Замечание: Допусти, ситуация сложилась так, что Вы выжили. И вы всем говорите, что вот так можно делать. Кто-то Вас послушает и повторит, но с более печальным исходом. То ли из-за влажного пола или рук, то ли из-за случайного касания заземленного корпуса оборудования. Значит, Вы обрекли человека на беду, только лишь, потому, что использовали “эффект выжившего”. Это не круто.
Коснулись рабочего нуля:
С вами ничего не случится, только если нагрузка в сети симметричная по всем трем фазам, и ток в нулевом проводе не течет (подробнее про смещение нейтрали), а это редкий случай, который иногда может встретиться на производстве.
Всегда проще обесточить сеть и произвести необходимые работы, чем подвергать свою жизнь риску. Как говорится, правила техники безопасности пишутся кровью. Но я не отрицаю, что находились люди, которые брались за фазный, нулевой провода и ничего им не было. Просто игры с электричеством не приведут ни к чему хорошему. Это как идти с закрытыми глазами через автобан ночью без опознавательных знаков.
Лично я всегда использую следующее правило: хочешь ковыряться в розетках или выключателях в квартире — отключи вводной автомат и следи, чтобы его никто не включил.
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Причины повреждения кабелей
Определение температуры термосопротивления по ГОСТ
Расчет тока трансформатора по мощности и напряжению
Выпрямительные диоды: расшифровка, обозначение, ВАХ
Самое популярное
Единицы измерения физвеличин
Напряжение смещения нейтрали
Источник: https://pomegerim.ru/electrobezopasnost/sila-toka-v-rozetke.php
Закон Ома для «чайников»: понятие, формула, объяснение
Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.
Основные понятия закона Ома
Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.
Сила тока I
Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.
Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.
Напряжение U, или разность потенциалов
Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.
Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.
Сопротивление R
Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.
Памятник Георгу Симону Ому
Формулировка и объяснение закона Ома
Закон немецкого учителя Георга Ома очень прост. Он гласит:
Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.
Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.
Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.
Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.
Закон запишется в следующем виде:
Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.
Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.
Как понять закон Ома?
Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.
Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.
Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)
Сила тока прямо пропорциональна напряжению.
Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.
Сила тока обратно пропорциональна сопротивлению.
Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.
В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.
Ток в проводнике
В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.
Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!
Источник: https://zaochnik.ru/blog/zakon-oma-dlya-chajnikov/
10. Сила тока, напряжение, сопротивление (продолжение) Напряжение. Вольтметр
551.Когда дуга трамвайного вагоназамыкаетцепь, то по верхнему проводуи по рельсуидет одинаковый ток. Поче-му же, стояна земле и касаясь проволо-ки,соединенной с верхним проводом, мыбудемпоражены током, а прикоснове-ние крельсу безопасно?
552.При заземлении электролиниипо правиламтехники безопасности одинконец канатасначала присоединяют кземле, и толькопотом второй конец на-брасывают напровода линии. Почему неделаютнаоборот?
553.Имеет ли значение, как поста-витьвыключатель: по схеме а или по схе-меб (рис. 74)?
554.Что нужно отключить сначала:
вилкупереносного шнура из розетки илидругойконец шнура, подключенного кприбору?
555.Напряжение между проводами Аи Вдвухпроводной линии равноU. Какизменятсвои показания вольтметры V1 иV2 (рис.75, а}, если заземлить один из про-водовтак, как показано на рис. 75, б?
556.Зависимость силы тока от на-пряженияна участке АВ выражена гра-фиками1 и 2 (рис. 76). В каком случае
проводникАВ имеет большее сопротив-ление?
Закон Ома для участка цепи
557.Сформулируйте зависимости,изображенныена рис. 77.
558.Зависимость силы тока от со-противленияна участке АВ выраженаграфиками1 и 2 (рис. 78). В каком слу-чае проводникАВ находится под боль-шимнапряжением?
559.Что изменилось на участке цепи,есливключенный последовательно с нимамперметрпоказывает увеличение силытока?
