Что такое ток срабатывания

Автоматический выключатель

Что такое ток срабатывания

Автоматические выключатели служат для проведения, включения и автоматического размыкания электрических цепей при аномальных явлениях (например при токах перегрузки, КЗ, недопустимых снижения напряжения), а также для нечастого включения цепей вручную.

Защиту от токов коротких замыканий выполняет электромагнитный расцепитель. Срабатывание электромагнитного расцепителя обеспечивает электромагнит, якорь которого при срабатывании давит на расцепитель, обеспечивая отключение автомата. Электромагнитный расцепитель имеет свой ток отключения при КЗ (уставка КЗ). Этот ток выражается в амперах, или чаще, — в кратности к номинальному току.

Время срабатывания электромагнитного расцепителя при токе КЗ мгновенное (собственное время срабатывание расцепителя сотые доли секунд).

Электродинамический расцепитель используется для защиты от коротких замыканий в автоматах с большими номинальными токами. Срабатывание обеспечивается электродинамическими силами, размыкающие силовые контакты.

Защиту от токов перегрузок выполняет тепловой расцепитель. Основа теплового расцепителя -биметаллическая (в последнее время триметаллическая) пластина, которая при нагреве изменяет свою форму, и этим обеспечивает срабатывание расцепителя. Тепловой расцепитель не имеет постоянного времени отключения автомата, его время срабатывания зависит от величины тока перегрузки.

Полупроводниковый расцепитель осуществляет защиту от токов коротких замыканий и перегрузок в цепи. В отличие от электромагнитного и теплового расцепителей полупроводниковый расцепитель допускает ступенчатый выбор параметров:

  • номинального тока расцепителя;
  • уставки по току срабатывания в зоне токов короткого замыкания;
  • уставки по времени срабатывания в зоне токов перегрузки;
  • уставки по времени срабатывания в зоне токов короткого замыкания;
  • уставки по току срабатываний при однофазном коротком замыкании.

Для расцепителя в зоне токов перегрузки сигнал на срабатывание выдается с обратно зависимой от тока выдержкой времени (чем больше ток, тем меньше выдержка времени на отключение). Для расцепителя в зоне токов короткого замыкания, при значениях тока меньше предельного тока селективности, сигнал на срабатывание выдается с выдержкой времени.

При значениях тока больше предельных токов селективности сигнал на отключение подаётся мгновенно. Также сигнал на отключение подается мгновенно, при не установленной выдержке времени.

 Автоматы на основе таких расцепителей получают сигнал от измерительного устройства и формируют соответствующую защитную характеристику, выдающую сигнал через промежуточное реле на независимый расцепитель.

Отключающая способность

Её синонимы: номинальная наибольшая отключающая способность Icn, номинальная рабочая наибольшая отключающая способность Ics, номинальная предельная наибольшая отключающая способность Icu. Является основным параметром для выбора и замены автоматического выключателя.

Для бытового применения (ГОСТ Р 50345-99 (МЭК 60898)) автомат должен обладать номинальной наибольшей отключающей способностью Icn перекрывающую максимальный ток КЗ в данной цепи.

Для промышленного применения, имеющего доступ обученного персонала (ГОСТ Р 50030.2-99 (МЭК 60947.2), ГОСТ 9098-78, автомат должен обладать номинальной предельной наибольшей отключающей способностью Icu. перекрывающую максимальный ток КЗ в данной цепи. Автоматический выключатель работавший при токе равном Icu в соответствии с установленным циклом не обязан длительно проводить ток.

Категория применения

По ГОСТ Р 50030.2-99 (МЭК60947.2) выключатели с категорией А не предназначены, а с категорией В предназначены для обеспечения селективности при КЗ. Выключатели категории В имеют номинальный кратковременно выдерживаемый ток Icw, и время прохождения этого тока (обычно 0.25, 0.5 или 1с).

Если категория не оговаривается, имеется в виду категория А.

Токоограничение

Выключатель с токоограничением не позволяет току КЗ принять его максимальное значение и быстрее производит отключение. Класс токоограничения -2 ограничивает по времени КЗ в пределах ½ полу периода, класс -3 ограничивает КЗ в пределах 1/3 полу периода. Если автомат с токоограничением, но не указан класс, предоставляется интегральная характеристика I²t.

Выключатели изготавливаются со следующими дополнительными сборочными единицами (только те марки, для которых это предусмотрено):

  • свободными контактами (СК), (определяют положение автомата (вкл / выкл.);
  • вспомогательными контактами сигнализации автоматического отключения (ВСК), (сигнализируют срабатывание защиты автомата);
  • электромагнитным приводом (ЭП);
  • независимым расцепителем (НР), (обеспечивает отключение выключателя при подаче на катушку независимого расцепителя напряжения);
  • нулевым расцепителем (РНН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.1-0.35 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.1 номинального и ниже);
  • минимальным расцепителем (РМН), (обеспечивает отключение выключателя без выдержки времени при напряжении на выводах его катушки ниже 0.35-0.7 номинального (в зависимости от марки автомата) и препятствует включению выключателя при напряжениях на выводах катушки 0.35 номинального и ниже).
  • дополнительным кожухом (для увеличения степени защиты автомата от окружающей среды);
  • блокировкой положения «включено» и «отключено» замком.

По способу присоединения автоматы делятся на стационарные и выдвижные. Стационарные автоматы по способу монтажа могут быть как переднего присоединения, так и заднего. Переднее присоединение бывает как с креплением на din-рейке, так и с креплением винтами или болтами.

Буквенные характеристики расцепителей модульных выключателей

В — применяется для осветительных сетей. С — применяется для осветительных сетей с удаленным потребителем.

D — обеспечивают защиту установок с высокими значениями пусковых токов (двигатели, иногда лампы с пуско-ругулируещем устройством, трансформаторы).

Испытание расцепителей автоматических выключателей

Собирается схема проверок срабатывания расцепителей автоматических выключателей (АВ) согласно руководству по эксплуатации испытательного оборудования (нагрузочного устройства). Устанавливается испытательный ток соответствующий уставке тока данного типа расцепителей АВ.

Установившееся превышение температуры для контактов автомата при нагрузке всех полюсов номинальным током расцепителя и температуре окружающей среды 25 градусов С не должно превышать 80 градусов С. Электромагнитный расцепитель срабатывает без выдержки времени. Комбинированный расцепитель должен срабатывать с обратнозависимой от тока выдержкой времени при перегрузке и без выдержки времени при коротких замыканиях. Ток уставки расцепителей не регулируют.

В каждом полюсе автомата смонтирован свой тепловой элемент, воздействующий на общий расцепитель автомата. Чтобы убедиться в правильности действия всех тепловых элементов, необходимо проверить каждый из них в отдельности. При одновременной проверке большого количества, автоматов испытание тепловых элементов по начальному току срабатывания нецелесообразно, т.к. на проверку каждого автомата затрачивается несколько часов.

В связи с этим тепловые элементы рекомендуется проверять испытательным током, равным двух- и трехкратному номинальному току расцепителя при одновременной нагрузке испытательным током всех полюсов автоматов.

Если тепловой элемент не срабатывает, то автомат к эксплуатации не пригоден и дальнейшим испытаниям не подлежит. У всех тепловых элементов, должны быть проверены тепловые характеристики при одновременной нагрузке испытательным током всех полюсов автомата. Для этого все полюса автомата соединяют последовательно.

При проверке электромагнитных расцепителей, не имеющих тепловых элементов, автомат включают вручную, присоединяя к одному из полюсов нагрузочное устройство. Устанавливается такая величина испытательного тока, при которой автомат отключится.

После отключения автомата ток снижают до нуля и в указанном порядке проверяют электромагнитные элементы в остальных полюсах автомата.

Время срабатывания автомата определяется по шкале секундомера. Время — токовые характеристики срабатывания расцепителей автоматических выключателей должны соответствовать калибровкам и паспортным данным завода изготовителя. Проверка срабатывания электромагнитных и тепловых расцепителей АВ в объеме 30%, из них 15% наиболее удаленных от ВРУ квартир. При несрабатывании 10% проверяемых АВ, производится проверка срабатывания всех 100% АВ.

Источник: http://www.eliks.ru/info/index.php?ELEMENT_ID=3184

Понимание деталей работы и реализации предохранителей

Что такое ток срабатывания

В данной статье представлен обзор некоторых тонких, но важных аспектов функционирования и конструкции предохранителей.

Основы

Предохранитель представляет собой простой и эффективный способ защиты от опасных уровней тока:

  1. ток, протекающий через ненулевое сопротивление проводника, приводит к рассеиванию мощности;
  2. мощность рассеивается в виде тепла;
  3. тепло поднимает температуру проводника;
  4. если комбинация амплитуды и продолжительности тока достаточна для повышения температуры выше точки плавления предохранителя, предохранитель становится разрывом цепи, и поток тока прекращается.

Хотя основы работы предохранителя не сложны, но есть тонкие моменты, о которых следует помнить. Остальная часть данной статьи поможет вам понять некоторые важные детали, связанные с поведением и использованием предохранителей.

Тепло, а не ток

Предохранитель срабатывает не непосредственно по току; скорее, ток создает тепло, а тепло отключает предохранитель. Это на самом деле довольно важное различие, поскольку это означает, что на работу плавкого предохранителя влияет температура окружающей среды и временны́е характеристики тока.

Указанный номинальный ток предохранителя относится только к определенной температуре окружающей среды (обычно или, может быть, всегда, это 25°C), и, следовательно, вам необходимо учесть это при выборе предохранителя, если вы разрабатываете устройство, которое будет работать на открытом воздухе, скажем, в Антарктиде или Долине Смерти. На следующем рисунке показано, как температура окружающей среды влияет на фактический номинальный ток относительно указанного номинального тока при 25°C для трех типов предохранителей.

Относительное изменение номинального тока плавких предохранителей в зависимости от температуры окружающей среды

ЭТО ИНТЕРЕСНО:  Сколько ватт в 1 вольт

Что касается временны́х характеристик тока, проходящего через плавкий предохранитель, всё, что мы знаем, это то, что эффект тепла накапливается с течением времени (мгновенное касание горячей сковороды – ничто по сравнению с ее поднятием и осознанием того, насколько горячо, когда вы находитесь на полпути между плитой и обеденным столом). Следовательно, номинал тока предохранителя является упрощением его реального поведения. Мы не можем ожидать, что плавкий предохранитель будет реагировать на высокоамплитудные переходные процессы, поскольку кратковременность высокой рассеиваемой мощности не увеличивает температуру до значения, достаточного для отключения.