560.Как будут изменяться показанияамперметра,если точку А (рис. 79) по-очередносоединять медной проволокойс точкамиВ, С, D, E?
561.Что изменилось на участке цепи,есливключенный параллельно вольтметрпоказываетуменьшение напряжения?
562.Как будут изменяться показаниявольтметра,если точку А (рис. 80) по-очередносоединять медной проволокойс точкамиВ, С, D, E? __
563.На столе расположена электри-ческаяцепь, собранная по схеме, изо-браженнойна рис. 81. Увеличим сопро-тивлениеR2 Изменятся липоказания во-льтметров?
564.Какими способами можно опре-делитьнапряжение в городской сети,имея всвоем распоряжении любые при-боры,кроме вольтметра?
565.Каким должно быть сопротив-лениеамперметра, чтобы при включе-нии егов цепь напряжение на зажимахисточникатока практически не измени-лось?
566.Один ученик утверждал, чтоеслисопротивление амперметра сде-латьбольшим, чем сопротивлениецепи, топрибор все равно будет пра-вильноизмерять силу тока. Другойученикговорил, что показания ампер-метраправильны только в том случае,еслиего сопротивление мало по срав-нениюс сопротивлением цепи. Кто изних прав?
Расчет сопротивления проводника. Реостаты
567.Какой проводник представляетбольшеесопротивление для постоянно-го тока:медный сплошной стержень илимеднаятрубка, имеющая внешний диа-метр,равный диаметру стержня? Длинуобоихпроводников считать одинаковой.
568.Проводник АВ (рис. 82) изго-товлениз однородной никелиновой про-волоки,вдоль которой перемещаетсяскользящийконтакт С. Изобразите гра-фическизависимость показаний вольт-метраот длины / отрезка АС.
569.Вольтметр, подключенный к точ-кам Аи В (рис. 83), показывает некото-роенапряжение U.К какому концу рео-стата{D илиQ надо передвинутьползу-нок, чтобы увеличить напряжениенаучастке АВ?
Источник: https://studfile.net/preview/7174311/
Закон Ома
Программа КИП и А
В программу «КИП и А», в разделе «Электрика» включен блок расчета закона Ома для постоянного и переменного тока. Сначала немного теории..
Для постоянного тока
Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:
Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.
I = U / R | где | I — сила тока, измеряемая в Амперах, (A) |
U — напряжение, измеряемое в Вольтах, (V) | ||
R — сопротивление, измеряется в Омах, (Ω) |
Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».
Помимо закона Ома, важнейшим является понятие электрической мощности, P:
Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.
P = I × U | где | P — эл. мощность, измеряемая в Ваттах, (W) |
I — сила тока, измеряемая в Амперах, (A) | ||
U — напряжение, измеряемое в Вольтах, (V) |
Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:
Сила тока, | I= | U/R | P/U | √(P/R) |
Напряжение, | U= | I×R | P/I | √(P×R) |
Сопротивление, | R= | U/I | P/I² | U²/P |
Мощность, | P= | I×U | I²×R | U²/R |
Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.
Наиболее распространенные множительные приставки:
- Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
- Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
- Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
- Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.
Для переменного тока
В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.
Импеданс, Z
В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.
Последовательное включение R, L, C
Параллельное включение R, L, C
Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.
Импеданс, Полное сопротивление, Z | |
При последовательном включении R, L, C | При параллельном включении R, L, C |
Z=√(R2+(ωL-1/ωC)2) | Z=1/ √(1/R2+(1/ωL-ωC)2) |
где, | |
ω = 2πγ — циклическая, угловая частота; γ — частота переменного тока. |
Коэффициент мощности, Cos(φ)
Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.
Cos(φ) = P / S
Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.
Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.
Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:
I = U / Z | где | I — сила переменного тока, измеряемая в Амперах, (A) |
U — напряжение переменного тока, измеряемое в Вольтах, (V) | ||
Z — полное сопротивление (импеданс), измеряется в Омах, (Ω) |
Производные формулы:
Сила тока, | I= | U/Z | P/(U×Cos(φ)) | √(P/Z) |
Напряжение, | U= | I×Z | P/(I×Cos(φ)) | √(P×Z) |
Полное сопротивление, импеданс | Z= | U/I | P/I² | U²/P |
Мощность, | P= | I²×Z | I×U×Cos(φ) | U²/Z |
Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:
Закон Ома для постоянного тока
Закон Ома для переменного тока
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)
Источник: https://www.axwap.com/kipia/docs/elektrika/zakon-oma.htm
Как повысить силу электрического тока. Сопротивление проводников. Удельное сопротивление
Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока.
Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер.
Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку.
Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки.
Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.
Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.
Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза.
Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:
Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R.
Главное запомнить, что напряжение находится в вершине треугольника.
В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.
При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения.
Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника.
Чтобы увеличить сопротивление необходимо увеличить длину проводника, либо уменьшить его диаметр, либо выбрать материал с большим значением данного параметра. В частности, для меди удельное сопротивление составляет 0,017 ( Ом * мм2 / м ).
Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.
Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий.
Следующий материал – это железо.
Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется.
Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.
Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.
Латунь в электрике не применяется.
Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.
Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.
Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.
Уголь, графит применяются в электрических щетках в электродвигателях.
Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу
Диэлектрики имеют большое значение удельного сопротивления, которое в сравнении с проводниками намного выше.
Фарфор применяют, как правило, при изготовлении изоляторов. Для производства изоляторов также используют стекло.
Эбонит чаще всего применяется в трансформаторах. Из него изготовляют каркас катушек, на которые наматывается провод.
Также в качестве диэлектриков часто используют разные виды пластмасс. К диэлектрикам относится материал, из которого произведена изоляционная лента.
Материал, из которого изготовлена изоляция в проводах, также является диэлектриком.
Основное назначение диэлектрика – это защита людей от поражения электротоком, изолировать между собой токопроводящие жилы.
Источник: https://partalstalina.ru/article/item/25
сила тока: определение
Электричество давно стало незаменимым спутником всего человечества. Но для большинства обывателей оно представляет собой какое-то абстрактное понятие, с которым сложно разобраться и тем более понять. Но нет нечего сложного для усвоения. Простыми словами электричество можно охарактеризовать как упорядоченное перемещение заряженных частиц.
Определяющими характеристиками электрической энергии являются напряжение, сила тока и сопротивление. Рассмотрим более подробно что это за характеристики их определения, способы измерений и вычислений.
Определение силы электрического тока в электроцепи
Электрический ток, как говорилось выше, представляет собой упорядоченное перемещение заряженных частиц от одного электрода к другому. В металлах это электроны, в жидкостях – ионы, а их количество принято именовать зарядом. Одной из ключевых характеристик электротока является его сила или собственно отношение общего количества заряда к временному отрезку за который он проходит через отдельный участок.
Следовательно, определение силы тока в электроцепи или его величины можно выразить формулой:
I=q/t
q – количество заряда, а t – промежуток времени за которое он проходит этот определенный участок. В системе измерений СИ для определения единицы силы тока применяется ампер (сокращенно – «А»).
Зависимость силы тока от напряжения и сопротивления
Когда разговор заходит о токе, то наиболее часто речь идет о напряжении. В системе СИ оно обозначается в вольтах (В). Для общего понимания определения напряжения рассмотрим физику формирования электричества в общем. В двух словах это процесс выглядит следующим образом.
Из одного места извлекаются электроны, тем самым создавая разряжение. В другой точке они накапливаются, образуя избыток, который стремится занять освободившееся место. Таким образом образуются отрицательный и положительный потенциал, разница между ними и будет являться искомым напряжением в электрической сети.
Для определения величины напряжения применяется специальный измерительный прибор – вольтметр.
Для того чтобы определить силу тока, зная напряжение, необходимо ввести еще одно понятие – сопротивление электроцепи. Оно в упрощенном понимании представляет собой некую силу, затрудняющую движение электронов от одного электрода к другому. Измеряется сопротивление в омах. Определить его величину можно омметром. Воедино понятия напряжение, силы тока и сопротивления связывает закон Ома. Он является одним из основополагающих при расчете любой электрической схемы.