На следующем графике показаны временны́е характеристики для группы плавких предохранителей, изготовленных Panasonic. Номинальный ток находится вверху, а кривая представляет собой время, необходимое для отключения плавкого предохранителя в зависимости от величины тока, протекающего через предохранитель.

Временные характеристики плавких предохранителей

Как вы можете видеть, амплитуды тока при переходных процессах должны быть намного выше, чем номинальный ток. Например, вам нужно 3 ампера, чтобы отключить предохранитель на 0,5 ампера, если продолжительность перегрузки по току составляет всего 1 миллисекунду.

Подключайте их последовательно!

Я не буду останавливаться на этом вопросе, потому что это очень просто, но на всякий случай стоит упомянуть, если вы допоздна разрабатываете схему и находитесь в усталом состоянии, вы можете не заметить, что поместили предохранитель таким образом, что он, например, последовательно работает только с одним из двух стабилизаторов напряжения. Предохранитель не может защитить всё, что подключено параллельно ему.

Номинальный ток и рабочий ток

Было бы разумно предположить, что предохранитель, рассчитанный на 6 ампер, можно использовать в цепи, которая может постоянно потреблять 5 ампер. Однако оказывается, что это не очень хорошая практика при проектировании. Номинальный ток предохранителя не является сверхточной характеристикой, и, кроме того, (как обсуждалось выше) фактический ток отключения зависит от температуры окружающей среды.

Следовательно, чтобы избежать «ложного срабатывания», у вас должен быть достаточно большой разрыв между ожидаемым вами, постоянно потребляемым током и номинальным током вашего предохранителя.

Этот документ от Littelfuse предполагает «переоценку» на 25% (для работы при комнатной температуре); таким образом, предохранитель с номинальным током 10 ампер может использоваться, только если постоянный ток схемы будет оставаться ниже 7,5 ампер.

Вы должны быть разборчивы

Скажем, ваша схема включает в себя чувствительный компонент, который точно будет поврежден, если через него пойдет ток более 1 ампера. В нормальных условиях схема никогда не должна потреблять более 500 мА, поэтому вы включаете предохранитель с номиналом 900 мА. Это достаточно высоко, чтобы предотвратить ложное срабатывание, и достаточно низко, чтобы гарантировать, что через чувствительный компонент никогда не пойдет ток 1 ампер. Правильно?

Нет. Рассмотрим следующую спецификацию для предохранителей Panasonic, упомянутых в статье ранее:

Таблица взята из технического описания Ток срабатывания / время срабатывания (при 25°C)
Номинальный ток x 100% / 4 часа мин.
Номинальный ток x 200% / 5 секунд макс.
Номинальный ток x 300% / 0,2 секунды макс.

Мы уже обсуждали тот факт, что тепло требует времени для накопления, и в этом случае требует много времени: вам придется ждать не менее четырех часов, чтобы предохранитель отключился, когда ток равен номинальному значению, и даже при удвоенном номинальном токе задержка составляет до 5 секунд.

Суть в том, что чувствительный компонент может поджариться задолго до того, как предохранитель отключится.

Вам придется переосмыслить выбор вашего предохранителя или (и это, вероятно, более практичное решение в такой ситуации, как описанная выше) реализовать другой метод работы по защите от больших токов.

Не забывайте о напряжении

Предохранители разрабатываются так, чтобы у них было очень низкое сопротивление, поэтому они не оказывают чрезмерного влияния на цепи, которые защищают. Это низкое сопротивление означает, что падение напряжения на предохранителе будет очень маленьким. Почему же у предохранителей указывается номинальное напряжение?

Это правда, что во время нормальной работы на предохранителях падает небольшое напряжение, но номинальное напряжение не относится к нормальной работе. Номинальное напряжение скорее говорит нам, какое напряжение предохранитель может выдержать после того, как он сработал. Перегоревший предохранитель представляет собой разомкнутую цепь, и, если напряжения в этой разомкнутой цепи достаточно, чтобы вызвать искрение, на предохранитель полагаться нельзя.

Хорошей практикой является учитывание номинальных напряжений, если вы используете крошечные плавкие предохранители поверхностного монтажа, например, показанные ниже (обратите внимание, насколько тонким является реальный плавкий элемент). Например, номинал для предохранителя 0603 может составлять 32 вольта или даже 24 вольта.

Структура плавкого SMD предохранителя

Заключение

Мы рассмотрели некоторые интересные подробности о том, как работают предохранители, и как эффективно включать их в свои проекты. В следующей статье мы рассмотрим различные типы предохранителей.

Оригинал статьи:

  • Robert Keim. Understanding the Details of Fuse Operation and Implementation

Теги

Время срабатыванияЗащита цепейНоминальный токПлавкий предохранительПредохранительРабочий токТемператураТок срабатывания

Источник: https://radioprog.ru/post/431

Автоматические выключатели — как выбрать, характеристики, графики защиты

Что такое ток срабатывания

Автоматические выключатели (АВ) предназначены для включения и отключения асинхронных электродвигателей и других приемников электроэнергии, а также для защиты их от токов перегрузки и короткого замыкания.

Автоматы обеспечивают одновременное отключение всех трех фаз в случае возникновения аварийных ситуаций. В рабочем режиме включение и отключение производится вручную, в аварийном режиме они отключаются автоматически электромагнитным, тепловым или электронным расцепителем.