Величина силы тока. Определение в зависимости от напряжения и сопротивления
Закон Ома относительно применения к участку цепи определяет силу тока как величину пропорционально обратную сопротивлению и прямо сопоставимую разности потенциалов. Соответствующая формула выглядит следующим образом:
I=U/R, в которой: R (Ом)– сопротивление на участке электрической схемы, а U(В) – напряжение или разность потенциалов на электродах.
Из уравнения видно, что при наличии стабильного напряжения в электроцепи сила тока будет снижаться при увеличении нагрузочного сопротивления. Эта закономерность привела к тому, что последовательное включение потребителей применяется очень редко. При параллельном включении нагрузки величина силы тока на отельных участках может быть разной (в зависимости от сопротивления), но на входе, в точке соединения она останется прежней.
Сила тока и его плотность
Одно из важных понятий в электротехнике является плотность электрического тока, которая характеризуется его силой по отношению к площади приложения. В системе СИ плотность тока обозначается буквой «J», единица измерения — А/мм2. Общий вид формулы следующий:
J= I/S, где I – сила в амперах, а S – площадь поперечного сечения провода в квадратных мм.
Следовательно, с точки зрения физики, плотность тока — это количество заряда, перемещаемого через единицу площади за определенное время Одним словом эта величина описывает степень электрической нагрузки на проводник и является одной из определяющих при выборе кабельной продукции соответствующего диаметра.
Плотность играет важную роль, т.к. любой элемент сети в т.ч. и токопроводящий провод обладает собственным сопротивлением. Следствием потери тока является нагрев проводника. Значительные потери могут привести к перегреву, вплоть до расплавления изоляции или материала жил.
В заключение отметим, что данные определения силы тока, через основные характеристики носят общий характер. В частных случаях используются дополнительные данные которые влияют на точность вычислений, но не искажают обобщенного представления о физики электричества и взаимосвязи значений.
Источник: http://podvi.ru/interesnoe/sila-toka-opredelenie.html
Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома
Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма. / / Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.
Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.
| ||||||
Источник: https://tehtab.ru/Guide/GuidePhysics/ElectricityAndMagnethism/ConseptsAndFormulas/MainElectricalFormulas/
Характеристики тока
Электрический ток сейчас используют в каждом здании, зная характеристики тока в электросети дома, следует всегда помнить, что он опасен для жизни.
Электрический ток являет собой эффект направленного движения электрических зарядов (в газах — ионы и электроны, в металлах — электроны), под воздействием электрического поля.
Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.
Обычно за направление электрического берут направление положительного заряда.
Далее мы рассмотрим такие характеристики тока, как:
- мощность тока;
- напряжение тока;
- сила тока;
- сопротивление тока.
Мощность тока
Мощностью электрического тока называют отношение произведенной током работы ко времени, в течение которого была выполнена это работа.
Мощность, которую развивает электрический ток на участке цепи, прямо пропорциональна величине тока и напряжению на данном участке. Мощность (электрическая и механическая) измеряется в Ваттах (Вт).
Мощность тока не зависит от времени протекания электрического тока в цепи, а определяется как произведение напряжения на силу тока.
Напряжение тока
Напряжением электрического тока называется величина, которая показывает, какую работу совершило электрическое поле при перемещении заряда от одной точки до другой. Напряжение при этом в различных участках цепи будет отличаться.
К примеру: напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет намного больше, и величина напряжения будет зависеть от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: U=A/q, где
- U — напряжение,
- A – работа, совершенная током по перемещению заряда q на некий участок цепи.
Сила тока
Силой тока называют количество заряженных частиц которые протекают через поперечное сечение проводника.
По определению сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Сила электрического тока измеряется прибором, который называется Амперметром. Величина электрического тока (количество переносимого заряда) измеряется в амперах.
Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. К примеру: говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер.
Такие значения в повседневной жизни не используются. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.
Сопротивление тока
Электрическим сопротивлением называется физическая величина, которая характеризует свойства проводника, препятствующие прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.
Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивление тока (часто обозначается буквой R или r) считается сопротивление тока, в определённых пределах, постоянной величиной для данного проводника. Под электрическим сопротивлением понимают отношение напряжения на концах проводника к силе тока, текущего по проводнику.
Условия возникновения электрического тока в проводящей среде:
1) присутствие свободных заряженных частиц;
2) если есть электрическое поле (присутствует разность потенциала между двумя точками проводника).
Виды воздействия электрического тока на проводящий материал
1) химическое — изменение химического состава проводников (происходит в основном в электролитах);
2) тепловое — нагревается материал, по которому течет ток (в сверхпроводниках этот эффект отсутствует);
3) магнитное — появление магнитного поля (происходит у всех проводников).
Главные характеристики тока
1. Сила тока обозначатся буквой I — она равна количеству электричества Q, проходящему через проводник за время t.
I=Q/t
Сила тока определяется амперметром.
2. Напряжение U — равняется разности потенциалов на участке цепи.
Напряжение определяется вольтметром.
3. Сопротивление R проводящего материала.
Сопротивление зависит:
а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);
R=pl/S
б) от температуры t°С (или Т): R = R0 (1 + αt),
- где R0 – сопротивление проводника при 0°С,
- α – температурный коэффициент сопротивления;
в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.
Таблица характеристик тока.
Соединение | Последовательное | Параллельное |
Сохраняющаяся величина | I1 = I2 = = In I = const | U1 = U2 = Un U = const |
Суммируемая величина | напряжение | cила тока |
Результирующее сопротивление |
4. Плотность тока j — величина, которую можно определить, посчитав силу тока I протекающего через единицу площади поперечного сечения S проводника:
j=I/S
5. Электрическая сила (ЭДС) e — величина, которая определяется затраченными усилиями сторонних сил Аст по перемещению единичного положительного заряда q:
e=Aст/q
Величина, равная затраченной работе совершаемой сторонними силами по перемещению положительного заряда вдоль всей цепи, включая и источник тока, к заряду, имеет название электродвижущая сила источника тока (ЭДС):
Закон Ома для участка цепи. Расчет электрического сопротивления проводника
Цель | Обобщить знания учащихся об электрическом токе и напряжении и установить на опыте зависимость силы тока от напряжения на однородном участке электрической цепи и от сопротивления этого участка, вывести закон Ома для участка цепи. Установить, что электрическое сопротивление зависит от длины проводника, удельного сопротивления и площади поперечного сечения. |
Задачи урока |
|
Тип урока | Урок формирования новых знаний с использованием электронных образовательных ресурсов. |
Формы работы учащихся | Фронтальная, групповая, индивидуальная. |
Используемые приемы обучения | проблемный; исследовательский. |
Методы | Словесный, частично-поисковый, Практический, методы контроля и самоконтроля. |
Средства обучения | Мел, доска, компьютер, мультимедийный проектор, наличие доступа в Интернет. |
Демонстрации | 1.Зависимость силы тока от сопротивления проводника при постоянном напряжении;2.Зависимость силы тока от напряжения при постоянном сопротивлении участка цепи.ЦОР Физика. |
Формируемые УУД |
|
Ожидаемые результатыУчащиеся научатся: |
|
Учитель: Ребята, обратите внимание на слайд. Как Вы видите тема нашего сегодняшнего урока звучит как «Закон Ома для участка цепи. Расчет электрического сопротивления».
Но прежде, чем начать изучать новый материал, следует выяснить, к каким из физических явлений относится данная тема? (выслушиваются варианты ответа, возможно, понадобится вспомнить все остальные пять физических явлений). Итак, подведем итог, явления, к которым имеет отношение тема сегодняшнего урока называются электрические . Давайте вспомним, что же такое электрические явления? (выслушиваются предположения детей, далее работа по слайду).