Конструкция автоматических выключателей

Важной составной частью автомата является расцепитель, который контролирует заданный параметр защищаемой сети и воздействует на расцепляющее устройство, отключающее автомат. Наибольшее распространение получили расцепители следующих типов:

  1. электромагнитные (для защиты от токов КЗ);
  2. тепловые (для защиты от перегрузок);
  3. комбинированные, в том числе и электронные.

Электромагнитный расцепитель состоит из катушки с подвижным сердечником и возвратной пружины. При протекании по катушке тока КЗ сердечник мгновенно втягивается и воздействует на отключающую рейку механизма свободного расцепления.

Тепловой расцепитель представляет собой биметаллическую пластину, соединенную последовательно с контактом. При нагревании ее током перегрузки она изгибается и воздействует на отключающую рейку механизма свободного расцепления.

Интересное видео об устройстве автоматических выключателей смотрите ниже:

Различают нетокоограничивающие и токоограничивающие автоматические выключатели.

  1. Нетокоограничивающие выключатели не ограничивают ток КЗ в цепи, и он достигает максимального ожидаемого значения.
  2. Токоограничивающие выключатели ограничивают ток КЗ с помощью быстрого введения в цепь дополнительного сопротивления дуги (в первый же полупериод, до того, как ток КЗ значительно возрастет) и последующего быстрого отключения КЗ. При этом ток КЗ не достигает ожидаемого расчетного максимального значения. Токоограничение начинается с некоторого значения тока, определяемого характеристикой токоограничения (рис.6.1).

Например, выключатели серии Compact NS (Merlin Gerin) обладают исключительной токоограничивающей способностью благодаря технологии двойного размыкания (очень быстрое разъединение контактов под действием электродинамических сил и возникновение двух последовательных напряжений дугового pазpяда с крутым волновым фронтом).

Выбор автоматических выключателей

Выбор автоматических выключателей производится:

  1. по номинальному току,
  2. времятоковой характеристике срабатывания (ВТХ),
  3. отключающей способности, условиям монтажа и эксплуатации.

Правильный выбор характеристики автоматического выключателя является залогом его своевременного срабатывания.

Как правильно выбрать автоматический выключатель смотрите в видео ниже:

Номинальный ток и напряжение

Номинальным током Iн и напряжением Uн автоматического выключателя называют значения тока и напряжения, которые способны выдержать главные токоведущие части выключателя в длительном режиме. Номинальный ток расцепителя Iн.расц может отличаться от номинального тока автомата, поскольку в автомат могут быть встроены расцепители с меньшим номинальным током.

Другой, не менее важной, характеристикой автоматического выключателя является его предельная коммутационная способность (ПКС). ПКС называют максимальное значение тока КЗ, которое выключатель способен включить и отключить несколько раз, оставаясь в исправном состоянии.

Времятоковые защитные характеристики

Автоматические выключатели могут иметь следующие времятоковые защитные характеристики (ВТХ) (рис.6.2) [11]:

  1. зависимую от тока ВТХ. Такие выключатели имеют только тепловой расцепитель и применяются редко вследствие недостаточной ПКС и быстродействия;
  2. независимую от тока ВТХ. Такие выключатели имеют только токовую отсечку, выполненную с помощью электромагнитного или полупроводникового расцепителя, действующего без выдержки или с выдержкой времени;
  3. ограниченно зависимую от тока двухступенчатую ВТХ. В зоне токов перегрузки выключатель отключается с зависимой от тока выдержкой времени, в зоне токов КЗ выключатель отключается токовой отсечкой с независимой от тока заранее установленной выдержкой времени (для селективных выключателей) или без выдержки времени (для неселективных выключателей); выключатель имеет либо тепловой и электромагнитный расцепитель (комбинированный), либо двухступенчатый электромагнитный, либо полупроводниковый расцепитель;
  4. трехступенчатую защитную ВТХ. В зоне токов перегрузки выключатель отключается с зависимой от тока выдержкой времени, в зоне токов КЗ – с независимой, заранее установленной, выдержкой времени (зона селективной отсечки), а при близких КЗ – без выдержки времени (зона мгновенного срабатывания); зона мгновенного срабатывания предназначена для уменьшения длительности воздействия токов при близких КЗ. Такие выключатели имеют полупроводниковый расцепитель и применяются для защиты вводов в КТП и отходящих линий.
ЭТО ИНТЕРЕСНО:  В чем различие электрических цепей с изолированной и глухозаземленной нейтралью

В соответствии со стандартами международной электротехнической комиссии (МЭК) по времятоковым характеристикам срабатывания выключатели бывают трех типов: B, C, D (рис.6.3).

Защитные характеристики автоматических выключателей

  1. зависимая;
  2. независимая;
  3. ограниченно зависимая;
  4. трехступенчатая;
    • с выдержкой времени при КЗ;
    • без выдержки времени при КЗ.

Времятоковые характеристики автоматических выключателей

t – время срабатывания электромагнитного расцепителя, k = I/Iн – кратность тока к номинальному значению.

Тип B – величина тока срабатывания электромагнитного расцепителя кратности k = 3 – 6. Для бытового применения, где ток нагрузки невысокий и ток КЗ может попасть в зону работы теплового, а не электромагнитного расцепителя.