Учитель: замечательно, ребята! Теперь когда мы знаем что такое электрические явления, необходимо поставить цель нашего урока, к которой мы будем стараться прийти в конце.
3. Мотивационный этап
Ребята, прежде чем устанавливать зависимости между физическими величинами, нам необходимо четко усвоить каждую из этих величин. Для этого давайте повторим по слайдам все физические величины, ос которыми нам сегодня придется работать при решении задач, а также повторим составные части электрической цепи, какие приборы помогают нам снимать показания.
Чтобы было легче понять, что такое сила тока, представьте, что перед Вами вместо провода труба, в которой находится вода, а воде плавают маленькие рыбки. Так вот рыбки, благодаря действию течения потока воды, начинают одновременно плыть в одном направлении.
Если мы представим, что вместо рыбок у нас электроны, а вместо течения воды — электрическое поле, то в таком случае в проводнике возникает электрический ток, то есть упорядоченное движение заряженных частиц.
За направление тока мы принимаем направление движения положительно заряженных частиц, то есть от + к -.
А теперь вспомним, что такое напряжение.
Если мы представим, что под действием течения воды в трубе одна из рыбок переместилась влево на расстояние 1 м, то мы можем сказать, что течение совершило работу по перемещению рыбки. Так и в случае электричества. Электрическое поле, перемещая заряженную частицу совершает работу, и если мы разделим значение этой работы на величину заряда частицы, то получим величину, которая называется электрическое напряжение.
Обратимся к еще одной физической величине
Электроны, передвигаясь вдоль проводника испытывают различные препятствия.
Так, например, хорошими проводниками электрического тока являются металлы, а у них имеется кристаллическая решетка, чем более плотно устроена эта решетка, тем и электронам сложнее перемещаться из одного места проводника в другое, а следовательно электроны встречают некоторое сопротивление.
Я неспроста сказала сопротивление, именно из этого физического смысла и вытекает понятие электрического сопротивления. Чем сложнее электронам передвигаться по проводнику, тем меньшее их количество в единицу времени будет перемещаться сквозь поперечное сечение и следовательно сила тока также будет меньше.
Давайте выясним, от каких параметров зависит электрическое сопротивление
И последнее, что мы сделаем перед изучением нового материала, это повторим, как правильно собираться электрические цепи по схемам, основные составные части электрической цепи.
4. Этап изучения нового материала
Ребята, зависимость этих трех физических величин друг от друга в 1827 году впервые вывел немецкий ученый Георг Ом. Поэтому и формула носит название его фамилии. Закон Ома.
Рассматривая зависимость друг от друга двух величин, третья должна оставаться постоянной. Мы с Вами сейчас опытным путем подтвердим что сила тока на участке цепи действительно будет увеличиваться при увеличении напряжения, но с учетом того, что сопротивление у нас будет величиной постоянной. (обращаемся к ЦОР).
По графику мы видим, что сила тока увеличивалась ровно настолько же, насколько мы увеличивали напряжение, а значит первое утверждение из закона Ома о том, «что сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка,» ВЕРНО!
Теперь выясним, как же сила тока зависит от сопротивления при постоянном напряжении и прав ли бы Георг Ом в своих суждениях.
По графику мы убедились с Вами «Что сила тока обратно пропорциональна сопротивлению».
А теперь предлагаю Вам правило треугольника, для более удобного запоминая данной формулы
5. Этап применения нового знания
Приступим к решению задач. От простого к сложному.
Задача №1
Напряжение на зажимах электрического утюга 220(В), сопротивление нагревательного элемента утюга 50 (Ом). Чему равна сила тока в нагревательном элементе? Рассчитайте величину электрического заряда, проходящего через проводник за время 0,5 сек?
Задача №2
Используя данные предыдущей задачи, рассчитайте длину проводника (спирали в нагревательном элементе утюга), если известно, что площадь поперечного сечения проводника S равна 0,8 кв.мм., и проводник выполнен из меди.
Задача №3
Сборник ОГЭ физика 2017. автор ЗОРИН Н. И.
Вариант 6 № 16
Через поперечное сечение проводника прошел заряд, равный 6 Кл, за время, равное 5 минутам. Сопротивление проводника 5 (Ом). Рассчитайте напряжение проводника.
Задача №5
Вариант 9 № 16
Как изменится сила тока в электрической цепи, если площадь поперечного сечения проводника уменьшить вдвое?
6. Рефлексивный этап
Учитель: А сейчас подведем итог нашего урока. Вспомним цели, которые мы ставили перед собой! Как Вы считаете, удалось ли нам их добиться? Тогда давайте ответим на следующие вопросы: Какую взаимозависимость между силой тока, напряжением и сопротивлением на участке цепи мы раскрыли?
Ученики: Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.(слайд)
Учитель: В какой формуле выражена эта взаимозависимость?
Ученики: Взаимозависимость силы тока, напряжения и сопротивления выражена законом Ома для участка цепи.
Учитель: Кто впервые установил эту зависимость?
Ученики: Георг Ом (немецкий физик) в 1927 году.
Учитель: А как зависит электрическое сопротивление от длины проводника и площади поперечного сечения?
Ученики:Чем больше длина, тем больше сопротивление, чем больше площадь поперечного сечения, тем меньше сопротивление.
Учитель: Замечательно, надеюсь, данное занятие было полезным для Вас и теперь Вы сможете применять полученные знания на практике при решении задач.
Источник: https://rosuchebnik.ru/material/zakon-oma-dlya-uchastka-tsepi-raschet-elektricheskogo-soprotivleniya-provodnika--6374/
Основы электроники. Ток, напряжение, сопротивление
На нашем сайте вышел обновленный курс по электронике! Мы рады предложить Вам новые версии статей по этой теме:
Эта статья положит начало циклу статей, посвященных изучению основ электроники! Мы будем последовательно двигаться от самых азов до всяческих тонкостей при разводке плат и составлении принципиальных электрических схем. И начнем мы с рассмотрения основополагающих понятий электроники – тока, напряжения и сопротивления.
Напряжение
По определению напряжение – это энергия или работа, которая тратится на перемещение единичного положительного заряда из точки с низким потенциалом в точку с более высоким потенциалом. Напряжение представляет собой разность потенциалов между двумя точками. Сразу же остановимся и рассмотрим подробнее понятие – электрический потенциал.
Для определения электрического потенциала необходимо выбрать точку нулевого потенциала, относительно которой будет вестись отсчет. Обычно за ноль потенциала принимают минус питания – это так называемая «земля». Рассмотрим простейшую цепочку, состоящую из источника напряжения и нагрузки – то есть резистора. Пусть напряжение источника равно 10 В, а сопротивление – 5 Ом.
Земля будет точкой отсчета, потенциал в этой точке равен 0. Тогда электрический потенциал в точке 1 будет равен напряжению источника питания, то есть 10 В. Соответственно, в точке 2 потенциал снова уменьшится до нуля, а напряжение на нагрузке будет равно 10 В (разность потенциалов между точками 1 и 2). Вроде бы все несложно и понятно, но это довольно важный момент, надо сразу уяснить для себя понятия напряжения и разности потенциалов, разницу и взаимосвязь между ними.
Ток
Ток – скорость перемещения заряда в определенной точке, измеряются эта величина в Амперах. Тут тоже есть момент, который важно понять раз и навсегда.
Если напряжение мы меряем между(!) двумя точками, то ток всегда проходит через(!) какую-либо точку схемы, либо через какой-либо элемент схемы.
И если говорить о напряжении в какой-то точке схемы, то подразумевается напряжение между этой точкой и землей (потенциал в нашей точке минус потенциал земли, равный нулю).
Существует один важный закон для токов, называется он первым законом Кирхгофа и заключается он в том, что «сумма втекающих в точку токов равна сумме вытекающих из этой же точки токов». Для полного понимания смотрим на схему:
Тут у нас втекающие токи – I_1, I_2, I_3, а вытекающие – I_4, I_5. И по первому закону Кирхгофа мы имеем: I_1 + I_2 + I_3 = I_4 + I_5.