Тип C – величина тока срабатывания электромагнитного расцепителя кратности k = 5 – 10. Для бытового и промышленного применения: для двигателей со временем пуска до 1 с, нагрузок с малыми индуктивными токами (холодильных машин и кондиционеров).

Тип D – величина тока срабатывания электромагнитного расцепителя кратности k > 10. Применяется для мощных двигателей с затяжным временем пуска.

Рисунок — Характеристики автоматических выключателей B, C, D, Z, K и S

Тепловые расцепители, используемые в автоматических выключателях, чувствительны к нагреву от посторонних источников. В практике нередко случается, что расцепитель промежуточного полюса при номинальном режиме отключается только из-за нагрева соседних полюсов. Это приводит к ограничению области его работы и к коррекции номинального тока с учетом графика рис.6.4.

Рис.6.4. Зависимость нагрузочной способности АВ при их близком расположении: Кн = I/Iн – коэффициент нагрузки, N – количество автоматических выключателей при их размещении рядом.

Нагрузочная характеристика автоматических выключателей

Нагрузочная характеристика большинства автоматических выключателей зависит от температуры окружающей среды: при ее снижении коэффициент нагрузки увеличивается, при повышении – падает (рис.6.5). Это ограничивает возможность их использования в условиях жесткого температурного режима эксплуатации, особенно в горячих цехах или на открытом воздухе.

Разнесение функций защитных устройств на несколько независимых устройств создает массу неудобств при монтаже и эксплуатации.

Каждое из них не обладает универсальностью и подходит только к конкретному автоматическому выключателю.

Поэтому перед разработчиками остро встала проблема создания универсального устройства.

Последние поколения автоматических выключателей снабжены так называемыми электронными расцепителями, осуществляющими комплексную защиту электродвигателя и объединяющими в одном устройстве функции всех вышеперечисленных расцепителей.

Они выполнены на базе микропроцессорной техники, гарантируют высокую точность срабатывания, надежность и устойчивость к температурным режимам.

Электропитание, необходимое для правильной работы, обеспечивается непосредственно трансформаторами тока расцепителя.

Защитные расцепители состоят из трех или четырех трансформаторов тока (в зависимости от типа сети), электронного блока и механизма расцепления, который воздействует непосредственно на механизм выключателя.

Кривая срабатывания выключателя, максимально приближенная к рабочей характеристике асинхронного электродвигателя (рис.6.6), определяет следующие виды защит [19]:

  • защита от перегрузки с обратнозависимой выдержкой по времени;
  • защита от заклинивания ротора электродвигателя с определенной выдержкой времени;
  • защита от короткого замыкания с мгновенным срабатыванием.

Интересное видео о характеристиках автоматов смотрите в видео ниже:

Источник: https://pue8.ru/vybor-elektrooborudovaniya/222-harakteristiki-avtomaticheskih-vyklyuchateley.html

Расчет зоны действия ТО, принцип действия

Токовая отсечка – это разновидность максимальной токовой защиты с ограниченной зоной действия, предназначенная для быстрого отключения короткого замыкания. Отсечки бывают мгновенные и с малой выдержкой времени до 0,6 секунд. Отличие отсечки от мтз в отсутствии у токовой отсечки реле времени.

Селективность действия токовой отсечки достигается ограничением ее зоны действия. Эта защита отстраивается от тока КЗ в конце защищаемой линии или места, до которого она должна действовать. Ниже рассмотрим принцип действия различных токовых отсечек и их расчет.

Мгновенная токовая отсечка на линии с односторонним питанием

Зона действия токовой отсечки определяется графически. На рисунке наша защищаемая линия между точками АВ. Сначала строится кривая зависимость значения тока короткого замыкания от расстояния до точки КЗ. Точка КЗ в нашем примере – это конец линии, точка А.

Затем строится прямая параллельная оси расстояния равная току срабатывания отсечки. Область пересечения прямой и кривой представляет собой зону действия защиты. В нашем примере зона действия защиты – это отрезок ВБ.

Также зону действия токовой отсечки можно определить по выражению:

где:

  • xЛ – сопротивление линии, для которой выбираем защиту
  • EC – эквивалентная ЭДС генераторов системы
  • xC – сопротивление системы

Ток срабатывания защиты определяется по выражению ниже:

где:

  • kН – коэффициент надежности
  • IK.MAX – максимальный ток короткого замыкания в конце линии

Коэффициент надежности учитывает погрешности при расчете тока кз и погрешность срабатывания реле.

Коэффициент чувствительности отсечки рассчитывается по выражению:

где в числителе максимальный ток КЗ в начале защищаемой линии, в примере это точка В, а в знаменателе ток срабатывания защиты.

Мгновенная токовая отсечка на линии с двусторонним питанием

Рассмотрим схему линии с двусторонним питанием. По обоим концам расположены генераторы. Вначале необходимо определить максимальные токи короткого замыкания в конце линии с обеих сторон. Тот из токов, величина которого будет больше, и будет принят за максимальный ток короткого замыкания.

На линиях с двусторонним питанием ставится два комплекта отсечек с обеих сторон линии. Зоны действия определяются аналогично, как и для линии с односторонним питанием.

На рисунке у нас одна отсечка защищает при кз в точке А, вторая при кз в точке В. Зона действия первой – ВБ, второй – АГ. Максимальный ток кз в нашем случае больше Ik(A). Его и принимаем за расчетный для обеих отсечек.

Ток срабатывания защиты выбирается по большему из двух выражений:

Второе выражение используют при расчетах на линиях с двусторонним питанием. При наличии двух источников питания (генераторов), между ними проходят токи качания.

Максимальный ток качания определяется как сумма ЭДС генераторов деленная на сопротивление цепи между двумя генераторами, включая сопротивления генераторов (сверхпереходные x”d).

Мгновенные токовые отсечки являются самыми простыми защитами. К их плюсам можно отнести быстродействие и простоту схемы. К недостаткам относится область действия, так как она не распространяется на всю линию.

Кроме линий, токовые отсечки применяются на трансформаторах. Стоит упомянуть и токовые отсечки, с выдержкой времени.

А если соединить отсечку с выдержкой времени, мгновенную и максимальную токовую защиту, то получится трехступенчатая защита, которая может заменить более сложные защиты.

Токовая отсечка трансформатора

Токовая отсечка трансформатора является самой простой защитой трансформатора, которая защищает его от однофазных и междуфазных коротких замыканий. Принцип действия аналогичен принципу действия токовой отсечки линии.

Отсечка не будет срабатывать при повреждениях, сопровождаемых малыми токами, например, витковые замыкания, замыкания на землю в обмотке. Устанавливается токовая отсечка на трансформаторах мощностью менее 6300кВА. Если на трансформаторе установлена дифференциальная защита, то токовая отсечка не требуется.

Перейдем к расчету параметров защиты. Начнем с тока срабатывания защиты.

Ток срабатывания токовой отсечки отстраивается от броска тока намагничивания и от максимального тока короткого замыкания за трансформатором. Бросок тока намагничивания, который появляется при пуске трансформатора, составляет 3-5 от номинального.

где

  • kН – коэффициент надежности, зависит от типа реле
  • IK.MAX – максимальный ток короткого замыкания за трансформатором
  • IНАМ – ток намагничивания трансформатора, равный 3-5 от номинального тока трансформатора

Ток срабатывания реле (уставка) определяется по выражению ниже:

где

  • kСХ – коэффициент схемы
  • IС.З. – ток срабатывания защиты
  • nТТ – коэффициент трансформации ТТ

Коэффициент чувствительности токовой отсечки трансформатора

К преимуществам отсечки относится её быстродействие. Мгновенное отключение позволяет уменьшить возможные повреждения трансформатора и оборудования, запитанного от трансформатора.

К недостаткам можно отнести то, что зона действия отсечки ограничена. Поэтому отсечка вместе с газовой защитой трансформатора и максимальной токовой защитой составляют защиту трансформаторов малой мощности.

Сохраните в закладки или поделитесь с друзьями

Быстродействующий АВР

Формула мощности силового трансформатора

Последние статьи

Причины повреждения кабелей

Определение температуры термосопротивления по ГОСТ

Расчет тока трансформатора по мощности и напряжению

Выпрямительные диоды: расшифровка, обозначение, ВАХ

Самое популярное

Единицы измерения физвеличин

Напряжение смещения нейтрали

Источник: https://pomegerim.ru/rza/to-ras4et-princip-deystvia.php

Характеристика срабатывания автоматических выключателей и параметры токовременной работы, время срабатывания

Автоматический выключатель – это прибор, который отвечает за защиту электроцепи от повреждений, которые принесет ток большой величины.

Автоматические выключатели характеристики

Чтобы этого избежать, по правилами устройства электроустановок, требуется устанавливать электрические автоматы защиты. Автоматические выключатели делятся по категориям защиты.

Что это такое

Автомат, защищающий сеть, несет 2 задачи:

  • вовремя определить слишком большой ток;
  • разорвать цепь до того, как возникнет повреждение.

задача автоматического выключателя – отреагировать на появление чрезмерного тока и обесточить сеть. Опасно влияют на сеть 2 вида токов:

  • ток перегрузки, возникающий из-за включения большого количества приборов в сеть;
  • сверхтоки из-за короткого замыкания.

Современные электромагнитные устройства легко и безошибочно определяют ток короткого замыкания и выключают нагрузку. С током перегрузки проблем больше. Они не сильно отличаются от номинального значения и в течение некоторого промежутка времени протекают без последствий. Проблема заключается в наличии предельного значения тока нагрузки, который и вредит сети.

ЭТО ИНТЕРЕСНО:  Как определить фазу в распределительной коробке

Область применения

Применяются автоматические выключатели везде, где находятся электронные приборы. Устанавливаются и в бытовых условиях (для защиты квартир, частных домов), на производственных предприятиях, в бизнес-центрах, торговых комплексах.

Устройство, маркировка и технические характеристики

Характеристики:

  • номинальный ток – величина тока, которая протекает по автомату без ограничения времени при температуре воздуха +30 С (при большей температуре номинальный ток будет ниже);
  • время-токовая характеристика – зависимость времени срабатывания от силы тока.

Второстепенные характеристики:

  • номинальное напряжение;
  • предельная коммутационная способность.