Сопротивление
Сопротивление помогает связать напряжение и ток в цепи. Есть такая потрясающая штука – закон Ома, который говорит нам, что «сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи». Поясним на простеньком примере:
Итак, по закону Ома имеем: I = \frac{U}{R}.
Таким образом, можно сказать, что резистор позволяет нам преобразовать ток в напряжение, ну и, соответственно, напряжение в ток.
Рассмотрим возможные соединения резисторов, а именно, последовательное и параллельное. Пусть имеются три резистора, соединенных последовательно:
Общее сопротивление равно сумме каждого из сопротивлений в отдельности, то есть: R_0 = R_1 + R_2 + R_3.
Рассмотрим параллельное соединение:
Для параллельного соединения резисторов формула выглядит иначе: \frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.
Очевидно, что при последовательном соединении резисторов общее сопротивление всегда получается большим, чем сопротивление отдельно взятого резистора, а при параллельном соединении резисторов, наоборот, общее сопротивление получается меньшим, чем сопротивление отдельных резисторов. Это важно запомнить и иметь ввиду при разработке электрических схем.
И еще важный момент – не нужно зацикливаться на точном определении значений сопротивления резисторов. Напротив, очень важно выработать способность быстро прикидывать в голове, какой резистор нужно поместить в схему в каждом конкретном случае.
Думаю тут еще надо рассмотреть такую вещь как делитель напряжения, раз уж речь идет о резисторах и сопротивлениях. Выглядит схема делителя так:
Делители напряжения, кстати, очень широко используются в схемах, можете взять какую-нибудь и обязательно там найдете с десяток делителей. Но что-то я забежал вперед, сначала рассмотрим, что же это такое. Простейший делитель напряжения – это схема, которая на выходе создает напряжение, равное части напряжения, которое имеется на входе.
Ток в цепи: I = \frac{U_{вх} }{R_1 + R_2} .
Тогда что же будет на выходе? Правильно: U_{вых} = IR_2 = \frac{U_{вх}R_2}{R_1 + R_2}.
Вот и получили, что на выходе напряжение равно части входного напряжения. Так работает делитель напряжения.
Итак, мы и рассмотрели понятия тока, напряжения и сопротивления. Наверное, на этом стоит остановиться, а то получится очень громоздко
Источник: https://microtechnics.ru/osnovy-elektroniki-tok-napryazhenie-soprotivlenie/
Как рассчитать силу тока, рассчитать мощность, ампераж — Постройка
Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины.
Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет.
Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.
Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:
Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:
Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра.
Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.
Как узнать ток зная мощность и напряжение?
В данном случае формула вычисления выглядит следующим образом:
Расчет силы тока онлайн:
(Не целые числа вводим через точку. Например: 0.5)
Как узнать напряжение зная силу тока?
Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:
Расчет напряжения онлайн:
Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:
Определение величины онлайн:
Как рассчитать мощность зная силу тока и напряжения?
Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.
Расчет цепи онлайн:
Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?
Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.
Онлайн расчет:
Формула расчета сечения провода и как определяется сечение провода
Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:
Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»
Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:
I=P/U=2000/220В = 9А
Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:
Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.
Рекомендуем ознакомиться:- — БЛОК ПИТАНИЯ ДЛЯ СВЕТОДИОДНЫХ ЛЕНТ
- — ЗАЩИТНОЕ ЗАНУЛЕНИЕ
- — СВЕТОДИОДНЫЕ СВЕТИЛЬНИКИ — ЛУЧШЕ НЕ ПРИДУМАЕШЬ!
- — АЛМАЗНАЯ РЕЗКА БЕТОНА И ЖБ КОНСТРУКЦИЙ
- Автор — Антон Писарев
Источник: https://xn--80anhrcladek5a8h.xn--p1ai/stroitelstvo/kak-rasschitat-silu-toka-rasschitat-moshhnost-amperazh.html