Автоматические выключатели обладают своим набором характеристик. Для ознакомления с ними на корпусе наносится маркировка из букв и цифр. В маркировке указываются:

  • фирма-изготовитель;
  • линейная серия;
  • время-токовая характеристика – указывается латинской буквой B, C, D, K, Z;
  • номинальный ток – указывается после буквенного значения;
  • номинальное напряжение;
  • предельный ток отключения;
  • класс токоограничителя;
  • схема подключения, обозначения клемм.

Дополнительно указывают поправочные коэффициенты, связанные с превышением температурного режима.

1 полюс

Однополюсный выключатель устанавливается на вход каждой линии однофазной цепи. Это простая модификация автомата. Устанавливается для защиты однофазной, двухфазной и трехфазной проводки. Задача – защита от возгорания.

2 полюса

Используются, где идет питание электрооборудования по двум проводам и требуется одновременная коммутация двух полюсов. Существует 2 вида двухполюсников – 2Р и 1P+N. Первый оснащен защитой обоих полюсов от перегрузок и короткого замыкания. При подключении нет разницы куда подключать ноль, а куда – фазу. Второй тип называют «однофазный с нулем» – функция автоматического защитного срабатывания только в «фазном» полюсе. Второй полюс используется для подключения нулевого провода.

3 полюса

Защищает трехфазную цепь или одновременно три однофазных колодки. Используются для защиты электродвигателей.

4 полюса

Чаще используются в схемах «звезда с выделенной нулевой точкой». В таких схемах разделены защитный и рабочий нули.

Предельная коммутационная способность

Это максимальное значение сверхтока, которое выдержит автомат, не теряя работоспособности. Наиболее распространенные выключатели имеют величину 4500, 6000 и 10000 А.

Сверхток возникает, когда в цепи происходит короткое замыкание. Он протекает между фазой и нулем при оборванной изоляции, минуя потребителя. Сила тока зависит от сопротивления проводки, поэтому необходимо учитывать материал, из которого она выполнена. Для домов со старой алюминиевой проводкой лучше использовать автоматы с пределом 4500 А. Для медной проводки используются автоматы с пределом 6000 А.

Класс токоограничения

Когда появляются сверхтоки, изоляция резко нагревается. При максимальном значении тока автомат разъединяет цепь. За это время изоляция может повредиться, поэтому вводится еще одна характеристика, контролирующая ток.

Класс токоограничения влияет на безопасность всей схемы. Физически это промежуток времени, при котором происходит размыкание контактов и гашение дуги в гасительной камере. Выделяют 3 класса:

  • 3 класс – самый быстрый, время гашения составляет 2,5 мс;
  • 2 класс – время гашения 6-10 мс;
  • 1 класс – время гашения превышает 10 мс.

На устройстве это значение указывается в черном квадрате. 1 класс не обозначается на устройстве.

Классы (характеристики срабатывания) автоматических выключателей

Классы или характеристики срабатывания определяются от разброса величины срабатывания. Самые используемые классы – B, C и  D

«B»

Используется в бытовых, осветительных и других сетях  с небольшим или нулевым пусковым превышением тока. Такие автоматы устанавливаются непосредственно у потребителя. Электромагнитный расцепитель в таких приборах срабатывает при превышении тока в 3 и более раз.

«C»

Рекомендуется устанавливать в сетях со смешанной нагрузкой с умеренными пусковыми токами. Также используются в бытовых сетях, но защищают группу потребителей. Самый популярный автомат у электриков. Отличаются большей перегрузочной способностью по сравнению с устройствами класса B. Минимальный ток срабатывания должен превышать номинал в 5 и более раз.

«D»

Устройства данного класса защищают электродвигатели, у которых пусковой ток значительно превышает номинальный. Отличаются большой перегрузочной способностью. Минимальный ток срабатывания равен десяти номинальным.

Устройства для цепей для постоянного напряжения

Конструкция электромагнитных катушек переменного напряжения отличается от постоянного напряжения. Для защиты таких устройств используются специальные автоматические выключатели. От обычных они отличаются маркировкой полярности на корпусе, которую нужно обязательно соблюдать. Принцип работы у обоих приборов одинаков.

Как выбрать

Основные критерии выбора автомата:

  1. Ток короткого замыкания. Выбирается в соответствии с правилами устройства электроустановок, по которым приборы с отключающей способностью менее 6 кА запрещены. В настоящее время используются автоматы с номиналом 3, 6, 10 кА. Для домов, находящихся рядом с трансформаторной станцией, следует выбирать выключатель, срабатывающий при 10 кА.
  2. Рабочий ток. Выбирается с учетом сечения кабеля, материала, мощности потребления энергии. Подобрать нужный прибор можно по таблицам.
  3. Ток срабатывания. При включении устройства начальное значение может быть значительно выше рабочего, и, чтобы автомат не сработал, нужно правильно его выбрать. В дома и квартиры устанавливаются устройства класса B, при наличии мощной плиты или электрокотла лучше брать автоматы класса C. Для частных домов, в которых есть установки с электродвигателями, выбираются выключатели класса D.
  4. Селективность, т.е. отключение при аварийной ситуации только определенного проблемного участка, а не всего электричества в доме.
  5. Количество полюсов.
  6. Фирма-изготовитель. Покупка дешевого аппарата – может не сработать в нужный момент, что приведет к поломке устройств, износу изоляции и возможному пожару.

Автоматический выключатель – устройство, которое жизненно нужно в каждом доме для защиты от токов большой величины. Такие приборы устанавливаются в жилых домах и в производственных помещениях, и помогают обезопасить здание от поломки приборов и возгорания.

Источник: https://elektrika.expert/vykljuchateli/avtomaticheskie-vykljuchateli-harakteristiki.html

Технические характеристики

Предохранители — это коммутационные электрические аппараты, предназначенныедля защиты электрических цепей от аварийных режимов, защиты электрических сетей,электрооборудования общепромышленных установок, вагонов метрополитена и др. оттоков перегрузки и коротких замыканий. Они отключают защищаемую цепь посредствомразрушения специально предусмотренных для этого токоведущих частей подвоздействием тока, превышающего определенное значение.

Низковольтныеплавкие

Предохранители низковольтныеплавкие – коммутационные электрическиеаппараты, предназначенные для отключения защищаемой цепи посредством разрушенияспециально предусмотренных для этого токоведущих частей (плавких вставок) подвоздействием тока, превышающего определенное значение.

Типа НПН2-60 Типа ПН2 Серии ПР-2 Серии ПП17 Серии ПП24 Серии ПП28 Серии ПП32-31 Серии ПП32-35 Серии ПП32-37 Серии ПП53 Серии ППН Серии ППТ-10 Типа ПТ23

Типа ПТ26

Быстродействующие

Быстродействующиепредохранители в основном применяются для защиты полупроводниковых приборов.Малая тепловая инерция, быстрый прогрев полупроводникового перехода крайнезатрудняют защиту мощных диодов, тиристоров и транзисторов при токовыхперегрузках.

Обычные типы предохранителей и автоматических выключателей из-заотносительно большого времени срабатывания не обеспечивают защитуполупроводниковых приборов при коротком замыкании.

Для выполнения этой задачиразработаны специальные быстродействующие предохранители: типа ППА; типа ПП.

Плавкие вставки

Плавкая вставка являетсясоставной съемной частью предохранителя. При срабатывании предохранителя (приотключении тока короткого замыкания) плавкая вставка перегорает и подлежитзамене.

Плавкая вставка в корпусном исполнении имеетфибровый или фарфоровый корпус, крепится на токоподводящие части основанияпредохранителя (как правило, из латуни).

На малые номинальные токи и в закрытыхраспредустройствах плавкая вставка может выполняться безкорпусной.

Основными параметрами плавких вставок являютсяноминальное напряжение, номи­нальный ток плавкой вставки и отключающаяспособность.

Серии ВТФМ Серии ВТФ Серии ПП32-31 Серии ПП32-35

Серии ПП32-37

Специальные

Примером специальногопредохранителя является пробивной предохранитель. Принцип действия основанна возникновении пробоя межэлектродного промежутка со слюдяной прокладкой,которая служит для создания точного искрового промежутка, обеспечивающегозаданную разрядную характеристику. В отверстиях прокладки происходит пробой повоздушному промежутку.

Предохранитель выбирается по номинальномунапряжению и пробивному напряжению.

Пробивные предохранители защищают цепь отпоявления в них высокого потенциала.

Серии ПП-А/3

Для транспортныхустановок

Предохранители, используемыена транспортных установках, обладают высокой способностью к выдерживаниювибрационных нагрузок, трясок и ударов. С этой целью патроны (плавкие вставки)крепятся в специальных замках, обеспечивающих необходимое контактное давление ипредотвращающих выпадание патрона при действии толчков и вибраций.

Как правило, подобные предохранители выполняютсяс наполнителем в виде кварцевого песка, в керамическом корпусе.

Крепятся на опорных изоляторах.

Серии ПКЖ106-3Серии ПП29Серии ПП36

Блоки предохранителей

Подробная информация о предохранителях

Назначение

Предохранители — этокоммутационные электрические аппараты, предназначенные для защиты электрическихцепей от аварийных режимов, защиты электрических сетей, электрооборудованияобщепромышленных установок, вагонов метрополитена и др. от токов перегрузки икоротких замыканий. Они отключают защищаемую цепь посредством разрушенияспециально предусмотренных для этого токоведущих частей под воздействием тока,превышающего определенное значение.

Предохранители находят самоеширокое применение при эксплуатации электрооборудования как бытового, так ипромышленного применения. Предохранители могут встраиваться в комплектныеустройства. Выпускаемые промышленностью предохранители рассчитаны на применениев различных климатических поясах, размещение в местах с разными условиямиэксплуатации, на работу в условиях, различных по механическим воздействиям, иобладают разной степенью защиты от прикосновения и от внешних воздействий.

Предохранители изготовляются дляразных рабочих напряжений, с плавкой вставкой, вставки могут быть неразборными,с различными наполнителями.

Общие требования

Предохранители выпускаются висполнениях с разной степенью защиты от прикосновений и внешних воздействий, какправило, — IP00, IP30 (ГОСТ 14254-96 и ГОСТ 14255-69).

Группы условий эксплуатацииэлектротехнических изделий в части воздействия механических факторов внешнейсреды определены ГОСТ 17516.1-90. В соответствии с данными каталоговпредохранители предназначены для эксплуатации в группах М2, М4, М6, М7, М25,М27, М39.

Источник: http://www.emna.ru/katalog/nva/predochr_vstav.htm

Понравилась статья? Поделиться с друзьями:
Электро Дело
Что такое мощность тока простыми словами

Закрыть